

Team DataBit

Software Design Document
Version 2

February 19, 2021

Team Members:​ Andrea Caviglia, Cheyenne Clutter,

Samantha Rodriguez, Jensen Roe, Steven Sprouls

Sponsor: ​Dr. Kyle N. Winfree

Mentor: ​Dr. Eck Doerry

Table of Contents

1 ​ ​ ​ ​Introduction 2

2 ​ ​ ​ ​Implementation Overview 3

3 ​ ​ ​Architectural Overview 5

4 ​ ​ ​ ​Module and Interface Descriptions 6

 ​ ​4.1 ​ ​ ​ Database Module 6

 ​ ​4.2 ​ ​ ​API Module 9

 ​ ​4.3 ​ ​ ​Task Queue Module 1​3

5 ​ ​ ​Implementation Plan 1 ​5

6 ​ ​ ​Conclusion 1 ​6

1

https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.aacsey1r2dg7
https://docs.google.com/document/d/1OHrdFirJ9k7KNB4sHoRt3CCAsLmPrvAMeFSIJRdJw_A/edit#heading=h.ipopb9p8ifch

1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally. In the United States
alone, nearly half of adults over 20 years of age have some form of cardiovascular disease,
and approximately 655,000 people die from heart disease each year – around one in every
four deaths nationally. Moreover, CVDs pose significant concerns in light of the coronavirus
pandemic, as those who suffer from cardiovascular disease are at an increased risk of
severe illness and death from COVID-19. Lifestyle changes, such as engaging in physical
activity and getting enough sleep, are often the best way to prevent and treat
cardiovascular diseases, so being able to monitor such behaviors in some way is an
important part of addressing the problem at large.

More research is needed to better understand the relationship between lifestyle changes
and their impact on disease risk/outcomes. Typically, researchers enroll hundreds of
participants in a study and observe them over a certain period of time. The nature of these
observations vary, but in the case of health and fitness studies, researchers are often
interested in gathering information about participants such as heart rate, activity levels,
and so on. This data is collected and recorded over weeks, months, or even years, and is
analyzed for patterns that support a given hypothesis.

To enable and support such large-scale, long-term studies, researchers require a way to
efficiently maintain and collect exertion and movement data from large numbers of
patients. One approach is to employ wearable activity tracking monitors that can analyze
physical activity and sleep behaviors throughout the day. For example, devices such as
Actigraphs™ are used in clinical settings to capture and record physical activity. These are
small wearable devices that go on a person’s wrist, much like a watch, and that monitor
rest and activity cycles. However, Actigraph devices are expensive (around $250 per
device), difficult to use, and incapable of storing much data over long periods of time, which
makes them unwieldy for the purposes of long-term study with a large number of
participants.

Our project sponsor, Dr. Kyle Winfree, is a researcher who is interested in the utility and
accessibility of Fitbits: a cheap and highly usable consumer version of an activity monitor
as a potential alternative to Actigraphs in exercise and movement studies. As the leader of
the Wearable Informatics Lab at Northern Arizona University – whose primary interest is
in utilizing wearable technologies to measure and improve health care – one of his current
concerns is the collection of wearable data from users. While Fitbit devices themselves
provide a relatively inexpensive solution to data collection, it is not immediately obvious

2

that they could be useful for large-scale studies. In particular, a major obstacle is collecting
and accessing data collected by Fitbits.

near-real-time data access, or in communicating with and receiving feedback from the
scientific community. These issues have prompted Dr. Winfree to devise the WearWare
Project – an informatics platform for evaluating wearable fitness tracking. This would allow
researchers to create and manage studies, enroll participants, and access their Fitbit data
for further analysis. A first prototype was developed and proved the basic concept, but
suffered from poor performance and an inability to handle the sheer amount of data.

Our envisioned solution is to develop a new system from the ground up to create a
powerful data management cornerstone that we call DataWrangler as the backend of the
WearWare concept. This will involve creating a powerful and flexible data collection,
management, and delivery system that allows for the registration of studies, participants,
and Fitbit devices, and communicates with the Fitbit API in order to download data in
real-time. We will also be providing an API for future modules of the project in order to
perform various operations on the data, as well as a basic development client that connects
to this API for testing. In doing so, we will be providing Dr. Winfree and his lab – as well as
potentially other researchers in the future – with an innovative and affordable product for
use in various health studies.

This document serves as a blueprint for our final product. We will begin by going over our
implementation, including our solution vision and the tools we will be utilizing to build
DataWrangler. Then, we will outline our architectural design along with detailed
descriptions of each of the major modules. Finally, we will provide an implementation
timeline for our project in accordance with the design decisions given throughout the
document.

2 Implementation Overview

Our main task in designing our DataWrangler module is to address problems from the
current version of the project, namely concerning database optimization and other missing
functionality that hampers interaction between researchers and participants.
DataWrangler will be a high-performance data management foundation for WearWare that
consists of the following:

3

● A well-designed database that stores all study participant Fitbit data, including
activity levels, heart rate, sleep data, and other information at both the minute and
sub-minute level. This will be optimized for performance such that queries are more
efficient and requests take a reasonable amount of time.

● A flexible API that provides a powerful array of key data management functions to
allow other WearWare modules to interact with the database.

● A simple test harness GUI that, in absence of the front-end WearWare modules that
will be added in the future, provides a means to verify our API and database
functionality and performance.

● Additional functionality that streamlines patient-researcher interaction. Namely,
participants should be allowed to enroll themselves in a study through a unique,
one-time sign-up link, while researchers should have the ability to send messages to
participants via email.

Ultimately, the goal of our project is to provide database services for the WearWare system
through an API. To accomplish this task, we will be utilizing various tools and technologies:

● PostgreSQL​, an open-source relational database management system that will store
all study and participant data. Given that database performance is a major priority
in this project, we opted for PostgreSQL, which has a strong reputation in that
category.

● Amazon Web Services (AWS) ​, a cloud computing service for hosting the
PostgreSQL database. AWS is a relatively affordable option that can accommodate
our system’s storage needs while providing various scalability options, in
anticipation of future growth. Specifically, we will be working with an EC2 instance
that our client already uses.

● Django ​, an open-source web framework based on Python. Namely, Django REST
framework will allow us to build the Web API needed to pull data from the database.

● Celery​, a task queue implementation for Python web applications that is well
supported by Django. This will allow our system to make real-time requests from
the Fitbit API at the minute and sub-minute level for each participant.

● RabbitMQ​, an open-source message-broker software which will construct a
message queue for scheduling, since Celery itself lacks this functionality. It is the
default broker for Celery.

For this document, we will continue to discuss these components, including their
functionality and how they interact with one another.

4

3 Architectural Overview

In this section we will introduce the WearWare system architecture. This will give a
high-level overview of our system and the components that will be further detailed in
subsequent sections.

	ECQNA�¼�: High-level architectural diagram.

As shown in Figure 1 above, the WearWare system resides on an EC2 instance of AWS. The
backbone of this system is the PostgreSQL database, which holds all study information and
participant Fitbit data. The API is primarily responsible for providing researchers with
access to this data, with various end-user flows in mind: creating studies, adding
participants, retrieving slices of data, and so on. For the time being, these functions will be
executable through the use of a rudimentary testing GUI, which serves as the direct
intermediary between researchers and the WearWare system. It will also support a
messaging system such that researchers can create email templates to send to participants

5

when a problem has been noticed (e.g., the participant has not logged any data in several
days).

Fitbit itself provides data servers which directly collect and store data from Fitbit devices,
as well as an API for accessing these servers. A task queue will be utilized for scheduling
requests to the Fitbit API for participant data and storing it on the WearWare database.
Requests will be scheduled through the task queue several times a day per participant and
collected data will be stored in the appropriate table (outlined in section 4.1). Meanwhile, a
researcher can connect to the WearWare API and call functions to access that database.

4 Module and Interface Descriptions

As indicated in Figure 1, we have identified three main modules in our system: the
database, the API, and the task queue. The following subsections will describe each of these
components and their interface functions in more detail.

 4.1 Database Module
A well-designed database is paramount to our project’s success. As the backbone of the
WearWare system, the database is responsible for storing all data concerning studies and
participants, including raw data that has been gathered from participant Fitbit devices at
both the minute and sub-minute level. Figure 2 below illustrates our proposed design.

	ECQNA�½�: ERD of PostgreSQL Database

6

4.1.1 Participant Table
This table contains a list of all participants registered in the WearWare system, which
would number upwards of 20,000 entries. It stores information concerning the participants
themselves, as well as their Fitbit device metadata:

● participant_id (PK) ​: A unique integer identifier for each participant. As the primary
key, this is not nullable.

● subscriber_id ​: An integer used by the Fitbit API to identify devices. This is
necessary for making requests to retrieve a participant’s Fitbit data, and is not
nullable.

● device_model​: The varchar(20) model of the participant’s Fitbit device.
● device_version​: The varchar(20) current version of the participant’s Fitbit device.
● device_status​: A varchar(20) sync status of the Fitbit device to the WearWare

system. A researcher should have updated access to this information at any given
time, so this is not nullable.

● last_logged_activity​: A timestamp that shows the last time a participant’s data was
logged into the database.

● email ​: The participant’s varchar(255) email address. Allows a researcher to send a
message to a participant in case of difficulties, such as if the participant has not
logged any data recently. This is required for registration and not nullable.

● join_date ​: The date the participant registered to the WearWare system, which is
filled when the participant is first entered into the database.

4.1.3 Researcher
This table contains all the researchers and research assistants entered in the WearWare
system. Depending on permissions, these users can create/edit studies and pull raw Fitbit
data gathered from enrolled participants.

● researcher_id (PK) ​: A unique integer identifier for each researcher. As the primary
key, this is not nullable.

● name​: The varchar(70) name of the researcher. This is not nullable.
● email ​: The varchar (254) email address for the researcher. This is not nullable.
● permissions​: A char(3) field that explains whether a user is an admin (SU), a

researcher (PI), or a researcher assistant (GRA, RA). Each user type has a
permission set that allows them different levels of privileges to view/edit studies,
and this field cannot be null.

4.1.4 Participant Study
This is a join table that resolves the many-to-many relationship between the Participant
and Study tables. It establishes which participants are enrolled in each study. It also

7

includes an enrollment_id field which defines a participant by study (e.g., a participant in
study ABC might be given the id ABC012).

4.1.4 Researcher Study
This is a join table that resolves the many-to-many relationship between the Researcher
and Study tables. It establishes which researchers have access to which studies.

4.1.6 Activity Level
This table holds all of the raw activity data from each participant, accounting for millions of
entries total. Each row is defined by the id of the participant in question as well as the time
of the record, generally at the minute level. It provides the following data:

● activity_level​: The integer result of a proprietary Fitbit formula based on exercise
and daily steps (sedentary, mildly active, moderately active, heavily active,
extremely active).

● steps​: The integer amount of steps the wearer of the Fitbit device walked in a 24
hour period.

● METS ​: Metabolic equivalents, or the amount of energy used by a person at rest,
represented by a double.

● kcalories​: The integer number of Calories a Fitbit user logs to their device each 24
hour period.

4.1.7 Heart Rate
This table holds all of the raw heart rate data from each participant, accounting for millions
of entries total. Each row is defined by the id of the participant in question as well as the
time of the record, generally at the sub-minute level. It provides the following data:

● bpm ​: An integer value of the participant’s heart rate at the given time.

4.1.8 Sleep Data
This table holds all of the raw sleep data from each participant​, accounting for millions of
entries total​. Fitbit provides summary data of the minutes spent in each stage of sleep, but
the data behind its calculations is not given. Each row is defined by the id of the participant
in question as well as the time of the record. It provides the following data:

● light_sleep ​: The integer number of minutes spent in light sleep.
● REM ​: The integer number of minutes spent in REM.
● restless​: The integer number of minutes spent restless.
● deep_sleep​: The integer number of minutes spent in deep sleep.
● wake ​: The integer number of minutes spent awake.

8

 4.2 API Module

A well designed API is what will allow the user of WearWare to communicate with the EC2
database on AWS storing all of the participant data. The WearWare API will use CRUD
operations (create, read, update, and delete) to manage the information related to studies,
participants, and researchers. Below, in Figure 3, is a representation of the WearWare API
explaining how it will act when it accepts queries from a user. If there is some kind of error
in the query, it will return a corresponding error code and the user will have to try again. If
the query is correct and the results are available in the database, it will provide the results
and complete the request, or if there is an error on the end of API, it will return an error
and direct the user to try again.

	ECQNA�¾�: WearWare API flow chart

9

	ECQNA�¿�: WearWare API UML.

Figure 4​ ​is a visual representation of WearWare API usage and its interaction with the EC2
PostgreSQL database. The API features GET, POST, UPDATE, and DELETE methods, which
differ depending on what data the user of the API is wanting to interact with. Registered
users of the system can log in via a POST operation.

GET operations include allowing the user to retrieve a list of study data, researcher data,
and participant data via their corresponding primary keys. The tables containing
information related to sleep data, heart rates, activity levels, and participant studies (all
studies in which one individual participant is part of) can be interacted with via GET and
POST operations. A user of the system can use GET to retrieve this data related to either a

10

specific participant using their participant ID, or with a date range in order to gather large
quantities of data relating to multiple participants.

The POST operation in these cases will be used by Celery and RabbitMQ to retrieve data
from participants’ Fitbit devices. The study, researcher, and participant tables will be
accessible through all of the CRUD operations, as objects in these tables will need to be
created using data from Fitbit, read by researchers, potentially updated by researchers (or
Fitbit in the case of backfilling data), and deleted by researchers. They will be accessed
through their primary keys, which are all depicted in Figure 2 of the database ERD.

4.2.1 Examples & Use Cases
In the case of a user of the wearware API wanting to create a study, they would input the
required information in JSON format and send a POST request. Below is an example of an
acceptable request.

POST /wearware/study/ HTTP/1.1
Host: WearWare.com
Content-Type: application/json
Accept: application/json
Accept-Charset: utf-8

 {
 "study_id": 1,
 "study_title": "title",
 "short_name": "ex01",
 "study_desc": "Example description",
 "start_date": "2021-02-13T14:20:00Z",
 "end_date": "2021-02-14T14:20:00Z",
 "study_url": "test",
 "researcher_id": 1
 }

Should the user want to send a GET request to the API to retrieve the information related to
this study, the request is different from the one above in that it only requires the study_id
field, as this is a unique identifier for each study.

Another use case would be if a user wanted to create a participant. It would be done in the
following way.

11

POST /wearware/participant/ HTTP/1.1
Host: WearWare.com
Content-Type: application/json
Accept: application/json
Accept-Charset: utf-8

{
 "participant_id": 1,
 "subscriber_id": 1,
 "device_model": "ChargeHR",
 "device_version": "1",
 "device_status": "Synced",
 "last_logged_activity": "2021-02-13T15:27:00Z",
 "email": "sms968@nau.edu",
 "join_date": "2021-02-13T15:28:00Z"
}

Now, after creating this participant in the system, the next logical step would be to enroll
them into a specific study. This is done by using their participant_id field and then the
study_id field from a previously created study. An example of doing so using the test study
and the test participant in the previous examples is shown below.

POST /wearware/participantstudy/ HTTP/1.1
Host: WearWare.com
Content-Type: application/json
Accept: application/json
Accept-Charset: utf-8

{
 "participant_id": "1",
 "study_id": 1
}

This would enroll the participant with the id “1” into the study having the id of “1”. The
GET request for retrieving data related to a participant is done in the same manner as the
GET request for a study, by using just the participants unique identifier, participant_id.
Making a researcher and assigning them to a certain study is done essentially the same way

12

as making a participant and adding them to a study, just with the different parameters that
relate to researchers. The sleep data, heart rate, and activity level fields are not directly
interacted with by users of the API, instead activity is only PUT to these fields by
connection to the Fitbit API via participants personal Fitbit devices. However, users can use
GET requests to retrieve this data. An example of a request to retrieve heart rate data for a
specific participant in a specific date range is as follows.

GET /wearware/heartrate/ HTTP/1.1
Host: WearWare.com
Content-Type: application/json
Accept: application/json
Accept-Charset: utf-8

{
 "participant_id": "1",
 "start_date": "2021-02-13T14:20:00Z",
 "end_date": "2021-02-14T14:20:00Z"
}

There are a few additional rules related to some requests in the API that only those with
WearWare administrator privileges can make. These include making studies, making
researchers, and then adding these researchers to specific studies. Those with researcher
permissions are able to enroll participants into whatever studies they have authorization
over.

 4.3 Task Queue Module

The task queue serves as the core data collection module for WearWare to gather raw data
from participants’ Fitbit devices. It is responsible for servicing requests to the Fitbit API for
intraday data, as well as storing the collected data back in the PostgreSQL database. Figure
5 below illustrates the subprograms that provide this functionality.

13

	ECQNA�À�: Scheduling subprograms for collecting raw Fitbit data.

For example, requests to the Fitbit API for sleep data may only be necessary once a day per
participant, since it can generally be assumed that most participants only sleep once at
night. Even so, to periodically collect this data for each participant, the WearWare system
needs to individually connect to the Fitbit API multiple times (upwards of thousands, in
order to support large-scale studies) throughout the day, every day.

To handle this workload, an asynchronous task queue such as Celery can be used to
schedule each call to the Fitbit API and execute these tasks in the background. The Celery
client submits jobs to a message broker, RabbitMQ, which creates a queue based on job
requests and distributes the tasks to Celery workers. Each worker is responsible for
making one request to the Fitbit API to collect raw data from a certain participant device,
using an Access Token that authorizes access to the Fitbit user’s data. If the request goes
through, the Fitbit API returns the relevant data, where it can then be sent to the
WearWare PostgreSQL database.

14

5 Implementation Plan

We have broken our project down into tasks and drafted an implementation schedule for
completing each of the major components in the system. These components are given from
the modules detailed in previous sections: the database, API, and task queue. We will
conclude with a testing and refinement phase where we make final adjustments to confirm
that we have met all of our project’s requirements. Figure 6 below illustrates this
implementation plan.

	ECQNA�Á�� �Gantt chart of implementation schedule

Our first goal is to build the database according to the ERD using PostgreSQL, including all
of the necessary tables and fields. For preliminary testing and querying, we will need to
populate the database with fake but realistic data that follows a similar format to the raw
data returned by the Fitbit API. We will also need to gain access permissions and move this
database onto our client’s Amazon EC2 instance.

The next step in implementation is to actually create the API. APIs created using Rest
Framework can be divided into two main sections: models and views. Models are just that;
models of the tables in the database and their respective data fields. The data fields are
then accessed via model serializers. Views are what allows the API to actually send and
receive HTTP requests to and from the database. There are multiple different kinds of
views provided by Rest Framework, but we chose to use the API viewset as this provides
delete(), post(), get_object(), get_list(), and update() requests, which are what we need to
provide the necessary use cases of WearWare.

15

Once our database and API are set up, we can start gathering real data from Fitbit. Our first
step is to define a way to authenticate with the Fitbit API to retrieve one user’s raw data.
After this is accomplished, we will need to connect the API to Celery and RabbitMQ to
schedule and distribute tasks to workers that can retrieve data from multiple participants
asynchronously. This will allow us to conduct our final tasks of testing and refinement.

6 Conclusion

Given the prevalence of CVDs, which kill 655,000 people in the US each year, it is important
for researchers to be able to conduct large scale health studies that can gauge the impact of
physical activity and sleep on disease risk and outcomes. The WearWare system is
intended to address this concern, by allowing researchers to utilize inexpensive wearable
devices, namely Fitbits, and collect information such as:

● Heart rate, which can be tracked on a one-second interval.
● Activity level, which gives a range of a brisk walk to a full exercise routine.
● Sleep data, which provides in-depth analysis such as restless sleep, R.E.M. cycles,

and light sleep.

An existing prototype of the WearWare system proves the underlying concept of feasibility,
but has significant performance and feature limitations. The aim of this project is to build a
solid, high performance database module to serve as the data management core of a future
redesigned WearWare system.

In this document, we presented an overview of the system design that will allow us to
accomplish this goal. We have identified the main modules - the database, API, and task
queue - as well as how they fit within the overall system architecture and the essential
functionalities that each must provide. We are confident that our design will be sufficient to
meet the requirements of our client, and that we have an appropriate schedule for
implementing all of the necessary components that will make WearWare a useful tool for
conducting large-scale fitness and sleep studies.

16

