Fridge Filler Design

Document Final
2/15/21

Team:

Shangyi Dai
Jonathan Derr
Travis Flake
Gage Gabaldon
Zhibang Qin

Project Sponsors:
Dr. Richard Rushforth
Sean Ryan

Mentor:
Sambashiva Kethireddy

Overview

Version 1.1

=

This document outlines the implementation plan for the Fridge Filler project. This will include
what we are going to do to get the app working and how the project will proceed in the future.

&

o

Table of contents

Introduction

Implementation Overview
Architectural Overview

Module and Interface Descriptions
Implementation Plan

Conclusion

14

15

=]

o

Introduction

Food banks have always had problems with getting food to families, and in recent times this
demand is increasing even more. Even before the pandemic, Saint Mary's Food Bank and other
food banks have had trouble making sure that food is not thrown away and wasted, which is
caused in part by the uncertainty of what food will come through the food banks, meaning the
distribution of food products is not uniform. For example, in the United States alone:

Every year, 80 billion pounds of food are thrown away in the United States.
Food banks across America receive different food products in varying quantities from
donors throughout the country.

e Foodbank workers may be unfamiliar with products given to the food bank.

All of these factors create an inefficiency that is hard to solve with the changing supplies
available to the food banks and with the lack of knowledge to best use the food.

This is where our sponsors, Richard Rushforth and Sean Ryan are looking to solve. Partnering
with Saint Mary's Food Bank (SMFBA), They want to better feed the people the food bank is
serving. The process of delivering and managing food for families all across the country is no
easy task and one that is vital to continuing to help those in need.

The general workflow of the food bank is very reactionary. The food bank gets lots of different
and unusual food from various food donors throughout the state. They then want to push the
food as fast as they can to the food sites. Without this constant supply from the food bank, the
food sites will undoubtedly run out of food. This is a good thing with the constant flow of food but
comes with various issues for both the food bank and the user. The food donated is great but
causes an issue that the food bank consumers don’t know what to do with some of the more
eccentric and unusual ingredients. Since the food bank gets what they get, whether it is catfish
or red bean paste. This causes an issue where consumers either waste the food given or don’t
pick up the unusual food at the foodbanks. Saint Mary’s Food Bank wants to help the
consumers and the people working at the various distribution centers. The common problems at
Saint Mary’s Food Bank are:

Food is not being used effectively at the food bank.

Unusual food and unfamiliarity with ingredients.

Online recipes are varied and require expensive ingredients along with too many
complicated steps for those served by the food bank.

Knowledge about what to do about the food is a mixed bag.

Foodbank workers often can’t help with this, as they often don’t have enough time to
plan out ways for people to use the food.

This is where our group. Fridge Filler, comes in. Fridge Filler aims to create a mobile application
that can serve as a go-between for the food banks and the people and families that use the food
banks. That way, families can figure out what food to cook with the ingredients they have
through simple, easy-to-follow recipes. The app also can recommend places to pick up missing

=]

o

ingredients and even a way to sync what you have at home with the app. The overall goal of the
application is to help families effortlessly plan meals and to help ensure that the food at the
distribution sites is used more effectively. The main features of the app are:

A searchable library of recipes that will help consumers to use the food given to them.
A Virtual Pantry to help keep track of what food the user has and helps recommend
recipes.
Navigation to both food bank sites and food retailers (preferably SNAP and EBT)
Analytics about the way the users use the recipes and what foods are getting used
where.

e Printable recipes for personal or food bank employee use.

This app has gone from concept to starting to implement the project. In this document, we will
be outlining the design of the project and what we will be using to bring the project to life.
Leading to a template that we can use to help focus the timeline of the project and to concretely
take the project to reality.

Implementation Overview

Going from concept to implementation requires us to give an overview of our implementation.
This is to help solidify the concepts we will be using and to help to give a brief overview of the
needed technologies of the project. To make sure that all the functional requirements are met
and help bring the app together.

Client-Server Approach

We will be using a client-server approach for our application where the app gets information
from a server to show to the user and also sends data back to the server.

Javascript and other web languages

The project is mostly going to be coded in Javascript, CSS, HTML, and TypeScript. Javascript
and Typescript will handle most of the API calls, dynamic CSS, and other logic of the app.
HTML and CSS will handle the look of the app.

Front End

lonic and Angular Frameworks

The app is built-in lonic and Angular frameworks, which will serve as our foundation for the user
experience. As lonic gives us good app templates that give us nice-looking web pages along
with many different technologies to help build our app for production. Angular will help with the
backbone of the app and will help with routing, dynamic CSS, and other safeguards and logic
for the frontend.

=]

o

Capacitor

Capacitor is a native runtime that will help build our app into multiple different platforms. So we
can have support for Android and 10S. Capacitor also has many useful plugins to help interface
with the device such as storage and notifications.

Google Maps API and other APIs

We will be using Google Maps API for the map of the distribution sites. Google barcode API. We
will be using PDFMake to convert our recipes into printable pdfs. Lastly, we will be using
Firebase for the analytics of our app.

Back End
Fridge Filler API

We will be using our own custom API to help serve the app with recipes and to manage access.
We will be using Node.js to handle the API calls. These will then access the MySQL database
and pull information that is needed or insert information into the database.

SQLite Database

This will serve as an in-app storage for some of the recipes and the user pantry so this is all
accessible offline.

MySQL Database

MySQL Database is an easy to use database allowing for table creation, standard queries, and
ease of scalability. It will oversee the storage of most data, including user activity, recipe activity,
site activity, and the creation and removal of user pantry.

Apache Server

We will host the fridge filler API and the backend website on the apache server. Along with the
MySQL database. This will allow us to retrieve information and edit information that will be used
for the application.

Architectural Overview

The following high-level diagram further explores the connection between the frontend and
backend of the application, and the inner workings of each aspect of the app, including
libraries/APls, used, language choices for design, and which parts of the backend interface with
which components of the frontend.

Front End

Mobile App

Uses HTML, CSS, and Javascript
Most User-Facing portion of the project
Allows users to:

o View/Print Recipes

o Add and Remove items from a Pantry

Bank Distribution Sites

.

Designed with lonic, using the Angular Framework

o \iew SNAP Retailer Locations and Food

N 7

/N

Admin Portal

s An Administrative tool that will allow system

administrators to indirectly manipulate certain
parts of the database

~

/

API

+ Interface for the
Database

s Only allows access o
registered users that
have Authorization
Tokens

4 Database)

« Data Storage for all
elements of the project

» Contains User
information, Recipe

g Authentication ™
Server

» Grants external services

»

information, Pantry
Information, and
Location Data for
SMAP/Distribution Sites
s Only externally
accessible through the

AP -/

Front End

Administrative Portal

Back End

access to the AP if they

present valid credentials
s Dictates what AP

senvices can be accessed

with Tokens

h 4

o

The Administrative portal will be responsible for facilitating the viewing and updating of data
within the database, specific user information, food distribution site information, and recipes,
allowing for both editing, creation, and deletion of these items. The information the administrator
portal will be editing will be hosted on the MySQL server, and as the server is also

=]

o

communicating with the application, the data changed by administrators through this portal will
also be changed within the application. On page features for the administrative portal will be
developed using HTML, CSS, and Javascript, as the simple nature of the needs of the admin
portal did not require an advanced framework for development.

Mobile Application

The mobile application will be the user-facing view of this project. This is where users will log in,
access their digital pantry, navigate to food banks, search for recipes that use ingredients they
specify or own, and print the recipes that interest them. This application will be developed within
the lonic framework, and features will be designed using HTML, CSS, and Javascript (in our
implementation, specifically AngularJS). Google Barcode API will be used for scanning of
UPC/Barcodes to enter items into the digital pantry, and Google Maps API will be used to
generate google maps directions to nearby food distribution sites. For the printing of recipes, the
PDFMake API will be used to format recipe data shared from the database into a print-friendly,
PDF format. All recipe data will be stored in the MySQL database, and GET requests will be
used to communicate to the application. Local data for recipes and ingredients will be stored
within the app using an SQLite server, which can hold instances of “saved” recipes and
ingredients the user adds to the pantry.

Note: UPC Scanning is a stretch goal for development, however, we feel it is feasible enough to
have prepared for the main release of the project.

Back End

Database

The database for the application will store all of the information that the app needs to function
properly. This includes user information, recipe steps, and ingredients required, Foodbank and
SNAP retailer locations, and most importantly, Pantry contents for each registered user. The
database will be implemented using MySQL and will be hosted on an external Linux server. The
database will be indirectly mutable by both regular users and administrators through the API
we’ll be building, which will ensure that the database is not accessed directly and will allow us to
control access to the data stored within it. Users will be able to change the ingredients they
have in their pantry as well as their contact information (optionally), while administrators will be
able to add, remove, and update recipes, change what ingredients are included in food boxes,
as well as adding or removing food bank locations if necessary through the Admin portal.

API

The API will be the primary point of contact for the database and will be used by all external
components of the project. It will be hosted on an Apache HTTP server on the same Linux
server that will be hosting the database and will use RESTful HTTP methods to query the

=]

o

database using any one of a number of predefined methods. This will allow us to control what
queries are sent to the database, therefore allowing us to control the flow of data.

Analytics

Analytics on app usage and (possibly) database contents will be done using Google Firebase
analytics. This is a free-to-use service that will allow us to both collect and store analytics
information, as well as allowing that data to be displayed in an easily understandable way.
Multiple recording events will be embedded within certain button click events in the app, which
will trigger an automatic update in the Firebase system for the relevant analytic data. Of course,
users will be able to opt-out of these analytics to save on data, or if they simply aren’t
comfortable with data being collected on them.

Module and Interface Descriptions

The module components and interfaces are extremely important for a functioning application. As
such, each component described here contains a more extensive diagram that further expands
on the operations of each component.

Front End

The front end mainly consists of the mobile application which is designed for users and the
administrative portal which is designed for admins.

In the mobile application, users will be able to log in to their account on the login page. After
they logged in the accounts stored in the database the data related to their accounts in the
database will be accessible which includes their favorites recipes, pantry food.The navigation
page will have access to users’ location and show nearby food banks. The digital pantry allows
users to store food. Recipe management will show recipes so users can know how to make use
of what they have.

In the admin portal, admins will be able to change the data for recipes and sites after logging in.
The recipe management page and sites management page will allow admins to get access to
the database and make changes.

Mobile Application

The mobile application is designed for users to allow them to make use of their food. Users will
be able to check the food they have, search recipes for their food, and find nearby food banks to
get food. It is mainly made up of the functions below.

Settings Modal

+viewCtrl: ModalController

<»(+ goToNavigation: void

+ goToRecipe: void

+ goToSettings: void

+ goToPrintRecipies: void

Settings Page :
Print Recipes

+ changeStuff: void savedRecipes: PDF
Recipe Modal

+ changelnformation: void

printRecipe: void

+ dismiss: void

+ geiRecipelnfo: void

’_?

Recipes Home Page Pantry Page Login Page Navigation Page

- authentication : AuthenticationService +ingredient: ingredient - fb: FormBuilder UserlLocation: String
- databaseSenice: DatabaseService

- router : RouterService - authService: AuthenticationService .

- DatabaseSenvice: DatabaseSenvice +addToPantry(ingredienty void +addMarkersToMap(marker): marker
+editQuantity(in red\em"vmd - alertController: AlertController + addinfoWindowToMarker(marker): infoWindow

|- modalCtri: ModalController e y(ing). voic + closeAllinfoWindows(}. void
+deletelngredient{ingredient): void - router. Router + showMap(}: void

i- loadingController: LoadingControllel

- modalController: Modal Controller
+ logout: void

+generateCards: void

+ searchRecipes(ingredient): RecipeCard

+ login: void

+ guestLogin: void
ingredientName: string * opentadal: void Markers
ingredientUPC: UPC fitle: string
info: string
latitude: float
g longitude: float
Database Service Firs vice Service
- hitp: HitpClient - hitp: HitpClient - hitp: HitpClient
Sign Up Modal
- dbName: String - tokenKey : String - lokenKey : String
- viewCtrl: ModalController
|- dbKey. String + getAnalytics: void + loadToken: void + dismiss: void
L < - setupDatabase: void +login: Obsenvable
+ downloadDatabase: void + logout: Observable

+ getPantry: void

Navigation Page
- location: int

+ findfoodbanki)
+ searchlocatio

- Login page Recipe Management Page
User
K |- name: string |- recipe: string
- account: string | - password: string »
+ zearchrecipe()
+ register() + managerecipe()

}

Digital Pantry

- food: string

+ findrecipe()
+ managefoot

Login Page

The login page will allow users to log in to their existing account or register for a new account.
After users click the login button, the userlD and userKey will be checked in the database
system to allow them to log in to their own account. If a user registers a new account, the
account information will be updated in the database.

After logging in, they will have access to the navigation page, their own digital pantry, and recipe
management page.

=]

o

Navigation Page

There will be a map depending on a Google Map which shows the location of the user and
shows the nearby food banks. Users can see markers on the map which are managed by Saint
Mary's. Users can see the information about markers to help them get the food they need.

Digital Pantry

This shows users their digital pantry, which stores the information about their food.

The userID will be used to access their own pantry, which stores their foodID in the database.
Then users can see what food they have, the date the food added, and the recipes related to
the food to help them decide what to cook.

Users can add new food by entering the food name or scanning the UPC code and deleting
existing food. Then the information will be updated in the database.

Recipe Management

The userID will be used to access their stored recipes in the database, then users can view their
favorite recipes.

Moreover, if users want more recipes, they can search recipes by filtering them by cuisine type,
time to make, difficulty to make, and ingredients.

Users can open a recipe to see more information which is stored in the database. They will be
able to see the detailed information of the recipes, add recipes to their favorite, rate the recipes
and print them out.

Admin Portal

The admin portal is designed for the administration to manage the database. They will log in to
their manager account in the admin portal and then have access to the management pages.

Distnibution Site Management
- sites: string
+ addsite()
+ removesite()
+ managesite()
Yy
Recipe Management Page
Py Login page
Admins . i
AU : - recipe: string
o . |- name: string =
- account: string *|- password: string "|+ searchrecipe(}
- + deleterecipe()
+ register() + managerecipa()

Login Page

=]

o

The login page will require them to log in to their account. Admin can also use Google account
to log in if it has access. After logging in, admins will have access to the food distribution site
page and recipe management page.

Food Distribution Site Page

On this page, admins will see the list of the food distribution sites.

The information of food distribution sites will show up and admins can view the information of
them or search for a certain site.

Admins can make changes to the detailed information of the sites, add new sites or remove
sites.

Recipe Management Page

On this page, admins will have access to the database of the recipes.

Recipes will show in cards containing pictures, basic information, and ratings.

Admins can manage the detail of recipes, add recipes or delete recipes, the information will be
updated in the database.

Backend

The diagram below outlines the back end portion of the project and the data flow between the
different components.
1.

Authentication .
Server j .
Mobile
App/Admin 3 3
Portal |
API Database

The steps for using the Back end are as follows:
1. Onlogin, send a request for an Authentication Token to the Authentication Server.
2. The Authentication Server queries the database to check the credentials included in the
request.

3. The database returns the necessary information
4. The Authentication Server generates a Token based on the credentials of the user and
their permissions, and sends it back to the service that made the request

5. The service that wishes to access the backend sends a request to the API, with the
token that was provided to it by the Authentication Server

6. The API sends a request to the Authentication Server to check if the token is valid

7. The Authentication Server checks the database to verify that if the token is valid

8. The database returns the relevant information

9. The Authentication Server sends a response to the API with an Affirmative or a Negative
10. The API sends the specified query to the database

11. The Database returns the results of the query

12. The API converts the results of the query to a JSON string and sends it to the requester.

To allow the back end to work effectively, several components are needed to provide the needed
functionality and maintain data security. These components will be explained in further detail
below.

Authentication Server
The Authentication server will give a token to the app, check the token sent from API, and send

back the approve/deny result to API, then the API will send SQL query to the database to get
the result and return it to the app.

The transition between all the steps shown above is using HTTPS which makes them more
secure.

API

Our custom API is designed to help serve the consumer with recipes and to manage access. By
using API instead of connecting to our database directly will make data transport safer.

We will use Node.js to handle the API calls. These will then access the MySQL database and
pull information that is needed or insert information into the database.

o Get/Post/Delete/Put: The API will have get and post modules that will allow our API to do
these things: recognize the request from our application, send SQL commands to our
database, get a response from our database, send results to the front-end.

MySQL Database

The Enhanced Entity-Object Relation (EER) Diagram below shows the tables in our database
and the relationships between them. The schema described by the diagram contains two
different types of tables, Content Tables and Relational Tables. Content Tables Store
information, while Relational Tables maintain relationships between two or more tables to allow
easier access to the information contained in them.

o]

] user_has_Pantry ¥
User_userID INT
User_userMame V ARCHAR({45)
Pantry_foodID INT
Pantry_foodMame V ARCHAR({45)
Pantry_foodUPC INT

| user v
userlD INT
userMame Y ARCHAR(45)
userPhone INT
userEmail ¥ ARCHAR{45)
userkey LONGTEXT

_| user_has_Recipes v
User_userID INT
User_userMame V ARCHAR({45)

Recipes_recipeID INT

Recipes_recipeMam e VARCHAR(45)

Recipes_recipeRating ALOAT

User Table

] Pantry_has_Ingredients ¥

Pantry_foodID INT
Pantry_foodMame Y ARCHAR(45)
Pantry_foodUPC IMNT
Ingredients_IngID INT

| Pantry ¥
foodID INT
foodName V ARCHAR({45)
foodMum INT
foodUPC INT H
expDate DATE
>

1

"] Recipes_has_Pantry ¥
Recipes_recipelD INT

Recipes_recipeMam e VARCHAR({45)

Recipes_recipeRating ALOAT
Pantry_foodID INT
Pantry_foodMame V ARCHAR(45)
Pantry_foodUPC INT

}

_| Recipes ¥
recipeID INT
recipeMame VARCHAR(45)

"] Pantry_has_Recipes ¥
Pantry_foodID INT
Pantry_foodMame V ARCHAR({45)
Pantry_foodUPC INT

Recipes_recipeID INT
Recipes_recipeMam e VARCHAR(45)
Recipes_recipeRating ALOAT

recipelng VARCHAR{45)

recipeSteps TEXT

recipeRating ALOAT

num Ratings INT
RecipeSteps_recipeStepID INT

k

] Ingredients_has_Recipes
Ingredients_IngID INT
Recipes_recipeID INT
Recipes_recipeMam e WARCHAR{45)
Recipes_recipeRating FLOAT

_| RecipeSteps ¥

recipeSteplD INT

stepOne TINYTEXT

stepTwo TINYTEXT

stepThree TINYTEXT
3 more

v +

| Ingredients ¥
IngID INT
IngMam e VARCHAR{45)
“* Boxes_boxID INT

> >

_| SHAPRetailers ¥
retailerID INT
retailerName VARCHAR({45)
retailerAddr V ARCHAR({45)
retailerCity VARCH AR{45)
retailerState VARCHAR(45)
retailerZip INT
retailerCounty V ARCHAR(45)
retailerLon POINT
retailerLat POINT

_| DistributionSites ¥
sitelD INT
siteMame ¥ ARCHAR(45)
siteAddr V ARCHAR{45)
siteCity VARCH AR(45)
siteState VARCHAR(45)
siteZip INT
siteCounty V ARCHAR{45)
siteLon POINT

boxID INT
—
food W ARCHAR(50)

sitelat POINT

_| Boxes v

>

This table is a content table that contains all the information about users, it supports user signup

and login features. It has a connection with the Pantry table and Recipes table.

e userlD: The userlD is an identifier, it allows the user to access corresponding
User_has_Recipes and User_has_Pantry tables.
e userName: The userName will be displayed after login. We will only require a first name

to minimize the amount of data we will be responsible for protecting.

userPhone: The user’s phone number. This is optional.
userEmail: The user’s email address.

e userKey: The password which is necessary for logging into the application and getting
authorization keys.

User_has_Recipes Table

This table is a relational table that is created by many to many identifying relationships between
User Table and Recipes Table, it supports the user's favorite recipe and recipe print feature.

The detailed information stored in this table is the connection between the User Table and
Recipes table. For example, User A has three favorite recipes, and this table will store User A’s
id and the three recipes’ ids.

Once a user adds one recipe to his/her favorite list, this table will add the corresponding
recipelD. If a user wants to print a recipe, this table will provide recipelD to help to search.

User_has_Pantry Table
This table is a relational table that is created by many to many identifying relationships between
User Table and Pantry Table, it supports the user's pantry feature.

The detailed information stored in this table is the connection between the User Table and
Pantry Table. Once a user wants to add food to his/her pantry list, this table will add the
corresponding foodID. It helps to show data in the pantry table.

Pantry Table

This table is a content table that contains all the information about foods, it supports the UPC
scanning feature. It has a connection with the Recipes table and Ingredients table.

foodID: The foodID is an identifier. It is a primary key.

foodName: The name of the food, it will be shown in the pantry feature.

foodNum: The number of food, it will be shown in the pantry feature.

foodUPC: The UPC code for this food, will be used for the UPC scanning feature.
expDate: food’s expiration date, it can be used for expiration date notification feature.

Pantry _has_Ingredients Table

This table is a relational table that is created by many to many identifying relationship between
Pantry Table and Ingredients Table. It supports the pantry table.

The detailed information stored in this table is the connection between the pantry table and the
ingredients table. For example, there are two elements in the pantry table, and this table will

store the pantry id and the elements’ corresponding ingredient ids.

It allows us to store more specific information about ingredients.

=]

o

Pantry_has_Recipes Table

This table is a relational table that is created by many to many identifying relationships between
Pantry Table and Recipes Table. It supports a recipe searching feature.

The detailed information stored in this table is the connection between the pantry table and the
recipe table. For example, it will store the pantry’s id and corresponding recipes’ id.

Once a user wants to search for recipes according to his/her pantry list, this table will provide
the corresponding recipe information for the results post.

Recipes Table
This table is a content table that contains all the information about recipes. It supports recipe
searching and printing features. It has a connection between the User table, RecipeSteps table,
Pantry table and Ingredients table.

e recipelD: The recipelD is a primary key and it is an identifier.
recipeName: The name of the recipe, it will be shown in the recipe searching feature.
recipelng: The ingredient of this recipe, it will show in recipe detail.
recipeSteps: The number of steps, it will show in recipe detail.
recipeRating: The total rates of this recipe, will be used for showing the recipe's average
rating feature.
e numRatings: The number of ratings, will be used for calculating the average rating.

Recipes_has_Pantry Table
This table is a relational table that is created by many to many identifying relationships between
the Recipes Table and Pantry Table. It will support the recipe searching feature.

The detailed information stored in this table is similar to the pantry_has_recipes table. The
detailed information stored in this table is the connection between the pantry table and the
recipe table. For example, it will store the recipes’ id and corresponding pantry’s id.

RecipeSteps Table
This table is a content table that contains the steps of the corresponding recipe. It will show in
recipe detail. It has a connection with the Recipes table. It supports the recipe detail and recipe
print feature.

e recipelD: This a primary key and it is an identifier.

e stepNum: This identifies which step of the recipe this entry represents

e stepContent: The actual directions for this step of the recipe

Ingredients Table
This table is a content table that contains all the ingredients. It has a connection between the
Pantry table, Boxes table and Recipes table. It supports recipe detail and food detail features.
e InglD: Itis a primary key and it is an identifier.
e IngName: The name of the ingredient, it will show in recipe detail and food detail.

=]

o

Ingredients_has_Recipes Table

This table is a relational table that is created by many to many identifying relationships between
the Ingredients Table and Recipes Table. It supports a recipe searching feature.

The detailed information stored in this table is the connection between the ingredients table and
Recipes table. It will store the ingredient’s id and its corresponding recipes’ ids.

Boxes Table

This table is a content table that represents the emergency food boxes handed out by Saint
Mary’s. It contains a number of preset ingredients that are typically handed out in these boxes,
and will allow users to easily add the contents of a box they received to their pantry. It has a
connection between the Ingredients table.

e boxID: The boxID is an identifier, it is a primary key.

e foodName: It is designed to show food names in the box list. It helps to show foods in

future.

Once a user clicks the box in the app, it will automatically add all the box’s foods into his/her

pantry.

Distribution Site Table

This table contains all the information about distribution sites. It supports a navigation feature. It
has no connection with other tables.

sitelD: It is a primary key.

siteName: The name of the site, it will show in the navigation detail.

siteAddr: The address of the site, it will show in the navigation detail.

siteCity: The city where the site is located, it will show in the navigation detail.
siteState: The state where the site is located, it will show in the navigation detail.
siteZip: The Zipcode for the site, can be used for site searching.

siteCountry: The country where the site is located, it can be used for site searching.
siteLon: The longitude for the site, can be used for navigation.

siteLat: The latitude for the site, can be used for navigation.

SNAP Retailer Table

This table contains all the information about SNAP retailers. It supports a navigation feature. It
has no connection with other tables.

retailerID: It is a primary key.

retailerName: The name of the retailer, it will show in the navigation detail.

retailerAddr: The address of the retailer, it will show in the navigation detail.
retailerCity: The city where the retailer is located, it will show in the navigation detail.
retailerState: The state where the retailer is located, it will show in the navigation detail.
retailerZip: The Zipcode for the retailer, can be used for retailer searching.
retailerCountry: The country where the retailer is located, it can be used for retailer
searching.

=]

o

e retailerLon: The longitude of the retailer, can be used for navigation.
e retailerLat: The latitude for the retailer, can be used for navigation.

This table is optional for the front-end. It can just use the information from SNAP Retailer
Locator.

Implementation Plan

Currently, our plan for implementation is very open-ended, to allow us to be as flexible as
possible with development. Because of our relative lack of experience with most of the tools and
frameworks we’re using, we are having to learn as we go, which means that unexpected
roadblocks could appear at any point. As we learn more, we are solidifying our development
plan, but listed below are the general steps we know we will need to take to get our project to a
completed state.

e Alpha Development (Finished by March 9th)
Complete Final App User Interface Design (February 12th)
Complete Final Admin Portal User Interface Design (February 12th)
Complete Final Database Design (February 12th)
Complete Final APl Design (February 12th)
Implement API Server (February 19th)
Establish/Test Communication Protocols between the Front End and the
Back End (February 19th)
Implement Authentication
Test Data Retrieval/Updates from Front End (February 26th)
m Test Recipe Population
m Test Pantry Population/Update
e Beta Development (Finished by April 9th)
o Start Implementing Stretch Goal Features
o Polish Front End User Interface Design
e Testing/Finalizing (Finished by April 16th)
o Gather Focus Group
o Deploy Beta version of the app to Focus Group
o Tweak Beta based on feedback from Focus Group

O O O O O O

https://usda-fns.maps.arcgis.com/apps/webappviewer/index.html?id=e1f3028b217344d78b324193b10375e4
https://usda-fns.maps.arcgis.com/apps/webappviewer/index.html?id=e1f3028b217344d78b324193b10375e4

=]

o

Fridge Filler

Front End
Finalize App User Interfac..
Implement Recipe Cards
Implement Pantry

Finalize Admin Portal User...

Implement Food Box Page
Design Recipe Scraper
Implement Recipe Scraper

Back End
Finalize Database Schem...

I
[Finalize App User Interface Design

implement
Tplement
[Finalize Admin Portal User interface Design

fimpl

f
Finalize I‘Js[ahas—‘

Desi
il
Impl

Implement Database Sch... U
Finalize API Design Gl AL T
Implement API Logic

Implement Queries

Test Data Retrieval U
Design Authentication Se...

Implement Authentication...

Test Authentication Server T

implement AP
Tmple :I

General f 1
Implement Stretch Goals Lo iesien s
Polish Front End Ul Folish Frant End Uf
Develop Testing Plan 2ol T LA
Gather Testing Focus Gro...
Deploy Beta Version of A..
Adjust Service Based On ... Adjust Service Based On Feed
Capstone Presentation (o
Final Touches/Polish
Deliver Final Product
Develop

Gather Test
Deploy-

[Final Touches/Polish
Deliver

Conclusion

Fridge Filler aims to create a mobile application that can serve as a go-between for the food
banks and the people and families that use the food banks. In this way, families can cook with
the ingredients they have through simple, easy-to-follow recipes.

With the help of our sponsors, Richard Ruthford, Sean Ryan, and Saint mary’s food bank we
hope to help those people served by the food banks. To better use the food given to them and to
help Saint Mary’s feed more people effectively.

Our solution is a mobile application and website that will help solve the food efficacy problem.
The app will provide simple, easy-to-follow recipes that will help consumers to use the food
given to them. It will also contain a Virtual Pantry to help keep track of what food the user has
and helps recommend recipes based on that. Additionally, it will also include information that will
help users navigate to both food bank sites and food retailers, and will also feature analytics
about the way the users use the recipes and what foods are getting used where, which could
potentially allow Saint Mary’s Food Bank to improve its service.

The document served as the blueprint for the remainder of this project. We have laid out a
detailed implementation and architecture plan for our project, so we can better capture design
flaws early on, which will save time in the development step of the project. Using various
technologies like MySQL, Angular, lonic, and various API's we will be slowly integrating and
bringing together everything for the app. To support all the features such as recipes, user pantry,
navigation, and printable recipes.

=]

o

The project now has a clear path of development and a plan to get there. We are happy with the
progress of the project and excited to continue our work and deliver the application that we want
to serve to our sponsors.

