

Technological Feasibility Report
Team Bird’s iView

October 23th, 2020
Project Sponsor:​David Plemmons

Project Mentor:​ Sambashiva ​Reddy​ Kethireddy
Team Members:

 ​Jonas Dunham Jordahl
Jordan Colebank

Chenhao Li
Tyler Riese

2

Table of Contents

Introduction 3

Technological Challenges 4

Technological Analysis 6

AI Training and Deployment 7

Backend Infrastructure 13

Frontend Interface 16

Database Management 20

Technological Integration 25

Conclusion 2​7

References 28

3

1. Introduction

More than 50 million people spend more than $40 billion on equipment and travel related
to bird watching every year. From a scientific perspective, being able to identify
individual birds would give bird researchers a whole new dimension of data that would
allow them to better study trends in different bird species. From an educational
perspective, vivid close-up images of birds will only further our understanding, respect,
and curiosity for them. From a human perspective, we desire, perhaps now more than
ever, more ways to connect with each other, and a platform where fellow bird
enthusiasts can share, learn, and grow could provide those rich human-human
connections that are so vital for our wellbeing.

Our client, David Plemmons, is an avid bird watcher and enthusiast, he has been
working hard over the last three years to bring his vision to fruition. His product, the
pEEp Smart Feeder, aims to get people more involved with the birds around them by
providing an educational platform and vibrant community for people to connect and grow
with other like-minded individuals. Even though he has made significant progress
towards his goal, there are still technological deficiencies which must be addressed.
Currently, his platform only allows users to view and save images, but provides no
information about the contents of the stream or ways to share and interact with saved
images and videos. Because of this, we are confronted with numerous problems to
solve. Just to name a few:

● How can we classify the species of birds in an image?
● How can we identify individual birds from each other?
● How can we organize saved images so users can share them?
● How can we allow experts to review user classified images?

To solve these problems, we will create an Artificial Intelligence (AI) module which will be
integrated into a web application. Because AI has proven to be incredibly powerful, we
will leverage AI technologies to deliver on the project’s goal of connecting people to the
birds they coexist with. We will first and foremost use AI so that we can classify the
species of a bird, but our web application will also employ a database for storing and
sharing images, an elegant interface for users to interact with images, and a community
forum where users can share their experiences with others.

To establish the feasibility of our solution, we first address the major technological
challenges of the project. Next, we analyze potential solutions for each challenge and
objectively compare them with each other. After this is complete, we briefly discuss the
integration of all technologies we plan to use and, lastly, provide a roadmap for the next
phase of development.

4

2. Technological Challenges

To deliver a product capable of handling the deficiencies in the current version of the
pEEp Smart Feeder, there are numerous technological challenges that must be
addressed before development. Our project requires a trained AI model to interact with a
web application, so we must first address the challenges of building a website to fit the
project needs, and then address the challenges of integrating an AI model into the
website. Given these considerations, our technological challenges may be grouped into
the following categories:

2.1. AI Challenges
● We will need a Machine Learning (hereafter referred to as ML) framework that

provides good support for the ubiquitous algorithms used in today’s ML
applications.

● We will need an ML framework that has a fast learning curve so that we may
focus on the high-level demands of the model rather than its low-level
implementation.

● We will need an ML framework that has an abundance of educational material to
further expedite learning.

● We will need an ML framework that is open source (and hence free to use), and
has a strong base of developers devoted to maintaining it.

2.2. Backend Challenges
● We will need a back-end framework that has sufficient compatibility with our

front-end framework, AI training and our database.
● We will need a back-end framework that is fast enough to download and upload

files.
● We need a backend framework that is secure enough that our customers'

information will not be compromised.
● We will need an additional server to append the saved images to our training set,

and periodically retrain the model based on the expanded training data.
● We will need this server to be able to redeploy and update the model being used

in production.

2.3. Frontend Challenges
● We will need a frontend framework that has additional components and libraries

to ensure efficiency in development.
● We will need a frontend framework that is quick and easy to use.
● We will need a framework that allows for browser compatibility so any user can

access our web application.
● We will need a secure interface that can handle XSS attacks to guarantee user

data is secure.

5

2.4. Database Challenges
● We will need a reliable database store where users can save settings, images,

etc. to their profile, which also allows the sharing of user content with other users.
● We will need a reliable database store where forum threads are stored for others

to view and comment on.
● We will need a secure database that will keep our user’s data private.
● We will need a database that can scale on a local level while still maintaining the

integrity of our data.

6

3. Technological Analysis

3.1. Section Overview
The major technological design decisions that we have identified as being critical to the
success of our project, and which stem directly from our research of the technological
challenges have derive, can be grouped into the following four categories: AI Training
and Deployment, Backend Infrastructure, Frontend Interface, and Database
Management.

We begin our investigation of technological feasibility with the AI module. The AI
challenges we have identified in the previous section can be further classified into two
groups: one pertaining to the actual developing experience when using the framework,
and the other pertaining to the features we must provide by leveraging the framework.
Regarding the developing experience, we should be able to quickly learn the basics,
implement rapid prototypes, and be able to rely on the vitality of the framework.
Regarding the features we must provide, our framework should have excellent support
for developing CNNs, as well as excellent support for all other required algorithms that
are integral in contemporary learning applications.

We then move our focus to the backend framework that must interact with all other
aspects of the system. For the backend, the challenges we have identified are closely
related to compatibility with both the AI module and the database system. Because the
backend is involved in nearly all interactions between system components, it will be
highly advantageous for significant aspects of the system to retain some level of
homogeneity, which could be achieved by using the same programming language for the
AI module and the backend. In addition, we must also ensure clean database integration
so that users can be served backend information (forums, profile settings, etc.) in a
reasonable time and in a consistent manner.

To tie the backend together, we must also ensure an intuitive user interface that delivers
our core functionalities to our users. In order to do this, we need to be able to rapidly
cycle through prototypes in order to derive a simple interface that is pleasing and
suitable for users of all ages. In order to do this, we must utilize a frontend development
framework that is efficient to learn, provides solid security measures, and has total
support for most browsers.

Lastly, we need a database so that the web application can deliver on our goal to
provide a vibrant community for bird enthusiasts. When considering different database
frameworks, we will utilize the CAP theorem (described below), and also consider the
scalability, speed, and security measures that each framework offers.

7

3.2. AI Training and Deployment

Intro the Issue
The main functionality around which our project is centered is a robust AI model capable
of accurately predicting a minimum of three (3) bird species. Given that the fields of
object detection and image classification have been revolutionized by the CNN, we will
need a library that provides a framework to train our own CNN, analyze its performance,
tune its parameters, and then deploy the trained model for use by our web application.

Desired Characteristics
Training a highly customizable and flexible CNN requires an understanding of the maths
involved, but the extent of this understanding varies from framework to framework. There
are so-called “no code” frameworks on one extreme (designed for use by non-technical
users), and total end-to-end implementations on the other extreme (i.e., writing all
functionalities yourself instead of using an existing framework). For our project, we are
looking for a framework that falls in the middle of these two extremes so that we may
have sufficient flexibility in tailoring the training pipeline to our own needs while also
leveraging the power and convenience of pre existing libraries.

Since the algorithms used for training and evaluating a model are relatively ubiquitous,
there is little use in writing our own support libraries from scratch, as doing so would
require a large amount of time and energy that would detract from the overall aim of the
project. This brings us to the first, and most important, characteristic we require in an AI
framework: the ability to transform (cleaned) data into a deployable model with the use of
core framework functionalities in each major step of the training pipeline. This means
that setup, initialization, training, and deployment (of a CNN, in our case) are each
executed with just a handful of function calls, while still remaining flexible enough to fit
our specific needs.

Now that we know the core functionality we require, the next characteristic we desire in a
framework is the ability for our team to develop rapid prototypes and quickly modify the
existing training pipeline. This is critical because, in these early stages of development,
we need the ability to iteratively update our training pipeline with minimal cost, as we will
also be developing the frontend, backend, and database system at the same time. If we
were to use a framework designed for novel research, for example, then we would
instantly require a deeper understanding of ML fundamentals to realize the benefits of
that specific framework, which would, again, detract from the overall aim of the project.

Another important characteristic concerns the amount of educational material present for
any given framework. As is with most sub-fields of Computer Science (but in ML
especially), the math involved is serious and constantly evolving. Because of the high
potential for mathematical mixups during implementation, it would be highly beneficial to

8

have access to quality tutorials and example programs that showcase the correct use of
the algorithms we will be utilizing. If we consider this in our analysis, then hopefully we
will minimize the amount of time we spend fixing bugs related to our misunderstanding of
the core mathematics.

The last important characteristic that we will consider here is the openness of the
community for a specific framework, as well as the size of the community using it.
Clearly, just because X% of people use Y framework doesn’t mean that Y is perfect for
our application, but it can give us a general idea of the frameworks’ ability to be flexible
and easy to utilize. On top of this, it is absolutely necessary that the developers of a
given framework are dedicated to fixing bugs and improving the functionality as they
(and the community) see fit. While most popular frameworks get full marks on this
aspect, it must explicitly be considered as to avoid future maintenance issues.

Alternatives

Tensorflow
When doing anything related to AI, one will invariably come across Tensorflow.
Tensorflow is near the top of every list comparing machine learning frameworks. This
framework is one of the most popular frameworks to date, and provides the foundation
for incredibly powerful apps such as Google Translate. It was originally created by
Google Brain for internal use, but openly released under the Apache license in 2015.

Pytorch
Pytorch is the main competitor of Tensorflow. Developed by FAIR (Facebook AI
Research), Pytorch is the Python implementation of Torch, and was initially created by
Adam Paszke, and excels in use cases related to computer vision and natural language
processing. It has been open-sourced under the modified BSD license, and provides the
foundation for the equally powerful and impressive Tesla Autopilot.

Keras
Keras was developed by Francois Chollet around the public release of Tensorflow.
Tensorflow and Pytorch can be seen as “lower level” frameworks - they provide the
necessary tools to train models, but each are with their own intricacies and learning
curve. Keras serves to abstract these details from the developer (while still remaining
customizable), with the goal of providing a framework suitable for rapid development.
Given that its core backend is Tensorflow, Keras has an equivalent level of functionality,
but a less steep learning curve.

9

Analysis
It would be hard to overstate the impact of CNNs: in their initial appearance to the world,
they were used to solve problems like handwritten number classification, but today they
are used to solve problems like autonomous automobile driving and navigation. Ever
since, CNNs have been an essential tool for all flavors of computer vision problems.
Because of this, every framework that we are now considering has total support for the
development of CNNs, and thus this aspect will not affect our overall choice of
framework.

Given the research we’ve done and the timeline for our project, speed of development is
one of the most critical factors we will consider when choosing an ML framework.
Because machine learning is essentially a sub-field of mathematics, the specifics of
implementation quickly becomes highly technical. This is great for those that want to
research algorithms in depth or modify and optimize them, but not for those who simply
want to reap the benefits of the technology before diving into the weeds and
understanding the core mechanisms that make it possible. Since our team is in the latter
group, we are looking for a high-level framework that will allow us to initially ignore
low-level intricacies and focus on the more important requirements for our AI module.

Tensorflow was born in a setting where highly scalable, production-ready model
development and deployment was the main goal. As such, Tensorflow is highly
configurable, allowing users to tune every aspect of their training pipeline, but also very
flexible as it allows for efficient deployment in any language and setting. These aspects
make Tensorflow a highly adaptable framework suitable for many ML problems, while at
the same time causing extra overhead for those who are just becoming familiar with AI.
This is in contrast to both Pytorch and Keras, though more so to the latter. Pytorch
claims to be very “Pythonic”, meaning that it is extremely idiomatic for people who are
experienced with (or wish to learn) Python. This is a major advantage because, by
forcing their API to match the foundational structure of the language, they reduce the
potential for those who are less experienced with Python to become confused, thus
reducing the learning curve. That being said, Pytorch is still considered a low-level
framework in the same way Tensorflow is, as the programmer is assumed to be
experienced with the mathematical primitives that it employs. This aspect of Pytorch isn’t
necessarily a weakness of the framework, as these are the very things that researchers
need to push the bleeding edge of ML and AI. This brings us to Keras, and how their
approach is orthogonal to Tensorflow and Pytorch. The main difference between
Tensorflow/Pytorch and Keras is that Keras prioritizes the developer experience, while
Tensorflow and Pytorch focus more so on thriving in research and production
applications. This is not to say that Tensorflow and Pytorch do not prioritize the
developer experience, but rather that neither of them prioritize the developer experience
of beginners to the extent that Keras does. Because of this, Keras is becoming the
default learning framework for those new to ML and AI. Coupled with Keras’ goal for user
friendliness is their goal for users to be able to rapidly build and deploy prototypes.

10

Because of this, Keras is the go-to framework for use in ML competitions, which proves
their success with regard to both of their aforementioned goals.

In addition to speed of development, another important characteristic to consider is the
amount of educational material present for any given framework. This includes good
documentation, sample projects made to showcase functionalities, forums where
developers can troubleshoot and/or bounce ideas off of eachother, etc. This is
necessary for our team to consider, as this project will mark our first step into the field of
AI and ML, and, because of this, we will surely encounter hurdles where our lack of
understanding drove us to an incorrect implementation. Having excellent documentation
(where assumptions are made explicit and the intended use of certain functions made
clear), abundant examples of other developer’s successful projects, and an outlet for us
to reach out to the greater community if we encounter a never-before-seen problem are
all crucial capabilities that, if lacking in a framework, could seriously hinder progress. To
get one measure of the amount of educational material present for a given framework,
we can simply use Google to search for tutorials for all frameworks, comparing the
amount of search results: Tensorflow: ~10M results, Pytorch: ~1M results, Keras: ~30M
results. In addition to this metric, we can also check for code examples (ideally,
examples associated with the framework). On Keras’ website, they list code examples
for all flavors of ML problems. On Pytorch’s website, they have warm up exercises that
get developers comfortable with the core math libraries, but not extensive code
examples for all varieties of ML problems like Keras does. On Tensorflow’s website, they
have extensive resources for tutorials, courses to build the foundational knowledge
required, and even a certificate program that covers the entire API. What they lack,
however, is the repository of examples that show solutions to many different problems
using their framework, which will be indispensable for us as we begin prototyping.

Lastly, we consider the openness of the framework. Specifically, we want to find out if
the framework is proprietary or open-source. If it’s open-source, is there a strong
community of developers contributing to maintaining it for the long haul? And as part of
this question regarding openness, for what reasons is the framework being maintained?
Is it for research, production, or learning? All frameworks considered are open-source,
so all frameworks are able to be downloaded directly and modified. That being said, the
context for which these frameworks were born varies, and so does the community of
users. Since Tensorflow was born in a context requiring excellent scalability and
configurability, it is maintained and improved mostly based on improving with respect to
each of those aspects. Because it was created and is maintained by Google, the
reasons for maintenance and expansion will likely be centered around performance,
configurability, etc., rather than on the developer experience. Likewise with Pytorch
being developed by FAIR, this framework is oriented towards turning research
prototyping into production deployment. When asked why FAIR developed their own
framework, the creator of Pytorch cited the fact that no existing framework did exactly
what they wanted it to -- so they just built their own. This is important to understand,
because some of the most brilliant AI researchers in the field built this framework for

11

their own bleeding-edge research, and while there is some focus on developer
experience, it is not as central to the framework as it is with Keras. Lastly, we consider
Keras. Having already explained the main design philosophy of Keras, it is clear that the
maintenance and expansion of the framework will be centered on the aspects that has
made the framework so successful in the first place: their focus on providing an excellent
developer experience and allowing for rapid prototyping through clever abstraction of the
ML training pipeline.

 Tensorflow Pytorch Keras

CNN Support XXX XXX XXX

Speed of
Development

X XX XXX

Educational
Material

XX X XXX

Openness XX XX XXX

Chosen Approach
Not surprisingly, Keras performs best on the objective measures defining our most
important needs in an ML framework. Keras' focus on developer experience is
unparalleled in other ML frameworks, and, to a higher degree than all other frameworks
we have considered, minimizes the cost required to go from minimal experience to
deploying a trained ML model.

In addition to the large community of developers who support and maintain Keras, Keras
also provides educational content most applicable to our needs. Since we need to be
able to quickly develop test programs, the code examples on the Keras website will
serve as our starting point, from which we can iteratively add features and begin to
explore the full potential of the framework.

Of course, the real advantage with Keras is the ability for us to initially abstract and
ignore some of the finer subtleties involved with designing and developing an end-to-end
ML solution. However, we will, eventually, need to address those finer details, which is
yet another advantage of Keras -- because Keras is layered on top of Tensorflow, Keras
retains the hackability and configurability that makes Tensorflow so powerful, so we will
not be limited with what we can change as we get deeper into development.

Coupled together, these combined features of Keras will let us quickly and efficiently
design and implement our training pipeline, allowing us to forego extensive configuration
at the start so we may focus on the most important details, but also permitting us to
return to those details at a later point, tuning them to further improve our model.

12

Proving Feasibility
To prove that the Keras framework is suitable for our needs, we will put the claims of
rapid development to the test by producing a series of demos that solve problems similar
to those we’re addressing in our project.

The first phase of the demo will merely be a proof of concept, in which we will use the
Keras library and a sample data set (MNIST, most likely) to train and analyze a CNN.
The demo should be easy and fast to produce, as it is essentially the “hello world”
equivalent for deep learning.

The next phase will be to use a training set of images that are specific to birds and apply
our learning algorithm to that data set, without making any architectural changes at first.
The point of this is to test how easy it is to make adjustments to our model in Keras, and
to gain some experience in tuning the model to our own needs.

The last phase of demos will involve integration of our naive bird classifier into a web
application, where users can load images and use our model to make an inference
about a bird’s species. This series of tests and demos, if successful, will provide a
complete and total proof of concept, ensuring that our core technologies are really
capable of doing what we set out to do.

3.3. Backend Infrastructure

Intro the Issue
This brings up the fact that we need an environment capable of hosting our model and
using it to infer bird species within our website, while also handling other requests. To do
this, we will need a backend framework with good support for libraries capable of
deploying a trained model. In addition to this core functionality, our backend framework
should have excellent support for a database architecture capable of efficiently creating,
reading, updating, and deleting user-stored content.

Desired Characteristics
For our project, one of the most important features of the back-end framework is
compatibility. Our back-end framework needs to be compatible with our AI trained model.
Since we will use AI learning, our backend framework should be capable of handling
this. Since the back-end framework also needs to connect to the front-end framework
and the database, we put compatibility in the most important position.

The second important characteristic is scalability. Customers of our project will upload all
kinds of documents, such as text, pictures and videos., ​so we need to consider if the
framework applies to larger or smaller projects. Understanding how the framework will
handle larger data sets if the amount of data in the future increases, and how the

13

framework can hold large to small amounts of data.​Therefore, the backend framework
we choose should be demonstrably able to handle large amounts of operations and
activity.

The third characteristic we need to consider is the security. The security of our data will
be particularly important as our program will help any birders using pEEp to upload their
own information and photos. We want to ensure that our data is shared without causing
any leakage to prevent it from being exploited by criminals. Any information stored
should be completely secure. Users should not worry about any information they have
on this application being compromised. Therefore, the framework we choose should
provide some authentication and security plug-ins or built-in functionality.

The final characteristic we decided is speed. We need to make sure that the speed of
data downloaded and page displayed is fast so that our users can have a better
experience when using our application. Therefore, the framework we choose should
provide high speed in download and upload the data.

Alternatives

Laravel
Laravel is a concise and elegant PHP Web development framework. It frees you from
spaghetti-like clutter; it can help you build a perfect webapp, and every line of code can
be concise and expressive. Laravel is one of the most popular frameworks for PHP
users. Laravel is easy to understand, powerful, and provides powerful tools for
developing large, robust applications. With validation, routing, Session, cache, database
migration tools, unit testing and other common tools and functions.

Flask
Flask was born in 2010 and is a lightweight Web development framework written by
Armin Ronacher in the Python language based on the Werkzeug toolbox. It is mainly
aimed at small applications with simple requirements. Flask is a micro web development
framework for Python. It is well documented, rich in plug-ins, including development
servers and debuggers, and secure cookies.

Express
E​xpress.js was founded by TJ Holowaychuk. The first release, according to Express.js's
GitHub repository, was on the 22nd of May, 2010. Express is a concise and flexible
framework for Node.js web applications that offer a range of powerful features to help
you create a variety of web applications. Express also provides rich HTTP tools which
allows you to quickly build a fully functional website.

14

Analysis
Compatibility is one of the most important characteristics we need to consider. Although
the difference in compatibility of each framework is small, Flask has better compatibility
according to our survey. Flask is a micro back-end framework in Python, and the AI
training framework we will be using will also use Python as the programming language.
This will increase compatibility between the two, so Flask has the best compatibility.
Although Laravel and Express are both popular back-end frameworks in the market,
these two backend frameworks which contain so many functions, are too large, resulting
in excessive functions. Therefore, despite their good compatibility, we still decided to
give up on them.

When it comes to scalability, after the research of three backend frameworks. We
decided Laravel has the best scalability. Laravel focuses on modularity and extensibility.
You can find any file you want to add in the Packalyst directory, which contains more
than 5,500 packages. Laravel's goal is to make it possible for you to find any document
you want.

Laravel will be a great way to extend our product. Customers can add whatever data
they want and then manipulate it in the Laravel extension package. By default, Flask
does not contain database abstraction layers, form validation, or any other nice
functionality that has been handled in other libraries. Instead, Flask supports adding
these functions to applications by extension. Numerous extensions provide database
integration, form validation, upload processing, and a variety of open authentication
technologies.

Flask may be "tiny", but it is ready to be used in a complex production environment.
Express also has good scalability, in which it provides all the functionality for developing
robust Web/mobile applications, as well as APIs. Developers can easily add Express
capabilities by developing plug-ins and extensions for it. Here is a list of some of the
basic features that Express provides:
Communication with any third-party database, variety of user authentication methods,
template engines that conforms to the Express interface definition, and definition of the
project directory as needed. In conclusion, the scalability of Flask is about the same level
of Express.

In addition to scalability, another important characteristic that many users will care about
is security. According to research, Laravel has very good security and is one of Laravel's
best features. The Laravel framework provides advanced and powerful web application
security that developers can safely use. Laravel security makes effective use of salt
hashing and password adding mechanisms, so it does not save passwords as plain text
to the user database. It also USES the "Bcrypt hash algorithm" to create an encrypted
password. In addition, Laravel Web development framework utilizes SQL statements to
secure SQL injections. Flask also has good security, it provides many Network security
facilities. For example: Cross-site scripting (XSS) which is injecting arbitrary HTML

15

(including JavaScript) into the environment of a web site.Cross-site request Forgery
(CSRF) which can secure your website cookies and ​JSON security which can secure the
JSON data transfer process. And Express also has the same security features like Flask,
it can also defend against some XSS attacks and the protection of cookies. So we think
that Flask and Express have the same level of security.

Lastly, we will consider the speed, Speed is a shortcoming of Laravel, Laravel has many
functions, but according to the requirements of our project, we tend to use less than so
many functions, in some specific service maybe we will only use the partial function of
Laravel, but Laravel will default to load all the functions, this led to Laravel speed too
slow and resource consumption, and thus in the speed field that Laravel has no
advantage. Flask is a significant advantage. Flask is a micro framework developed by
Python, so it's very flexible and fast.Flask's simplicity allows experienced developers to
complete smaller applications in a short amount of time. And because there aren't too
many plugins and functions, flasks run very fast and load quickly.Express also has good
speed, with its small and flexible Node.js Web application framework and extremely fast
I/O, so it has a strong edge on speed.But I still don't think he's faster than a Flask.The
reason is that the JS language doesn't fit our AI training and database as well as the
Python language used by Flask.

 Laravel Flask Express

Compatibility XX XXX XX

Scalability XXX XX XX

Security XXX XX XXX

Speed XX XXX XX

Chosen Approach
By comparing the desired characteristics of each alternative, we finally decided to
choose Flask as our backend framework. Not only because it has faster speed, good
security and compatibility. What we need most is the compatibility between the parts. We
should know that the quality of a product depends on its whole, not on any one part.
Therefore, only better compatibility can guarantee the quality of products. But in this
respect, Flask is undoubtedly superior to the other two alternatives. Because Flask uses
Python as its language. While Laravel and Express use PHP and Js. But the language of
most today’s AI deep learning is Python. In order to match our AI deep learning
framework, we believe Flask will be a better choice. Even though Laravel has a better
scalability, this will make it slower and with too many useless plugs which we will not
need in our future development.

16

Proving Feasibility
In our demo, we'll design a basic website using Flask. We're going to create one simple
connection that connects the database to our website, allowing information to be
exchanged between the two. Our users will upload videos of their birds on our website
and use our AI training framework to identify the species.

3.4. Frontend Interface

Intro the Issue
Lastly, the engineering done to solve the AI and backend problems must be seamlessly
integrated into a clean user interface (hereafter referred to as UI). This means that the
technologies used for frontend development must play nice with all technologies used for
the backend. Additionally, given that the average age of birdwatchers is around 50 years
old, our UI should be simple, elegant, easy to navigate, and hide any implementation
details that would otherwise confuse users of our application.

Desired Characteristics
When choosing a frontend framework, one of the major characteristics to consider is
efficiency in development. Frameworks in general are designed to give developers
structure when creating user interfaces, but this doesn’t necessarily mean that every
framework allows for the proper structure. For our project, it is crucial that we have a
framework that is easy to use, but also provides us with the proper tools to develop our
UI. With that being said, having built in components and libraries would allow us to write
our code faster and effectively. This leads to another important thing to consider which is
cost. UI development can become awfully pricey without the proper tools. Being able to
write code faster and more efficiently by using added components or libraries would
allow for a decrease in the overall time it takes to write an intuitive UI. This could result in
a decrease in the overall cost of a product.

Although a framework with additional components and libraries is important to us, we
don’t want something that is overly complicated. For our project, it is not a necessity to
have a framework that has ​thousands of extra features. We need something that is going
to ensure we will be able to develop our web application by providing us with necessary
built-in components.

Additionally, a framework with a variety of features that has a slow learning curve is not
ideal for our situation. Considering our time constraint for developing this web
application, we need the learning curve of a framework to be relatively fast. That would
guarantee we would spend less time learning how to use the framework, and more time
developing our project. The framework we choose should be simple and straightforward
with implementation.

17

Since we will be creating a UI that allows for user data to be submitted (ie. user login,
user photos), security is another characteristic to consider. Although it is often
overlooked, frontend security is equally as important as back end security. Even though
the data users are inputting goes directly to the backend infrastructure of our application,
if a perpetrator inputs malicious code into our program, they can still gain access to a
user’s information once the code has been executed (Singh 2019). Therefore, we want a
framework that handles security automatically to secure user information.

An additional characteristic to consider is browser support. When creating a product for
someone, it is important to consider the idea that not everyone is going to be using the
same products. Since we will be developing a web application, it is ideal to note that the
framework we choose, allows for the support of multiple browsers. It would be incredibly
unfortunate to develop an amazing application that isn’t available for everyone to use.
Moving forward, we will be considering browser support when choosing our frontend
framework.

At the moment, this specific characteristic does not have as high of a priority as the
previously stated characteristics, but extensibility is something we felt was important to
simply review​. ​Considering we are creating this program for a startup company, it would
be naive to disregard the expansion of this product. In the future, if any newer
technologies were to be introduced that would improve our product, we would want our
framework to be able to handle the integration of said newer technologies. We would
continue to follow the desired attributes of our UI to be simple, elegant, and easy to
navigate.

Alternatives

Vue.js
Vue is a modular frontend framework that has gained popularity over the past few years.
It has reached such popularity as it is being compared to credible frameworks such as
React.js and Angular. Although Vue is a somewhat newer framework, large companies
like Apple, Nintendo, and Adobe have implemented Vue into their UI. When
implementing Vue, the prerequisite knowledge is just basic javascript and html which
makes the learning curve faster. Additionally, Vue requires minimal code which allows
for better performance and readability.

React.js
React is one of the most popular frontend frameworks to date. React.js was designed by
Facebook, which is a very well known company that needs a solid UI. The reason React
is so popular is because of its rendering performance. React is known for breaking down
a web application into smaller components, so the user can focus on smaller individual
projects. Similarly to Vue, React also allows for minimal code.

18

Angular
Angular is one of React’s top competitors. This framework was released in 2010 by
Google developers and allowed for the development of web applications to be incredibly
faster. Over the years, there have been plenty of new releases, and over 6,723
companies have reported that they use Angular. Similarly, Angular allows for minimal
code by the use of data binding and “dependency injection of Angular.js”.

Analysis
Efficiency is one of the most important characteristics for us to consider. After watching a
variety of youtube videos of people testing all three of the alternative frameworks listed
above, the efficiency of each framework is incredibly similar. The major difference
between Vue and Angular or React in regards to efficiency, is the amount of added
components or libraries that are available. Angular and React are known for their
widespread attributes. Although Vue is a newer framework, it has plenty of additional
features for us to use. Thus, all three of these frameworks appear to have the necessary
components to ensure efficient development within our project (Daityari 2020).

This leads to our next crucial characteristic; the learning curve. Angular and React have
a wide variety of tools to use to create a web application but this can lead to an over
complicated framework. Many people have stated that Angular is one of the best
frameworks to use, but it will take a few months to fully understand how to integrate it.
Considering we are limited on time, 2 months to understand a framework is too long. We
need something quick and easy to learn. React is similar to Angular in the sense that
they both use JSX, a JavaScript syntax extension. This is a factor in the slower learning
curve that Angular and React both have (Vue.js 2020). Since Vue does not require JSX,
the templates are much more simple and easy to understand.

It is important to consider the browser compatibility for each of these frameworks. As all
three frameworks are incredibly popular and used by well known companies, they have
been designed to have the best performance. Meaning, all three of these frameworks
support all browsers that are ES5-compliant, but they do not support IE8 or below.
Therefore, browser support will not affect our overall decision in choosing a framework.

Security is another major characteristic we have chosen to consider. Typically, frontend
security is overlooked which can lead to XSS attacks. With further research, Angular,
React, and Vue.js all have their own way to sanitize inputted values. Whenever a value
is entered into the template being used, the frameworks automatically treat the value as
untrusted. Once the value has been entered, they sanitize the value and discard the
untrusted values. Since all three of these frameworks provide a way to sanitize values,
security will also not affect our overall decision in choosing a frontend framework.

19

 Vue.js React.js Angular

Development
Efficiency

XXX XXX XXX

Fast Learning
Curve

XXX XX X

Browser
Support

XXX XXX XXX

Security XXX XXX XXX

Chosen Approach
After analyzing each framework, and the desired characteristics, we have chosen Vue.js
as our frontend framework. Given that each framework essentially meets every
characteristic we were looking for, Vue.js had the fastest learning curve out of all the
frameworks. As stated previously, a faster learning curve is necessary in order for us to
be efficient in development. Even though Vue.js is a newer framework compared to
Angular and React, its simplicity in design has been the deciding factor for us.

Proving Feasibility
In order to prove that this framework is feasible, we will be providing a demo within the
next few months. We will go through a series of phases to test that this framework is
suitable for our project.

The first phase of the demo will be creating wire frames. This is where we will be using
Vue to create a basic sketch of what the UI will look like. At this stage, all that is
necessary is the placement of each element such as the buttons, text, pictures, or any
links. Once we have created our UI prototype, we will review the design and make sure
they align with our requirements. From there, we will be able to move on to phase two.

Phase two is going to focus on the visual aspect of our user interface. This is where we
would use Vue to allow our UI to come to life. We will be using the provided design tools
from Vuetify or Bootstrap-Vue to make the webpage look as described in the
requirements. Once we have reviewed the visual design, we will move on to phase
three.

The final phase is where the elements on our webpage obtain functionality. By using
Vue’s component framework Vuetify, we will easily be able to implement the backend
infrastructure as well as the AI model, to our frontend infrastructure. We will then test
that the AI, frontend, and backend all integrate properly, and that every component
maintains its functionality.

20

3.5. Database Management

Intro the Issue
For our web application we need a database that will be able to store user profiles with
their included information, and images of birds to be further processed by our AI model.
It is important that we choose a database that will best fit the scale of our project. To
help us select the database that will best fit our needs we will first analyze the CAP
theorem. The CAP theorem is simply a thought process that helps us layout the needs of
our database and choose the best option for those needs. Focused on comparing
tradeoffs of different databases rather than attempting to point us straight towards one or
the other. CAP stands for Consistency, Availability, and Partition Tolerance -- these
three principles will lay down the foundation to aid us in our final selection.

Desired Characteristics
Before we analyze CAP we would first like to address the issue of security. Security is
detrimental to any database as breaches of any kind can make the final product suffer
severe consequences. By definition, a data breach is a failure to maintain the
confidentiality of data in a database. As previously stated in the introduction we will be
working with user data. It is important that our database has the security to maintain this
data, whilst also maintaining the transfer of data. As it stands our project is small in scale
and thus it will not have a high transaction rate. With that said, we will require a database
with a baseline level of security including encryption of moving data, encryption of data
at rest, and an admin system to prevent the unauthorized access of said data. Although
common in most popular database options, it is important that we choose something with
a minimum of “server-side” encryption thus denying strangers from querying it for
information. Additionally, a database with a “Role-system” allowing for the selection of
admins vs non-admins will also be a crucial point in our selection. Finding a database
with both these features should set up the basic security that we require.

From the CAP theorem we first have Consistency. This refers to the requirement that
any given database transaction must change affected data only in ways that are allowed.
All data must be valid according to all defined rules. This essentially means the database
will always have a guaranteed outcome. For our database this will be important. The
user will not be performing a large amount of transactions so it is important that this
minimal amount be executed consistently. To capitalize on this concept it would be best
to select a database that will allow us to perform transactions in isolation (or as close to
isolation as possible) minimizing the amount of concurrent transactions. We want to
focus on strong consistency as opposed to causal consistency where we wouldn't be too
worried if things didn't go as planned. Consistency is prominently higher in SQL
databases so this must be taken into consideration.

21

Availability simply put, is how available the database will be to the user. Ensuring an
agreed level of operational performance and up time. Once again our project is currently
on a small scale and thus should have a high availability. We want to avoid the loss of
service to our users as much as possible. For our project I think these first two
Characteristics of CAP are most important to provide the best experience to our bird
watching community.

Last in the CAP theorem we have partition tolerance. Meaning that the database must
continue to function despite any number of communication breakdowns between nodes
in the system. This is normally more important on large multi server systems with
multiple machines splitting the workload. Although this is an important characteristic to
take into account. For our case we will not be expecting thousands of transactions per
minute and thus is not as important as the previous two characteristics. This is the
“tradeoff” referred to in the intro. We are hoping to select a database that will trade
partition tolerance in exchange for better consistency and availability.

We also desire a database with scalability and speed. Our web app functionality will rely
heavily on the scalability and speed of the database. If the database is too slow we will
hurt the users overall experience with the product. For example, our front end may need
extra time to render if our backend is too slow. Additionally, we are hoping to help build
a community around the finished product, so selecting a database that with solid scaling
will allow the amount of data stored to grow with the community.

Being that we do not have infinite developing time, it is important that we take the
learning curve of our selected database into account. As previously mentioned in section
3.3.2 (Desired Characteristics of our Frontend) we only roughly have a short time period
to design and create our project. This being said it might be beneficial to choose a
database model we are experienced in and compromise some of our wanted
characteristics, rather than pick the database model that has anything and everything
and learn it on the fly.

Alternatives
MongoDB
MongoDB is a cross-platform document-oriented database program. Classified as a
NoSQL database program, MongoDB uses JSON-like documents with optional
schemas.

MySQL
MySQL is a freely available open source Relational Database Management System
(RDBMS) that uses Structured Query Language (SQL).

22

Cassandra
Apache Cassandra is a free and open-source, distributed, wide column store, NoSQL
database management system designed to handle large amounts of data across many
commodity servers, providing high availability with no single point of failure.

Analysis
Analyzing the above alternatives in accordance to our desired characteristics. First We
will analyze each selection using the CAP theorem. This will provide a good base to
further our selection. Followed up by its overall security, scalability, and speed.

Starting with MongoDB, this would be considered a “CP” in relation to CAP. Trading
availability for focus on consistency and partition tolerance. MongoDB ensures
consistency by assuring reads and writes are issued to the primary member of a replica
set. Applications can optionally read from secondary replicas, ensuring that data is
eventually consistent by default. For partition Tolerance MongoDB is able to always
select a primary set as long as half the replica sets are connected. ​To ensure two
separated networks can not both choose a new primary. When not enough secondaries
are connected to each other you can still read from them (but consistency is not
ensured), but not write. For scalability and speed MongoDB supports horizontal scaling
through means of sharding, distributing data across several machines and facilitating
high throughput operations with large sets of data. Lastly MongoDB basic encryption for
traveling and stored data, and “Role Based access” which allows for easy
implementation of the admin system we are looking for.

Next, mySQL. Considered a “CA” database when using the CAP theorem. Focusing on
consistency and availability while sacrificing partition tolerance. Using a relational
database model mySQL is able to isolate transactions by running them separately from
other concurrent transactions thus preventing interference. For availability, ​MySQL
ensures client requests are load balanced and routed to the correct servers in case of
any database failures. Their servers use group replication to replicate data to all
members of the cluster while providing fault tolerance. MySQL does have the ability to
scale, however if not properly set up things can quickly turn south once the tables have
grown too large. This concept remains the same with the speed of the database, it is
very CPU reliant and the tables must be optimized around their primary keys to perform
efficiently. Additionally, mySQL provides a robust security package upfront including
secure connections, authentication services, authentication management and controls,
and data encryption.

Last, Apache Cassandra. Considered an “AP” database by the CAP theorem. Focusing
on availability and partition tolerance while sacrificing consistency. Cassandra provides
availability through linear scaling, this guarantees no single point of failure because data
is automatically replicated to multiple nodes. Partition tolerance is handled through a
partitioning algorithm which is configured at the cluster level while the partition key is

23

configured at the table level. It is a NOSQL database, however it revolves around the
same terminology of tables, rows, and columns. Due to its linear scalability, scaling is
made easy by simply adding new nodes, it also has the ability to scale horizontally for
easy addition of new data centers. For speed, Cassandra has a unique storage engine
that uses Log-structured merge trees compared to the normal B+ trees of other
databases. This allows for much faster speeds than most database systems. Lastly
Cassandra provides a basic encryption package for data and a pluggable authentication
service.

CAP Diagram:

 Consistency Availability Partition
Tolerance

Scalability Speed Security

MongoDB XXX X XXX XXX XX XX

MySQL XXX XXX X XX X XXX

Cassandra X XXX XXX XXX XXX X

Chosen Approach
After our analysis and examination of each database framework, we have decided to
use mySQL. Please note that although it may not reflect on our rating scale, all the
databases we have considered are capable of performing our desired characteristics.
MySQL best fits our desired CAP model while still having scalability, speed, and a high
level of security.

Another factor in our decision was the learning curve required for the database. As
stated previously, we have limited development time, are unfamiliar with developing in

24

NoSQL databases, and have limited experience with document based systems like
MongoDB. Apache Cassandra was a valid contender as it followed the same table
format that appears in relational database models. However, we chose MySQL over
Cassandra because we value consistency more than partition tolerance. Not only do we
all have experience in SQL and relational database models, but our project is not on a
large enough scale to take advantage of the linear and horizontal scaling offered by
MongoDB and Cassandra.

Proving Feasibility
To prove the feasibility of our database we will break it down into three separate phases.
These phases will include: Building the database, data management, and database
integration.

Since mySQL is a SQL database we will be using the relational database model. Before
jumping straight into the build we need to consider the relationships that our database
will contain. Establishing these relationships will make building the database much
easier. It is important we utilize keys to link tables and give each one a fair
representation.

Phase two will be data management. We need to construct the database to fit with
CRUD programming. This stands for create, read, update, and delete. It should be
intuitive and easy to read and understand, while at the same time be able to make quick
references to any element in any table. Additionally since we are storing both user data
and images it is important that the data stays related but does not interfere with
opposing tables.

Lastly, will be integrating the database. For this we will use a data engine that will aid in
optimizing the organizational aspect of our database. Next we will need to test the
database with our front end and back end and make sure that it not only is online and
working as a web application, but that users are able to upload and store data using our
UI. This will most likely be done using a test account that we will create as a group.

25

4. Technological Integration

4.1. Putting It All Together
Up to this point, we have identified the specific challenges imposed by this project and
systematically chosen technologies that will aid us in solving these problems. What is
still missing, however, is an explanation of what roles these technologies each play and
how they will coordinate with each other. After all, what is a frontend without a rock-solid
backend, and vice versa? What good is an AI model with state-of-the-art accuracy if our
users cannot access it? Now that we have objectively decided on the individual
frameworks, we need to make sure that we can reasonably integrate these separate
technologies together into the overarching solution we need. This necessity to integrate
our pieces brings us to an important point: at a high level, what does our system look
like?

4.2. Our System Diagram

4.3. Full Integration
Examining the first iteration of our system diagram, it is clear that the user only interacts
with our frontend client, leaving all other components of the system transparent to them,
which is how it should be. Our frontend should be nothing but a simple and elegant
proxy for communicating with our backend (which in turn communicates with our AI
model and database). Because of this design, which is common in web applications, it is
critical that the frameworks we use to design both our frontend and backend do not
interfere with the core communication. Because this design is so common, all the
frameworks we have considered fulfill this requirement.

Now that we know our backend and frontend integrate smoothly, the only other concerns
worth mentioning now are those between the backend, AI model, and database. Similar

26

to close integration of frontend and backend frameworks, accessible databases are
another key contributor to meaningful web applications. Because many of the most
successful web applications are centered around the storage and application of user
data (e.g., Facebook buying your search history to target you with specific ads), all of the
database frameworks that we have considered are also deeply integrable within a web
environment.

The last component that needs integration is the AI model. Because the entire AI module
will likely be written in Python, it would be advantageous to also write our backend in
Python so that we can ensure some uniformity. In addition to making our backend
uniform, it will also ensure that any dependencies of the backend are easily ported to our
AI module and vice versa. This is important because with different languages come
different implementations, and it would only be a matter of time for bugs to start arising
from the subtleties of those differing implementations.

By using tried and tested technologies for our frontend, backend, and database, the only
real logistical challenge imposed by this project is the integration of the AI model. There
are, of course, other logistical challenges, but those are the ones ever present in web
programming, and for which there are endless resources on potential solutions. Because
we have chosen Keras and Flask for our AI training and backend, respectively, we
ensure a consistency with languages and dependencies, thus alleviating some of the
conflicts that could occur with the use of different implementations over different
languages.

In this way, we ensure a reasonable plan for the integration of all technologies required
to solve the problem presented to us. Though the final measure of how well these
technologies integrate will be the success of our prototype, we have at least ensured a
higher probability of success in integration by considering each technology and the
potential collisions it may have with the other technologies we plan to leverage.

27

5. Conclusion

David Plemmons, our client, has a vision that his bird feeder will be able provide an
interactive and user friendly UI in combination with a species identification system to let
his users know what kinds of birds they are feeding. After considering his desired
specifications, we have broken up the project into four separate components. These
include the frontend framework, backend framework, AI model, and the database. To
conquer this challenging task we divided the four topics among each of our group
members. Each member did specific research for their chosen topic while keeping other
members in the loop about their findings and decisions, so that all research efforts could
be coordinated. After collaborating once more we came to a final decision for each
component.

Upon careful examination and analysis of our available options for each type of
framework we will need to use, we have formed the foundations of our technology stack.
We have chosen Vue.js for our frontend framework, Flask for our backend framework,
Keras for our ML framework, and MySQL for our database system. We felt that these
options best suited our needs, and will have the lowest combined learning curve while
still providing all functionality that we require for the project.

Moving forward, Our next step is to begin making prototypes with our selected tools, and
progress towards a completely integrated system. It is key that every component of the
system is able to communicate well with one another to ensure that the software
powering the pEEp feeder can last a lifetime. We envision that our finished product will
have a user interface that is easy to navigate for our bird watchers. This user interface
will communicate with the backend and database to store images and data that the user
will generate through the use of the pEEp feeder. Lastly, what we believe sets our
product apart from competitors is the AI model that will help users identify and learn
about the birds that they feed everyday, providing a truly unique experience from the
comfort of your home.

28

6. References
Amilkanthwar, Vivek. “Choosing a Deep Learning Framework.” ​Medium​, In Pursuit of

Artificial Intelligence, 28 Feb. 2019,
medium.com/in-pursuit-of-artificial-intelligence/choosing-a-deep-learning-framew
ork-5669a85ebc3f.

“Comparison with Other Frameworks - Vue.js.” ​- Vue.js​,
vuejs.org/v2/guide/comparison.html.

Daityari, Shaumik. “Angular vs React vs Vue: Which Framework to Choose in 2020.”
CodeinWP​, VertiStudio, 9 Aug. 2020,
www.codeinwp.com/blog/angular-vs-vue-vs-react/.

Draelos, Author: Rachel, et al. “The History of Convolutional Neural Networks.” ​Glass
Box​, 30 Jan. 2020,
glassboxmedicine.com/2019/04/13/a-short-history-of-convolutional-neural-networ
ks/.

“Learning PyTorch with Examples¶.” ​Learning PyTorch with Examples - PyTorch
Tutorials 1.6.0 Documentation​,
pytorch.org/tutorials/beginner/pytorch_with_examples.html.

“Libraries & Extensions : TensorFlow.” ​TensorFlow​,
www.tensorflow.org/resources/libraries-extensions.

“Managed Apache Cassandra as a Service: Aiven.” ​Aiven.io​,
aiven.io/cassandra?utm_campaign=10954370547.

Singh, Manoj. “Understanding Frontend Security.” ​Medium​, Medium, 9 Nov. 2019,
medium.com/@manojsingh047/understanding-frontend-security-ff6585395534.

Team, Keras. “Keras Documentation: Simple MNIST Convnet.” ​Keras​,
keras.io/examples/vision/mnist_convnet/.

“The Most Popular Database for Modern Apps.” ​MongoDB​, www.mongodb.com/.
MySQL​, www.mysql.com/.

Sundaresh, et al. “Keras vs. TensorFlow - Which One Is Better and Which One Should I
Learn?” ​PyImageSearch​, 18 Apr. 2020,
www.pyimagesearch.com/2018/10/08/keras-vs-tensorflow-which-one-is-better-an
d-which-one-should-i-learn/.

“Welcome to Flask.” ​Welcome to Flask - Flask Documentation (1.1.x)​,
flask.palletsprojects.com/en/1.1.x/.

