
 

Team DigiLearn 

Technological Feasibility: 
The Digital Backpack 

Doctor Morgan Vigil-Hayes 

Volodymyr Saruta 

Caitlin Abuel 

Grace Shirey 

Israel Bermudes 

Kristine Hermosado 

Sebastian Kastrul 

 

10 October, 2020 



 i 

 

Team DigiLearn 

Table of Contents 

Table of Contents (i) 

Section 1.0 - Introduction (1) 

Section 2.0 - Technological Challenges (2) 

 2.1 - User Interface (2) 

  2.1.1 - Purpose 

  2.1.2 - Requirements 

 2.2 - Cross Platform Development (3) 

  2.2.1 - Purpose 

  2.2.2 - Requirements 

 2.3 - Networking (4) 

  2.3.1 - Purpose 

  2.3.2 - Requirements 

 2.4 - Integrating Multiple Resources (5) 

  2.4.1 - Purpose 

  2.4.2 - Requirements 

 2.5 - Responsible Data Management (6) 

  2.5.1 - Purpose 

  2.5.2 - Requirements 

Section 3.0 - Technological Analysis (7) 

 3.1 - User Interface (7) 

  3.1.1 - Alternatives (7) 

  3.1.2 - Chosen Approach (8) 



 ii 

 

  3.1.3 - Feasibility (8) 

 3.2 - Cross Platform Development (9) 

  3.2.1 - Alternatives (9)   

  3.2.2 - Chosen Approach (9) 

  3.2.3 - Feasibility (10) 

 3.3 - Opportunistic Content Delivery Networks (11) 

  3.3.1 - oCDN Architecture (11) 

  3.3.2 - Proxy Servers (11) 

  3.3.3 - Cloud Services (12) 

  3.3.4 - Chosen Approach (13) 

  3.3.5 - Feasibility (14) 

 3.4 - Multi-resource integration (14) 

  3.4.1 - Alternatives (15) 

  3.4.2 - Chosen Approach (16) 

  3.4.3 - Feasibility (18) 

 3.5 - Security (19) 

  3.5.1 - Proxy Server Security (20) 

  3.5.2 - User Device Security (21) 

  3.5.3 - Network Connections (21) 

  3.5.4 - Chosen Approach (22) 

  3.5.5 - Feasibility (24) 

Section 4.0 - Technology Integration (25) 

Section 5.0 - Conclusion (28) 



 1 

 

Team DigiLearn 

1.0 - Introduction 

The COVID-19 pandemic has led to a sudden shift to remote learning. Unfortunately, many 

students across America don't have access to a reliable Internet connection. The phenomenon 

known as “the homework gap” affects nearly 12 million students that are unable to fully 

participate in their coursework due to a lack of sufficient Internet access. Such a situation 

disproportionately affects disenfranchised communities. These students must rely on public 

hotspots to complete their assignments. In addition, students may spend a significant amount 

of their limited time trying to plan around the available connectivity, rather than on learning. 

 

Team DigiLearn is working with Dr. Vigil Hayes and CANIS labs to bring to life The Digital 

Backpack. The Digital Backpack, or DigiPack is an app that will allow a fluid transition between 

online and offline learning. When a user comes into range of a Wi-Fi connection, the DigiPack 

will automatically download requested content for offline use later. The app will also 

automatically upload completed assignments for the user. These upload and download 

requests can be queued offline to be performed when a network connection is available. The 

app will interface with popular Learning Management Systems such as Google Classroom. 

 

This document serves to examine technological challenges that may arise during the 

development of this software. Section 2 begins by introducing the main technological 

challenges for the project. Section 3 expands on these challenges with a detailed analysis of 

the technologies related to each specialized area. The ideas are aggregated in Section 4, 

wherein each individual technology comes together to form the planned system. The final 

section, Section 5, concludes the feasibility document with a review of the project goals and a 

summary of the system. 



 2 

 

Team DigiLearn 

2.0 - Technological 

Challenges 

2.1.1 Purpose  

The DigiPack’s goal is to provide offline service to K-12 students who have limited internet 

access. The application serves as a place where students can pull and work on online 

assignments without an internet connection.  

2.1.2 Requirements   

Considering that the users of the application would be K-12 students, it is essential to have 

different layouts for each age group. One of the tasks for the project is to have various user 

interfaces that will accommodate users' preferences. The following design challenges are 

brought up as the challenges that might occur while completing the project:  

Easy to Use - With the different age groups, elementary students' cognitive ability is not as 

prominent as high school students. The system will need to make a UI (user interface) design 

that must be able to satisfy elementary students and high school students' expectations. With 

this in mind, the tool needs to enable an efficient design flow by making feature navigation 

simple.  

Collaboration Friendly - Since the application will be based on K-12 students (users), there is 

a need for multiple visually appealing and informative designs for elementary/middle school 

and high school students. So, having an application that allows for collaboration on the same 

design file would be beneficial.  

This section outlines the main technical challenges that may be faced for this project. These 

challenges relate to the major design aspects necessary to create a working product for the 

client. Each subsection discusses a technology, its purpose for the project, and the 

requirements related to that technology.  

2.1 User Interface 



 3 

 

Compatibility - The application will be implemented in Android and iOS operating systems, 

which would mean designs based on Android and iOS would be required. A tool that allows 

cross-platform designs and is able to make prototypes would be helpful to the progress of the 

project.  

2.2.1 Purpose 

The Digital Backpack is a mobile and web application used to service students while online 

and offline, mainly students from K-12. Since this project targets a wide audience, the cross 

platform development tool should be able to be accessed by multiple platforms and still 

communicate well with the user and run responsively.. Downloading assignments and queries 

can be a difficult task while offline, which is why the code used for the Digital Backpack needs 

to be efficient with resources and be sensibly designed so that the code is easy to update and 

debug. The application needs to behave reliably at all times. The solution is further discussed 

in 2.3.3.  

2.2.2 Requirements 

The Digital Backpack is an application aimed to help students across the nation. The 

application needs to be able to have the following features so that the application looks and 

runs perfectly for different platforms:  

Simple Architecture - Since the Digital Backpack is going to be used by students and 

teachers, it is important that the UI architecture is intuitive and effective. The application should 

be easy to use for both sides. It is desirable to have  a tool that allows for the creation of an 

application that the users can easily read and follow on for multiple platforms.   

Reaches Across Multiple Platforms - There is a wide variety of people that will be using this 

application. There are many platforms that are being used these days. The goal is to be able to 

help students and in order to do that the Digital Backpack needs a tool that is able to reach 

across multiple platforms. The main platforms under consideration are IOS, Android, and Web 

Applications. The mobile application requires a Framework that is flexible with all of these 

platforms.  

Functions Fast and Without Errors- The Digital Backpack is going to be used by students 

very often for help. In order to assist students efficiently , the application needs to be efficient 

and responsive, especially since the main function of the application is to be used while offline. 

The code cross platform development tool must run fast in order to provide the most helpful 

service to the user.   

2.2 Cross Platform Development  



 4 

 

Easy to Fix Bugs and Update  - Technology is moving at a rapid pace and the Digit 

Backpack needs to stay up-to-date. The code needs to be structured to allow for the efficient 

identification of bugs and straight-forward updating of the application.  

2.3.1 Purpose 

The Digipack must be able to network with educational services and retrieve data for the user. 

Content will be downloaded opportunistically, so it is essential that this transaction can occur 

as quickly and seamlessly as possible. A proxy server can be used for the application to 

aggregate data related to school content while the user is offline. This pre-fetched data will 

ensure fast download speeds when a user reaches an opportunistic connection. The solution 

is further discussed in section 3.3.  

2.3.2 Requirements 

There will be a proxy server that will aggregate data related to school content while the user is 

offline. A constraint from the client is that the proxy server should be Linux-based, and the 

service should be hosted using cloud services. The working prototype will be a cloud-based 

server that can serve 25-50 students. The feature requirements of the proxy server are as 

follows: 

Integrates with Google Classroom APIs - Google Classroom (GC) is a popular LMS utilized 

by many teachers across america. The application should be able to interface with GC in order 

to perform important academic tasks such as: fetch announcements, assignments, and 

grades. 

Integrates with Google Search - As a search engine, Google offers a vast array of 

knowledge from various sources. The application should be able to: store search queries to be 

posted when a connection is available, store top query responses for offline viewing. 

Manages OAuth credentials - The Digital Backpack will be handling delicate data such as 

user information. As such it is essential to create a system that is secure and reliable. Further 

information about security is discussed in sections 2.5 and 3.5. 

Provides a REST API - Data that is requested by the user may be coming from various 

different sources. The application must be able to collect this data and convert it to a uniform 

format that can be used within the Digital Backpack interface. Further information about REST 

services is discussed in sections 2.4 and 3.4.  

2.3 Networking 



 5 

 

Pre-fetches content requested by a user - One of the roles of the proxy server is to 

decrease the time necessary for download. Having common information cached allows content 

to quickly be pushed/pulled when opportunistic connectivity is established. 

2.4.1 Purpose 

The end user(s) of the Digital Backpack need to be able to access resources such as the ones 

described in section 3.4 in a quick and easy fashion while still conforming to the limitations of a 

mobile device. Student users will need to be able to access multiple web based educational 

resources and outlets all from the mobile application. Teacher users would like to be able to 

provide lists of resources that students can access, assignments, and possibly even curate the 

sources available to their students on a class by class basis. Being able to integrate any and 

all possible resources with minimal refactorization is a key challenge facing this project. 

The stability of the users' connections to the Digital Backpack service is also something to 

consider. Students will not always be able to stay connected to the internet while their 

documents download or upload. The chosen solution needs to be able to handle any sudden 

interruptions in the connection and have the ability to resume its work with minimal overlap. 

2.4.2 Requirements 

Team DigiLearn is developing a service that will allow content to be pulled from multiple 

resources requested by the client, store it in a uniform format so that it can be distributed to 

users, and displayed in a consistent format across multiple devices. The key features are 

defined as such:  

Uniform Data Storage - Data pulled from resources will be stored in a uniform format to allow 

for it to be parsed in a consistent manner. Storing it in this way will also allow for data from 

many resources to be sent to and interpreted by user devices with different operating systems 

consistently. 

Multi-source compatibility - The DigiPack service should pull data from any source and 

create a file containing all of the relevant information from that source. Resources requested 

by the client include: Google Search, Google Docs, Google Classroom, Khan Academy, and 

Youtube.  

Scalability - DigiPack will need to be able to make new sources available to users as the 

reach of the project grows without having to refactor the entire supporting structure. Integrating 

new resources will take time no matter what format is chosen however; simplicity would make 

large scale implementations possible. 

2.4 Integrating Multiple Resources  



 6 

 

Stability - Establishing a stable connection with a user's device once an internet connection is 

available is a key functionality of the DigiPack service. In the event of a disconnect in the 

middle of operation, the connection should be reestablished once internet connectivity is 

detected and transfers should resume where they ended. 

2.5 Responsible Data Management  

2.5.1 Purpose 

It is imperative that the Digital Backpack handles sensitive user-data  End-users must be 

confident that any information they transfer using the Digital Backpack is inaccessible by 

unauthorized users. Furthermore, the Backpack must be compliant with the Family Educational 

Rights and Privacy Act (FERPA) which makes fastidious security exceedingly important. Given 

the nature of the proposed network architecture, there are four main points of intrusion to the 

system: the user’s device, the proxy server, the database, and the network connections 

between these devices. Each of these points must be maximally secured against intrusion to 

ensure the inviolability of user data.  

2.5.2 Requirements 

Security will be a consideration for every aspect of the system. For the purposes of the working 

prototype, the system must have standard security against intrusion. The following items must 

be implemented for The Digital Backpack to be appropriately secure: 

Encryption - Any and all sensitive data stored at any location must be encrypted. Additionally, 

this data must be encrypted while it is being transported between devices. All encryption keys 

must be securely handed and stored as to prevent unauthorized access. 

Authentication - Communications between devices must be authenticated to confirm that any 

information served is served only to authorized devices. Additionally, user accounts must use 

authentication to prevent unauthorized account access. 

Device Security - The end devices, the user’s device and the proxy server in this case, must 

be secure against virtual and physical intrusion. Physical protection is primarily in the hands of 

the use, so The Digital Backpack must keep user information inaccessible to unauthorized 

individuals even in the case of physical tampering.  



 7 

 

Team DigiLearn 

3.0 - Technology 

Analysis 
This section goes into depth on the specific technologies that will be used to address the 

challenges discussed in section 2.0. Each subsection will list the potential alternatives, the 

chosen approach, and the feasibility of the technology.  

3.1 User Interface 

 

The User Interface is an essential part of the project as it would be the main section that the 

users will interact with. The application will be required to have various designs and 

prototypes that will be showcased to the client and users. The tools to overcome these needs 

would be researched to help deliver the project.  

3.1.1 Alternatives 

In deciding what tool to use for designing the UI, some of the tools options were:  

Sketch - Sketch is a digital design toolkit which is based on vector graphics. It's a great tool to 

use when designing the interface, but it is only based on iOS. Cross-platform software 

development is not supported. There is also an account membership fee needed.  

InVision Studio - InVision Studio is a free vector-based digital product design platform that 

helps develop screen design processes. The main idea is to make it easier for UI designers to 

create prototypes of the designs they envisioned. The downside of this is that it doesn't offer 

the designing aspect. It would be a great tool to use when we're creating prototypes for the 

client. 

Axure - Axure is similar to InVision, as it's also a digital product design platform. However, it 

is not as effective as InVision because it tends to be more glitchy when trying to design 

multiple screens, and it can get laggy when switching from different screen designs. There is 

an account membership fee required to be able to use the tool.  

Adobe Experience Design - Adobe Experience Design is a relatively new tool that allows the 

combination of Sketch and InVision Studio because it provides the designing process and 

prototyping mobile applications. It encourages collaborations within multiple projects. 



 8 

 

3.1.2 Chosen Approach 

The following table is the summary of the result of each tool based on the criteria: 

Tools Easy To Use Collaboration Compatibility Total 

Sketch 1 1 0 2 

InVision Studio 1 1 1 3 

Axure 0.5 0.5 1 2 

Adobe 

Experience 

Design 

1 1 1 3 

Table 3.1: User Interface design tool comparison chart | Rating Scale: 1-3, 3 = best 

 

In conclusion, the application will create designs and prototypes using the Adobe Experience 

Design to tackle the application interface challenges. It satisfies the criteria needed to fulfill. As 

shown in the comparison chart, The Adobe Experience Design did tie with the InVision Studio. 

However, it is much more beneficial to use Adobe Experience Design as it allows to make 

design sketches and quickly create wireframe prototypes of the design completed. Rather than 

InVision Studio, which only focuses on producing prototypes. Since the Adobe Experience 

Design is relatively new, InVisionStudio will be used as a backup.  

 

3.1.3 Feasibility 

To prove that Adobe Experience Design will be able to help us in the design process of the 

project, we plan to design a simple UI that will demonstrate the following process: 

• User login layout 

• Homepage layout  

• User profile layout  



 9 

 

3.2 Cross Platform Development  

 

The cross platform development tool is important to the Digital Backpack  application. The tool 

needs to be able to create a simple and easy-to-use application that is able to work with IOS, 

Android, and Web Applications. This tool also must have an architecture that is visibly pleasing 

and runs fast and without errors to make it easier and more enjoyable for the customers. The 

framework that the application is coded with must also be effective for debugging. The 

following section includes the tools that were looked at and researched, as well as the tool that 

has been selected to use for cross-platform development for the user application.  

3.2.1 Alternatives 

Flutter - Flutter is a service recommended by the client Dr.Vigil-Hayes. Flutter is a cross 

platform tool made by Google. Flutter works with Android, IOS, and web devs. Flutter enjoys 

priding itself on working very quickly allowing creators to build UI and fix bugs within seconds. 

Using Google’s code language, Dart, Flutter creates beautiful and simple looking applications 

with a large selection of widgets.  

React Native - While searching forums of cross platform development compared to Flutter, I 

found React Native. React Native  is a cross platform tool that can be used with both Android 

and IOS. React Native was released in 2015 by Facebook and is used by that platform. It is 

also used with many other apps such as Instagram, Discord, and Skype. Using JavaScript, 

React Native allows its users to create a simple UI that allows you to integrate quickly.  

Ionic - While searching for other tools similar, but providing differences, to Flutter and React 

Native, I came across Ionic. Ionic is a UI Framework that is flexible across many platforms. 

The technology was created in 2012 and is used by companies such as AAA and NASA. Ionic 

uses JavaScript to easily create fast, simple, interactive applications. The cross platform Ionic 

creates allows the architecture the user has created to adapt to different platforms. Other than 

JavaScript, Ionic grants its users the ability to use other frameworks such as Angular, React, 

and Vue.  

3.2.2 Chosen Approach 

The following is a careful consideration of each tool and what services they would provide for 

the project. Flutter was the chosen  cross platform development tool created by Google. There 

are various reasons why this technology was chosen. The design that Flutter provides looks 

very nice and neat and the application runs very smoothly, which is an ideal experience 

for  the users of the Digital Backpack. Flutter has a wide variety of widgets to use for the 

application as well. Although React Native satisfies all requirements, forums comparing it to 

Flutter shows the cons the tool has. While both have great simple UI, Flutter adapts better to 

different platforms, while React Native looks the same.  



 10 

 

Flutter tends to also run and code faster than React Native. Flutter shares a lot of pros with 

Ionic as well. Some of the main differences between the two is that Flutter has a lot more 

options with UI and the performance is not as smooth. The table below shows the ratings for 

all of the tools and the requirements for the project. 

Tools Simple 

Architecture 

Reaches 

Across 

Multiple 

Platforms 

Functions 

Fast and 

Without 

Errors 

Easy to Fix 

Bugs and 

Update 

Total 

Flutter 2 3 3 3 11 

React Native 2 2 2 3 9 

Ionic 3 3 2 2 10 

Table 3.2: Cross Platform Development Comparison Chart | Rating Scale 1-3, 3 = Best 

The table shows that React Native is easy to fix bugs and update, but is okay and running 

smoothly, multiple platforms, and simple architecture. Ionic has a nice simple architecture and 

reaches across multiple platforms, but is mediocre at running smoothly and fixing bugs and 

updating. Flutter has an architecture that might not be as simple, but reaches across the 

necessary platforms  easily, runs at a good quick and smooth pace, and is easy to fix bugs and 

update which is why it has been chosen as the cross platform development tool for the Digital 

Backpack. 

3.2.3 Feasibility 

To prove the feasibility for Flutter, there must be some testing for the tool first. After 

downloading the tool, there will need to be research into the Dart language and how to 

implement it. Flutter also includes multiple widgets that will help with the design of the 

application. Additionally, experimenting with the widgets will showcase which potential features 

to include in the application. One of the widgets that Flutter includes is a platform view widget. 

Once this widget is implemented through the web-based browser, Android, and iOS sides, they 

can be put together to create a platform view for both.  



 11 

 

3.3 Opportunistic Content Delivery Networks  

Opportunistic Content Delivery Networks (oCDNs) facilitate asynchronous communication in 

situations where a consistent connection is not available. Delay Tolerant Networks (DTN) is a 

term sometimes used interchangeably with oCDNs. This document will refer to the architecture 

as oCDNs. The following sections discuss the oCDN architecture, web app frameworks, cloud 

services, the chosen approach, and the feasibility of this technology.  

3.3.1 oCDN Architecture 

The traditional internet protocol suite is primarily based on TCP and IP. TCP/IP has certain 

assumptions that do not allow for prolonged delays in communication. The oCDN architecture 

uses a method of store-and-forward message routing to account for these variable delays. The 

data moves from a storage place on one node to a storage place on another node. These 

storage places can hold messages indefinitely, unlike the short-term storage in TCP/IP, which 

only expects to buffer data for a short period of time.  

The oCDN architecture operates under the following assumptions: 

• Intermittent Connectivity 

• Variable delays 

• Asymmetric Data Rates 

• High Error Rates 

To account for these necessary nodes will be developed for store-and-forward routing within 

the system. The backend server framework must be able to accommodate this architecture.  

3.3.2 Web App Frameworks 

A back-end web app framework will be used to develop the oCDN. Web frameworks support 

the development of web applications and are highly customizable. Members of Team 

DigiLearn are most familiar with the programming languages Python and Java. The following 

frameworks are based primarily in these languages. 

The desirable characteristics for the server framework are as follows: 

• Integrates necessary services such as Google Classroom* 

• Has thorough documentation 

• Preferred language 

• Scalability 

*Integration with external sites further discussed in section 3.4 



 12 

 

Google Cloud - Google Cloud is Google’s hosting service. As a major corporation, Google 

promises security and privacy. There is a free trial tier for their cloud services, but pricing 

varies depending on what specific services are needed.  

Azure - Azure is a cloud hosting service that offers broad catering to a wide variety of needs. 

Webapps can be built using the framework of the developer’s desired language of choice. 

Azure has stability but at higher operating costs.  

The best cloud service that suits the needs of this project is DigitalOcean. The explanation for 

this is further discussed in section 3.3.4 

3.3.3 Chosen Approach 

Based on recommendations from the client and an analysis of the available services, Django 

was chosen to serve as the web app framework, and DigitalOcean to serve as the cloud 

computing service for the project. 

Tools Language Documentation Overhead Total 

Django 3 3 3 9 

Flask 3 3 2 8 

CherryPy 3 1 2 6 

Apache Wicket 2 2 2 6 

Table 3.3: Web App Framework Comparison Chart | Rating Scale 1-3, 3 = best  

Django is one of the most popular Python web app frameworks. Common features and 

templates are built in which allows for quick set up and saves development time. These 

features include code for common tasks such as security, session management, and database 

manipulation. The application will be handling user data and Django offers high security for 

managing user accounts and passwords.  

Tools Configurability Ease of Use Scalability Pricing Total 

DigitalOcean 1 3 3 3 10 

Google Cloud 2 2 3 2 9 

Azure 3 1 3 1 8 

Table 3.4: Cloud Service Comparison Chart | Rating Scale 1-3, 3 = best  



 13 

 

Jango - Django is a Python-based fullstack web application framework that offers many core 

functionalities from the start. Less third party plugins are needed, allowing developers to get 

straight to creating their web application. Django is ideal for larger projects, highly scalable, 

and is backed by an extensive community. 

Flask - Flask is a lightweight Python web application framework that is flexible, especially for 

smaller projects. Some features of Flask include integrated unit testing, RESTful and HTTP 

request handling, and clean API. Flask has thorough documentation and is backed by an 

active community 

CherryPy - CherryPy is an object-oriented Python web application framework that is 

lightweight and flexible. This framework gives developers a lot of freedom when it comes to 

creating project structures and architectures. REST APIs can be created with the built in tools 

given. CherryPy is not as popular as other frameworks like Django and Flask, so there may be 

a less active community. 

Apache Wicket - Apache Wicket is a Java component oriented web application framework. 

Component-based web app frameworks, in contrast with action based web app frameworks, 

use components to display data that can react to events from an end user. A benefit of 

component-based development is that it ensures UX consistency. 

The best proxy framework that suits the needs of this project is Django. The explanation for 

this is further discussed in section 3.3.4. 

3.3.4 Cloud Services 

To host the server cloud services will be utilized. Cloud services can be used alternatively to 

physical data centers, which can be much more costly. These services offer computing power, 

storage, and databases. Some use cases for cloud computing include data backup and 

recovery, email, virtual desktops, software testing, and web applications. The benefit of cloud 

computing is its flexible pricing and scalability.  

Desirable characteristics of the cloud software include the following: 

• Lightweight 

• Easy to use 

• Scalability 

• Fair pricing  

DigitalOcean - DigitalOcean is a cloud hosting service built by developers with a simple 

interface to provide for easy configuration. Because of its simplicity and ease of use, it is 

targeted towards smaller-scale projects that don’t require an all-encompassing cloud 

computing ecosystem. 



 14 

 

DigitalOcean suits the project needs as a simple cloud service to host the proxy server. The 

goal is to make a small scale prototype for testing to work for around 25-50 students. 

DigitalOcean has the benefit of being an easily configurable service while still having the 

potential to scale, making it perfect for the envisioned project. Additionally, DigitalOcean offers 

rates on the cheaper side when compared to cloud services intended for extensive enterprise-

level systems.  

3.3.5 Feasibility 

To test the feasibility of this technology, a simple proxy server will be implemented and hosted 

on DigitalOcean, using their free starter package. The capabilities will be tested by writing a 

service that periodically makes calls to 3rd party APIs. A testing service such as Postman will 

be used to make requests to the server. 

3.4 Integrating Multiple Resources  

The range in maturity, education, and age of the users presents an interesting technical 

challenge. Users need to be able to pull resources from multiple services, pull resources 

provided by teachers, have the option for educators to restrict the content available to their 

students, all while still having the ability to access just about anything educational through the 

DigiPack app. End user storage capabilities is also a limiting factor in this scenario, many 

mobile devices only have approximately 16GB of on-board storage, much of which is taken up 

by the operating system and applications. Therefore the developers also need to find a 

solution that is compressible and can possibly be stripped down to the raw content from the 

connected services. 

Internet connection stability is not a given with this project. The DigiPack service also needs to 

be able to handle sudden disconnections, packet loss, and other forms of connection 

disruptions. If, for example, a user has to go home immediately after school and does not have 

time to finish downloading or uploading their files, a note should be made of where the 

transfers were stopped and when a connection is reestablished, resume the process from 

there. 

The main factors of the above scenario that this section will address are the ability for 

resources to be pushed and pulled from the services that have been outlined for by the client. 

These services include: 

• Google Classroom 

• Google Docs 

• Google Search 

• Khan Academy 



 15 

 

• Youtube 

as well as providing an interface that allows for other services to be "connected" as needed. 

Because the content from each of these services is so diverse the server needs to be able to 

organize it in such a way that allows for content to be filtered and then pushed to the students 

devices without disrupting the homogeneity of the app. 

At the core of these requirements there are seven characteristics that will be addressed: 

1. Support for the requested services. 

2. Scalability for future support of other services. 

3. Modularity in the event that one of the implemented services changes their content 

format. 

4. The ability to implement a localized structure and/or format to the data received 

from each service. 

5. Simplicity in the data from each service so that it can be scaled up or down 

depending on the needs of the end user. 

6. The ability to handle unstable connections and resume operation after potentially 

long periods of lost connectivity. 

7. Inexpensive/free due to the non-profit nature of this project. 

3.4.1 Alternatives 

Parsing HTML files/web crawlers 

OpenSearchServer https://www.opensearchserver.com/documentation/api_v1/

web_crawler.md 

The initial idea for collecting web content for users was to implement a web scraper/crawler 

that would fetch HTML files and embedded objects as they were needed and store the raw 

data locally. Web crawlers and scrapers have been around for decades and are a tried and 

true method for pulling web content for local storage. The above link is a web crawler with a 

relatively simple and easy to use interface. 

Network Sockets 

Python Socket - https://docs.python.org/3/library/socket.html 

To establish a connection with users a simple network socket protocol could be used in 

tandem with a web crawler to pass them the data pulled from websites. Network sockets have 

been in use for just as long if not longer than web crawlers and were originally defined by Joel 

M. Winett in 1971 for RFC 147 ( https://tools.ietf.org/html/rfc147 ). Like web crawlers, sockets  

https://www.opensearchserver.com/documentation/api_v1/web_crawler.md
https://www.opensearchserver.com/documentation/api_v1/web_crawler.md
https://docs.python.org/3/library/socket.html
https://tools.ietf.org/html/rfc147


 16 

 

are a simplistic solution that can be relatively easy to implement and allow for multiple 

connections to the same data at the same time. 

RESTful Services 

REST architecture - https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm  

The client, Dr. Vigil-Hayes, recommended REST APIs and associated RESTful services. REST 

services as a concept were defined by Roy fielding in 2000 alongside the HTTP 1.1 protocol. 

REST services provide a structure to requesting web content and local standardization of 

content for ease of use and modularity. While being a relatively new technology, many large 

organizations and companies have begun to adopt the concept in an attempt to standardize 

data that is used across multiple interfaces, operating systems, and applications. 

3.4.2 Chosen Approach 

In combination with the requirements specified by the client and the characteristics defined in 

section 3.4, each of the options that were introduced in the previous section were analyzed to 

try and find the best solution for the project. First a few key requirements were defined as more 

crucial than the others, namely: 

• The ability to interface with the services requested by the client. 

• Modularity to be able to add interfaces as needed in the future. 

• Inexpensive/free to use due to the non-profit nature of the project and limited 

budget. 

These three requirements shaped the initial scope of research into possible alternative 

solutions. The alternatives listed in section 3.4.1 all fit this description and so the developers 

felt as though these were a good place to start testing. 

While the developers did not do any testing specific to this project of any of these solutions, 

they pulled from the team's past experience with each of these solutions to come to a decision 

on which solution to use in the initial implementation. A few members of the team are currently 

taking CS 460 - Computer Networks with the client at NAU and have experience implementing 

network sockets, others have professional experience using and implementing RESTful 

services. Most grew up with pre-Google internet and have experience with web crawler based 

search engines. All of this experience has allowed them to compile a list of pros and cons to 

each alternative. 

Web Crawlers 

Pros - Allow for content to be pulled from any online resource at any point, relatively simple 

implementation, many different iterations to choose from in the event there is a shortcoming or 

feature that the chosen solution does not implement. 

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm


 17 

 

Cons - Content is slow to produce because each page has to be parsed individually, content is 

not in a standard format after parsing, large objects or stream data such as video or audio 

cannot be easily accessed or stored, potential legal issues acquiring and storing audio or video 

content. This only solves half of the problem, getting the web content. It does not allow for 

content to be  passed to the users on its own. 

Network Sockets 

Pros - Fast connections, secure connections can be implemented, real-time data transfer is 

possible, very little overlap in data during connection instability due to sequencing (TCP) 

Cons - connection instability could lead to corrupted files on either side of the connection, the 

required computational overhead for a continuous connection can be inefficient for small scale 

hardware implementations or large scale software implementations. This as well is also only 

half a solution, it only allows for a connection to be established with the users, does not 

inherently pull web content. 

RESTful Services 

Pros - Interfaces with all of the requested resources and many more, building “interpreters” for 

each of the requested services allows the developers to build a local standard for data pulled 

from each source and therefore create a separation in development between the mobile app 

and the server, the inherent “statelessness” of REST services allows for dynamically requested 

and provided data both on the server-resource connection and the client-server connection 

with little to no need for a persistent connection. 

Cons - REST services do not inherently have any sort of authentication built into them to 

ensure that the user is who they say they are, however because of the fluid nature of RESTful 

services a solution to that can be implemented and integrated into the service.  

The following table is a visual representation of the pros and cons listed above in relation to 

desired characteristics:  

Tools Support Scalability Modularity Localized 

Structure 

Data 

Simplicity 

Connection Cost 

Web 

Crawlers 

3 1.5 1 2 1 n/a 3 

Sockets n/a n/a n/a n/a 3 2 3 

REST 

Services 

3 3 3 3 3 2 3 

Table 3.5: Resource Integration Comparison| Scale: 1-3, Best = 3 



 18 

 

As shown above, REST services meet almost all of the requirements with flying colors and 

should allow the developers to build a service that fulfils the needs of this project and allow for 

modifications to each part of the system independent of the requirements of other 

functionalities. 

3.4.3 Feasibility 

Because RESTful services are more of a concept than a fully fleshed out API or library the 

developers will need to do quite a bit of testing and development to create a service that fits 

the needs of this project. Initial development and testing plans will be to settle on a format 

(HTML, XML, JSON) to use as an internal standard and what those files will include. From 

there development of a storage solution and interface that will have three core sections: 

1. A way to request and receive files from the interpreters 

2. An interface with the local resource database 

3. An interface to send and receive data with the user(s) 

These three sections will be further broken up to improve functionality, modularity, and 

minimize coupling. The interpreters will have to be built for each resource and starting with one 

resource interface as a proof of concept and expanding as needed. These interpreters will take 

the data from each resource’s existing REST API and create a file based on the previously 

mentioned local format. An interface with the servers database to store, organize, and search 

through the RESTful data will also be needed. The developers will need to implement a way 

for users to push data (documents, emails, etc.) to their respective resources through the app. 

Finally a way to ensure that the users are who they say they are and a way to tell that through 

the data sent between their device and the server will have to be created. An interface will be 

implemented to parse requests and cross reference login data with the servers local 

authentication specified in section 3.5. 

The development team has confirmed that all of the resources that the client requested do 

have publicly available REST APIs, however some (namely Khan Academy) have legal 

requirements for their use. The legal issues will be discussed further with the client to ensure 

that the use of those APIs is within legal bounds. The APIs themselves will have to be tested to 

get a clear understanding of the content provided by them, the available functionalities, and 

their structure. Simply due to the massive scale of the company, the Google based services 

that will be integrated with the Digital Backpack project are well documented. Some of the 

smaller companies however, will need to be thoroughly unit tested to ensure that the 

interpreters are able to pull or push their content as needed. The development team plans to 

create a rough framework for the eventual interpreters for each resource to be able to take a 

look at the returned data and structure more thoroughly. 

Below is a flow chart generalizing the use cases and interfaces that the team currently 

foresees the REST service needing to be fully functional. The green represents services or 



 19 

 

interfaces that already exist, yellow for the DigiLearn serve as a whole, orange for the REST 

service, red for the internal functionality of the REST service, purple for the authentication 

covered in section 3.5 and blue for the oCDN connectivity functionality of the server. 

Figure 3.1: DigiPack Server rough architecture flow chart 

3.5 Security 

The security of The Digital Backpack is integral to the product being usable. There are four 

main components of the system which must be secure: the proxy server, the user’s device, the 

database, and the network connections between these devices. The following sections will 

explore the possible approaches for each of these components, and this section of the 

document will conclude with a summary of the approach to system security and the feasibility 

of keeping user data secure in this context. To outline the specifications for the security of the 

DigiPack system, consider the following desired characteristics: 

Proxy Server 

• The proxy server must only accept requests from the user’s device and from 

authorized external services. 



 20 

 

• The proxy server must be protected against intrusion from unauthorized sources. 

• In the case of intrusion, user data stored locally must be further secured with strong 

encryption. 

User Device 

• The application on the user device must only communicate with the proxy server. It 

must be impossible for the application to communicate with any other device. 

• Other applications on the user device must be prevented from subverting this 

connection to communicate with the proxy server. 

• In the case of intrusion, user data stored locally must be further secured with strong 

encryption 

Network 

• Connections to every device in the system must only be accepted from authorized 

sources. These connections must be protected from interception. 

• Sensitive user data transported between devices over the internet must similarly be 

safe from tampering or theft. 

3.5.1 Proxy Server Security 

The proxy server is acting as an intermediary between the user and a variety of services on 

the internet. As such, it is unavoidable that the proxy server will have to store sensitive 

information while the user’s device is offline. As a matter of best practice, it is essential that 

user data is secure for the entirety of its life on the proxy server. The following technologies will 

be considered for this purpose: 

Server Firewall 

The proxy server could be equipped with a firewall, such as the popular Uncomplicated 

Firewall (UFW) to manage traffic that comes into the server. This would be an effective way, in 

conjunction with OAuth2, to prevent the server from being compromised. 

Encryption 

As an extra layer of protection, any user data that is stored on the server should be encrypted 

so that it is still secure in the case that the server is compromised. Standard RSA / AES 

encryption would suffice for this purpose, but this raises the issue of keeping essential keys 

safe. One option is to store the keys in memory once the server is started. This would require 

manual intervention, however, and may result in encrypted data being inaccessible in the case 

that the server must be restarted.  



 21 

 

3.5.2 User Device Security 

The Digital Backpack must function offline. Thus, the Digital Backpack must store potentially 

sensitive data locally. This makes the user device a potential place where user data may be 

compromised. As a result, it is essential that all data on the user’s device is stored securely. 

The following technologies will be considered for this purpose: 

Secure Storage 

Mobile devices offer a secure storage environment (Keychain for iOS and KeyStore for 

Android) explicitly for the storage of particularly sensitive data. This is a small amount of 

storage, however, and so would only be valuable for encryption keys and passwords. In 

addition, a browser application would not be able to rely on this service. 

Encryption 

User data can be encrypted when stored locally. The encryption keys could then be stored in 

the secure storage box described above. The main drawback is that encrypting and decrypting 

data can be a time-consuming process. 

User Sessions 

Appropriately managing user sessions will increase the security of the user’s device and thus 

the system as a whole. User session should be terminated periodically, a login should be 

required. Biometric authentication will not be permitted as this technology may exclude many 

devices and limit the scope of the potential user base. 

External Authentication 

If necessary, user sessions could be authenticated by matching the inputted password with a 

cryptographically hashed password stored in a separate database. This solution requires a 

connection to the internet and thus is not ideal for most applications in the context of the Digital 

Backpack.  

3.5.3 Network Connections 

Any communication occurring between devices must be secured to prevent requests from 

being tampered with and to keep user data secure during transit. In the following list, multiple 

technological alternatives are detailed: 

Virtual Private Network (VPN) Service 

The use of a proprietary VPN service would ensure that any user data sent over public 

networks, as is often done in the context of the Digital Backpack, is protected until said data 

reaches the VPN’s endpoint. However, user data would then be vulnerable in transit from the 

VPN’s endpoint to the end device. In addition, the use of this outside service would require a 



 22 

 

monthly fee which may be prohibitive to the deployment of the product. 

RSA / AES Encryption 

A combination of AES and RSA encryption would allow for all user data and requests to be 

encrypted for the entirety of their transit from one endpoint to another. The public-key system 

in RSA    will enable the automation of trading keys and establishing a secure connection of 

encrypted data. This solution raises the issue of securely storing these encryption keys. 

Additionally, encryption unavoidably has an impact on performance, but the bulk of this 

performance impact can be handled offline, so it won’t interfere with the limited, opportunistic 

connections to the internet. 

OAuth2 

OAuth2 is an industry-standard authentication framework which would resolve the issue of 

making sure all end devices in the system only communicate with authorized devices. OAuth2, 

however, does nothing to protect data while it is being transferred.  

Transport Layer Security 

Transport Layer Security (TLS) is a standard security measure and part of the https protocol. 

TLS implements a secure, encrypted, and bound connection between the client and the host. 

This protocol is supported by Flutter libraries, which would make implementation relatively 

simple. On the other hand, the fact that this protocol is standardized may be a vulnerability. 

3.5.4 Chosen Approach 

After analyzing the options for security presented above, the following analysis was compiled 

to summarize the efficacy of the various available technologies. Security will be addressed by 

category of the three points of vulnerability outlined in Sections 3.5.1 through 3.5.3. 

Proxy Server 

The proxy server must store all user data in a way that prevents unauthorized access. 

Additionally, the proxy server must only respond to requests from authorized devices. Finally, 

the proxy server must be able to communicate in a way that is compatible with external 

resources such as the ones described in Section 3.4. Consider the following analysis of the 

technologies discussed in Section 3.5.1: 

Tools Secure Storage of 

User Data 

Authentication with 

Digital Backpack 

Authentication with 

External Resources 

Uncomplicated 

Firewall 

0 3 3 

Encryption 3 0 0 

OAuth2 0 3 2 

Table 3.6: Server Security Comparison Chart | Rating 1-3, 3 = Best 



 23 

 

Due to the variety of needs of the proxy server, all of the above technologies will be utilized. All 

user data that is stored on the proxy server will be encrypted with a local AES encryption key 

that will be stored in the server’s RAM to prevent unauthorized access. The Uncomplicated 

Firewall will be used to secure the server against unauthorized access. OAuth2 tokens will also 

be used when the server is communicating with compatible devices, such as The Digital 

Backpack app and select external resources. 

User Device 

The user device must manage user sessions and provide authentication to prevent 

unauthorized access to any user data. In the case of unauthorized access, all user data must 

be encrypted while stored as an extra layer of protection. Encryption keys and passwords need 

to similarly be kept away from unauthorized access. All of these functions must be performed 

while the user device is offline. Consider the following analysis of the technologies discussed 

in Section 3.5.2: 

Tools Session 

Management 

Encryption Key Storage Offline 

Functionality 

Secure Storage 0 0 3 3 

Encryption 0 3 0 3 

Login—Internal 3 0 0 3 

Login—External 3 0 0 0 

Table 3.7: User Device Security Comparison Chart | Rating Scale 1-3, 3 = best 

Based on the analysis above, the following solution will be implemented. Access on the user 

device will be managed with user sessions that are authenticated with a username and 

password. The password will be compared to a hashed password stored locally in the device’s 

secure storage. Sensitive information stored on the user device will be encrypted with an AES 

key. This key will also be stored in the device’s secure storage. 

This solution will be slightly different in the case of the web application. The web application 

will authenticate the given password to a hashed password stored externally in a user 

database. No user data will be stored locally on the user device and will be instead served 

directly from the resource database. 

Network 

Network connections must all be authenticated to prevent unauthorized access to the user’s 

device or to the proxy server. In the case that the data is intercepted, all sensitive information 

must be securely encrypted as an extra layer of protection. All of these operations must be 

performed in a way that does not significantly impact transmission speed when the user device 



 24 

 

device is opportunistically communicating with the proxy server.  

Tools Connection 

Authentication 

Data Security Impact on 

Transmission 

VPN Service 0 2 0 

RSA / AES 

Encryption 

0 3 3 

OAuth2 3 0 3 

TLS 0 3 3 

Table 3.8: Network Security Comparison Chart | Rating Scale 1-3, 3 = best 

Note:  A 3 denominates a low impact on transmission speed. 

 

Based on this analysis, the following solution will be implemented. All network traffic in the 

Digital Backpack system will be performed in accordance with the https protocol utilizing TLS 

for transmission security. Connections will be authenticated using OAuth2 technology, as it is 

the industry standard. 

3.5.5 Feasibility 

There are three main concepts that need to be tested to prove that this approach is feasible. 

The following list will enumerate these concepts as well as how they will be tested: 

Encryption 

Encryption will be tested by developing a small application in Flutter and for the proxy server 

that can successfully encrypt and decrypt test data while keeping encryption keys stored in a 

fashion that is inaccessible to users. 

OAuth2 

OAuth2 will be tested by developing a small application in Flutter and for the Proxy server that 

can exchange authentication tokens and successfully use said tokens to authenticate 

connections. 

TLS Protocol 

The TLS protocol will be tested by developing a small application in Flutter and for the proxy 

server that can successfully transmit data in a way that is compliant with TLS protocol.  



 25 

 

Team DigiLearn 

4.0 - Technology  

Integration 
This section discusses the final plan for the system. Each aforementioned technology comes 

together to create the Digital Backpack. To begin, please consider the following preliminary 

system diagrams which summarize the proposed architecture for the Digital Backpack 

system.  In these diagrams, yellow is used to encapsulate entire parts of the system. Purple 

denotes functions that interface with databases. Blue denotes parts of the system that relate to 

the oCDN functionality of the system. Orange is used to denote miscellaneous functions 

performed by the Digital Backpack.  

Figure 4.1: DigiPack Architecture System Diagram 



 26 

 

4.1 The Proxy Server 

The proxy server acts as an interface between the DigiPack and the internet. To this end, the 

Proxy server includes a REST Interface that standardizes resource formatting between various 

external services, such as Google Classroom, and the Digital Backpack system. The proxy 

server also communicates with the DigiPack resource database and the DigiPack user 

database for the purposes of resource storage and authentication. To enable efficient 

transmission between the proxy server and the DigiPack, some data is queued and stored 

locally so that said resources are ready to be delivered opportunistically as soon as a 

connection to the user device is established. The proxy server also handles encrypting local 

data for storage and decrypting data coming in from the DigiPack. In this case, encryption keys 

are stored in active memory and never written. 

 

4.2 The User Application 

The user application serves two primary functions. Firstly, the DigiPack must interact 

opportunistically with the proxy server. To this end, the DigiPack has oCDN functionality that 

will detect when a connection is available and autonomously begin communicating with the 

proxy server. Secondly, the DigiPack must provide a user interface. The application will use a 

standard view-model-controller design. In this case, multiple views will be available to suit the 

user’s needs. For example, one view will be suitable for child users while another will be 

designed for use by teenaged users. Like the proxy server, the user application will handle the 

encryption and decryption of data. In this case, encryption keys will be stored in the device’s 

secure storage environment.  

 

4.3 The Web Application 

The nature of the web application demands that it’s architecture is slightly different than the 

architecture described for the user application above. Consider the following system diagram 

that illustrates this separate architecture.  



 27 

 

Figure 4.1: DigiPack Architecture System Diagram 

The web application will not behave opportunistically. Instead, it will interface directly with the 

DigiPack resource database to retrieve resources. This will also allow the web application to 

function without the need to store any user data locally, which is unfeasible in terms of 

security. The web application will still communicate with the proxy server to deliver requests, 

receive queued resources, and otherwise behave as a seamless experience between it and 

the mobile application.  The web application will authenticate the use by comparing a supplied 

password to a hashed password stored in the DigiPack user database. 



 28 

 

Team DigiLearn 

5.0 Conclusion 

Many students across the country lack internet access at home and are potentially struggling 

to find reliable internet access in general. With the rising prevalence of remote learning, the 

digital gap and its impact on student outcomes is more prominent than ever. The Digital 

Backpack offers a solution by implementing an opportunistic Content Delivery Network or 

oCDN to enable the user application, the DigiPack, seamless transition between online and 

offline learning and thereby lessen the effects of this digital gap.  

This document has enumerated the technological challenges faced by this goal and explored a 

myriad of potential solutions. For the purpose of making this application available to as many 

students as possible, Flutter was selected  as a platform to simultaneously develop the 

application for iOS, Android, and as a web application. The user interface for the mobile 

application will be developed using Adobe Experience Design. For the scope of this project, 

the Django webapp framework will be used to implement the oCDN architecture.  The 

application will be hosted using Digital Ocean’s cloud service. Additionally, a RESTful service 

will be used to facilitate communication between the system and various external APIs For 

security, a suite of standard measures will ensure that user data is kept completely safe and 

secure. 

In conclusion, the research into the technological feasibility of the Digital Backpack has 

established a strong foundation for the overall architecture of the system, concluding that there 

are no technological challenges that will prevent the creation of the Digital Backpack system. 


