

Software Testing Plan
Version 2.0
March 26, 2021

Project Sponsor : Chris Doughty
Team Mentor : Andrew Abraham
Team Members : Kainoa Boyce, McKenna Chun, Gregory Geary, and Wesley Smythe

Table of Contents

1 Introduction 2

2 Unit Testing 4

3 Integration Testing 8

4 Usability Testing 11

5 Conclusion 1 9

Figure 1: Frogs are one of the many creatures that make up the biodiversity of Earth. 1

1 https://royalsociety.org/topics-policy/projects/biodiversity/

1

1 Introduction
The Madingley Model is a revolutionary biodiversity and ecosystem model that has the
capability to generate data over wide areas of land, limited only by the maximum
surface area of Earth. Another unique feature of this model is that it is able to include
data for both oceanic and terrestrial areas. In addition to this, it is able to factor in a
multitude of different scenarios over these selected areas, such as human driven ones
like climate change or deforestation.

The model itself was created with the intent of providing policy makers accurate
biodiversity data, of which they could then use to influence the types of policies they put
into place. However, due to the underlying fact that nature is an incredibly complex
system, the data sets generated by this model are extremely large and very difficult to
manipulate and interpret for the average human being.

To solve this, Biosphere was developed as a progressive web application that allows the
user to view different summaries of Madingley Model data in a cost effective, easy, and
efficient manner, requiring little to no prior knowledge on biodiversity and ecosystems.
The application starts by prompting the user to input various data (user-type, location,
scenario, and intensity of that scenario), these are then used to determine the specificity
of the scenario data, where the desired scenario should be run, and the intensity of that
desired scenario. From there, the application will fetch the corresponding Madingley
Model data to be displayed via a heatmap, line graph, and bar graph.

Now that the app has been built out, it is imperative to check that all key components
are up to par, and allow the users to effectively fulfill the main purpose of the Biosphere
Application. To ensure a healthy user experience, the application undergoes a series of
different application tests, these are:

● Unit Testing
● Integration Testing
● Usability Testing

The first type, unit testing, will be conducted to ensure that each of the individual
components of the app are working properly. This would consist of running trials on our
functions that perform tasks, examples of these tests include, but are not limited to:

● Making sure data is being saved upon user input properly such as the user’s
location or selection of scenario and user types

● Ensuring that the correct data is being pulled and processed by the backend

2

Secondly, integration testing will be conducted to ensure the key components of the app
are all working together properly. This type of testing for our application consists of
verifying correct responses between multiple modules:

● Ensuring that the API Gateway is correctly sending requests, and receiving
responses between the back-end and front-end modules

● Confirming that different front-end components communicate with each other to
provide a healthy user interface to the user

● Confirming that the format of data is consistent throughout the entire application
to create a modular environment for a diverse range of situations

The last type, usability testing, shifts the focus away from the functionality of the
technical components themselves, and more towards how users interact with these
components. This consists of tasks such as:

● Finding a wide variety of different users that would have different experiences
and access the application differently

● Getting feedback from these various users that have tried the application in order
to ensure that we have a great user experience, and intuitive user interface

● Analyzing feedback to make changes and prioritizing specific tasks based on
importance to the user’s experiences

All of the listed tests above constitute a better application by allowing us as the
developers to maintain a consistent standard of performance for the product. They also
allow us to find problems and errors that may occur only in specific circumstances that
were not clear or apparent to us before. This applies for all of the different testing
methods, for example, extensive unit tests allow for a wide range of situations, whereas
usability testing allows for us to see how the users would really interact. Therefore, each
test plays a key role in identifying critical issues that we may or may not have and are
extremely important in the development of our Biosphere application.

3

2 Unit Testing
Unit testing is used to break large pieces of software into individual components or
functions. This aims to ensure that each unit is performing as expected. Unit testing can
be done automatically or manually. In order for unit testing to be validated, the
developer or test engineer must generate tests, and define their outputs. Once
numerous tests have been generated that cover a wide array of possible inputs they are
tested, and their results are generated. If there are failures in unit testing, it is usually
caused by a logical disconnect between the code written and the intended output. The
secondary purpose of unit testing is to find obvious issues like, unrestricted access to
various parts of a system, or the mishandling of control or special characters. An
example of this would be an SQL injection as a result of improper handling of the input,
and allow it to run as code, rather than constricting it to a string datatype.

4

2.1 Back-end Testing
The back-end can be broken down into three major components: data storage and retrieval, data processing, and the
back-end interface. Each unit will be tested extensively with each unit containing its own criteria.

5

Unit Test Description Boundary
Values

Example Input Expected
Response

API: Single Valid Generate a single valid
response that is then
passed through the API
Gateway.

distance values
cannot exceed
800km.

min_distance=0
max_distance=200000

{
 “Next”: None
}

API: Onion Valid Generate an onion
handled response that is
then passed through the
API Gateway.

distance values
must be greater
than 800km

min_distance= 2345
max_distane = 340953

{
 “Next”: event
}

Data Retrieval:
Non-Existent File

Create a data request for
a file that clearly does not
exist.

A string that looks
like a file i.e.
some_dir/some_file
.csv

get_object(file=”fake.cs
v”)

FileNotFoundError

Data Retrieval:
Out-of-Bounds
Request

Create a data request for
a file that is located in a
different file system

A file that exists.
The file path must
start from the root.

get_object(Bucket=wro
ng_bucket,
file=”file.csv”)

FileNotFoundError

ForbiddenAccessError

Data Validation:
Correct Data
Types

Create a request with a
valid size and type to be
tested against validation
library

The request must
conform to the
restrictions of the
requested input

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

“[DEBUG]: Validation:
Passed”

Table 1: Back-end Unit Testing Criteria

Finally, for the purposes of security, the back-end components will be compared against the Common Vulnerabilities and
Exposures (CVE) database to ensure that most known vulnerabilities have been patched. According to preliminary
research there are 115 vulnerabilities related to AWS and 494 vulnerabilities linked to Python with the most recent entry
dated for March 4, 2021. It should be noted that not all vulnerabilities will be related to this application, and some may be
illegal to test without a Certified Ethical Hacker (CEH) degree or being contracted as a bug or vulnerability finder.

6

Data Validation:
Incorrect Data
Types

Create a request with a
valid size and type to be
tested against validation
library

The request must
be incorrect within
the constructs of
the validation
functions

{“fish”: “taco42”} “[DEBUG]: Validation:
Failed”

Data Processing:
No Returned Data

A data request using
semi-legitimate
parameters. For a
dataset that does not
exist.

The request must
be approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

Data Processing:
Improper File
Format

A data request using
legitimate parameters for
a file that is mislabeled,
or of an invalid type

The request must
be approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

Data Processing:
Invalid Values

A data request using
valid parameters, for a
non-numeric value

The request must
be approved by
validation functions

{ “user_type”: public
 …
 scenario: “CLIMATE”
}

{“statusCode”: 400,
“body”: None}

2.2 Front-end Testing
The front-end, similarly to the back-end, can be broken down into specific modules that each perform a task that they are
specialized for. While there are many smaller modules included in our front-end, some major modules that are prone to
invalid responses include: location selection and data retrieval. Like the back-end, each unit is tested for a variety of
scenarios, both successful and not.

Table 2: Front-end Unit Testing Criteria

7

Unit Test Description Boundary
Values

Example Input Expected
Response

Location
Selection:
Map Input

Receive input from
Google Maps API
selection, and send a
data request to back-end

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: 52
Longitude: 105
Radius: 1240

Request made to
Back-end

Location
Selection:
Valid Manual Input

Receive manual location
input, and send a data
request to back-end

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: 40
Longitude: 105
Radius: 2421

Request made to
Back-end

Location
Selection:
Invalid Manual
Input

Receive an invalid
manual location input and
produce an error
response

Latitude: [-90,90]
Longitude: [-180,180]
Radius: [0, 12000]

Latitude: -105
Longitude: 185
Radius: -2752

Error: Invalid Input

Data Retrieval:
Successful Data
Retrieval

Request and retrieve the
correct files selected from
the location and scenario
options

Value 1:
0 <= Val1 < Val2
Value 2:
Val1 < Val2 <= 1625

generateRequest
(0, 249)

Madingley Onion Data,
statusCode: 200

Data Retrieval:
Failed Data
Retrieval

Failed request of correct
data and display an error

Value 1:
0 <= Val1 < Val2
Value 2:
Val1 < Val2 <= 1625

generateRequest
(0, -515)

No Data,
statusCode: 400

3 Integration Testing

In addition to unit testing, another form of testing is integration testing. Even though
integration testing might seem very similar to other testing types, it has one main
application that separates it from other tests. Integration testing focuses on how
different components of a program work together. If we use a car as an example,
integration testing would be used to test if the motor, the frame, and the tires all work
together properly. If the motor runs, but it doesn’t connect to the tires properly, the car
isn’t going to move. To get the car to move, their individual functions have to work
together seamlessly. The same seamless interaction of different car parts needs to
occur with the different components of our program. In particular, we need the data
storage, data visualization, API Gateway, and the Lambda functions to all communicate
effectively with one another. If they can all work together perfectly, we can produce the
overall result that we want to achieve.

3.1 Back-end: Data Storage and Retrieval
 A key component of the back-end involves requesting, and retrieving data files from the

pre-specified file system. This is done through the lambda function that is given special,
and limited privileges in order to promote the principle of isolation, and least privilege. In
order to test the scope, and limitation of this aspect integration test will be done.

Table 3: Back-end Data Storage and Retrieval Integration Test Table

8

Integration Test Description Expected Response

Perform a valid action
specified by the Lambda’s
IAM policy

A request will be generated
that is within the scope of
the predefined policy

This test will be given a
passing mark if it performs
the action and does not
return AccessDenied.

3.2 Back-end: Data Validation and Interpretation
Once the data is retrieved from the file storage system, it must be validated and
translated to a valid data type that can then be handled by the remaining aspects of the
back-end.

Table 4: Back-end Data Validation and Interpretation Test Table

3.3 Back-end: API Gateway and Lambda
In order to communicate between the frontend and backend, a gateway is used which
acts as a trigger to the back-end components. Once the lambda function is triggered it
performs a pre-specified task then returns numerous headers outlined by AWS. These
headers are then parsed by the frontend to be parsed and visualized.

Table 5: Back-end: API Gateway and Lambda Test Table

9

Integration Test Description Expected Response

Take a valid data file and
check its internal values.

Take a valid data file as an
input, then check the
internal values for column
names, length, and cell
type.

If this action is performed
correctly then no errors
should be returned, since
cell values and column
indices are hard-coded into
the back-end.

Take a valid data file and
transform it into a
non-networked data type.

Take a valid data file then
perform the static and
dynamic operations
translating it from bytes to
JSON.

If the actions are
performed correctly then a
populated dictionary object
will be returned.

Integration Test Description Expected Response

Generate an API Request
and wait for the output.

Use the Live API Gateway
or API Sim to pass a
request to the lambda
function to then be called,
and data returned.

If the request is valid, and
does exist, then it should
return a response with
either a statusCode of 200
or 400.

3.4 Front-end: Location/Scenario Selection and Data Requests
The location selection module must pass in three valid numbers for the latitude,
longitude, and radius of the circle in which the data is retrieved for. The values are then
stored, and once the user selects their user type and scenario options, the API Gateway
creates a request for the back-end for the appropriate data.

Table 6: Location/Scenario Selection and Data Requests Test Table

3.5 Front-end: Data Retrieval and Data Visualization
The API Gateway is used to retrieve data from the back-end that was previously
requested using the parameters selected by the user. This data if successfully retrieved
is then used to dynamically generate graphics such as buttons, charts, and a heat map
produced by the Google Maps API, along with an appropriate legend color scale.

Table 7: Data Retrieval and Data Visualization Test Table

10

Integration Test Description Expected Response

Collection of scenario and
location data, then request
data.

Different scenario data is
selected by the user and
stored, then used to
request specific sets of
data from the back-end via
the API Gateway.

A successful response will
return no errors. Wrongly
formatted requests will
produce errors. Invalid
input will cause errors
elsewhere.

Integration Test Description Expected Response

Retrieval of JSON data
used to create visuals and
other UI components.

The API Gateway gets the
previously requested data
that the back-end has
parsed and allocated for
use. This data is then
retrieved and used by the
front-end to visualize the
datasets using heatmaps,
graphs, and other
graphics.

If successful a series of
requests will return a finite
amount of data and a
statusCode of 200. The
graphics and other UI
components will then be
generated based on this
input.

Otherwise, it will return no
data and a possible
statusCode of 400.

4 Usability Testing

Besides unit testing and integration testing, a third type that we will be using is usability
testing. The purpose of usability testing is to test the interactions between the
application and the target audience. This type of testing focuses on the overall quality,
and intuitiveness of the application. It will simulate what a typical user will do in the app
after it is deployed. We will specifically be analyzing the speed of the app, the time it
takes to get over the learning curve in the app, and whether the app can be changed to
make it more user friendly.

Usability testing is extremely important for the end-user facing aspects of the
application. In particular, the users should be able to use the app without any outside
assistance from a team member. If they can’t navigate the app by themselves, we will
need to change something because we won't always be on the app to offer assistance.
Also, this is one of the first times that someone outside of our team will be using the
app, so it will be a good way to get constructive feedback from others. For example, we
might realize that there are parts of the app that we overlooked as easy to understand
or areas where there isn’t enough instruction for the user.

Since our application is a Progressive Web Application (PWA), we are hoping to get
feedback for the web version, the iOS version, and the Android version of the app. By
creating one code base for all of the versions, it should transfer to each device correctly.
However, there could be problems or areas for improvement that only show up on one
type of device. It is important we check each version of the app. For example, we might
find that a smaller screen introduces new problems that aren’t present in the web
version. Whatever device the user is using, we will have one primary method for
retrieving testing information from the user.

In order to get the best feedback, our team will be using zoom to visualize the user’s
screen and get their input on certain areas of our application. Most of the testing will be
taking notes on the user’s interactions with our app, but we hope to also get some
feedback from the user about their experience. To accomplish this, we will give them a
very vague task to complete within the app. Then, we will watch as they progress
through the app. We will document specific information on how long it takes for the user
to get to the destination and if there are any spots where they were confused on what to
do next. When possible, we will get several people from the same user type to test out
the application at the same time. By doing this, we hope that it will cultivate useful
discussion and questions while they are going through the application. While on zoom
we will try to tailor the testing to the user’s specific background.

11

Since we have three very different user types, it will also be important to see if we
addressed each of their needs. To begin, we are assuming that the general users
haven’t heard about the Madingley Model prior to our testing meeting. As a result, we
need to make sure they don’t get lost while navigating the app. Both the scientists and
policy makers will typically have a detailed scientific background. It will be important for
us to provide them a version of the app with this in mind. We don’t want them to feel
bored because we added too many useless things. It is important that we can test each
of the user versions because they all produce different variations of the data. For
example, the general user has the option to select 4 different output scenarios, but the
scientist will have the option to select from 20 different variables. Therefore, if we only
test the app from the general user’s perspective, we will be missing the other ⅔ of our
application. It will be important to test every part of the app that any user could interact
with. In the case of our application, the user interacts with the: geolocation module,
visualization module, and the user interface.

4.1 User Interaction
4.1.1 Geolocation Module
In this module, there are three main pages we will need to test. First, we will need to
test the select location map page. On this page, we need to make sure that the user can
intuitively navigate the map to select their desired location. Also, we need to test
whether the user knows that they can change the radius of the circle. Second, we need
to see if the user has any problems with the manually input coordinates page. On this
page, we investigate if the user has any problems entering the latitude, longitude, and
radius. The third geolocation check we need to test for is when the user selects to use
their current location. The program needs to correctly retrieve the device’s location and
then properly display it on the map page. In the process, it should also alert the user if
the location services are turned off in their browser or computer.

4.1.2 Visualization Module
For this module there is only one page to test, but there is a lot of important information
that could be wrong. First, we need to make sure that the user can correctly export a pdf
of the results. There is an export PDF button within the page. We need to verify the user
can spot the button and that they know to click the button. Second, the data should be
displayed in a way that makes sense for the user. If there is too much information on
one page, it might confuse the user. If there is too little information on the page, the user
might not see a point in even using our app in the first place. Lastly, the team also
needs to test if the table and map are readable. In other words, we want to find out if the
user can interpret the data in these areas.

12

4.1.3 User Interface
One of the most important UI tests for our team is checking if the user can correctly
navigate from one page to the next. For example, the user should be able to submit the
location (on the map page) and move onto the scenario option page without any
problems. Even though we don’t have all the languages implemented yet, it will also be
beneficial to test out the translation feature. This will show us English text that we might
have forgotten to translate or text that is incorrectly translated.

4.1.4 Back-End: Lambda Functions, API Gateway, and S3 Bucket
Given that the end-user does not natively interact with the back-end, this module can be
excluded from usability testing. We specifically designed our app to hide these aspects
from the user. If they had access to these parts, they could change the data or even
destroy the inner workings of our application.

4.2 Testing Regime

4.2.1 Quantitative Description
In order to get a wide variety of feedback, our team is hoping to test a large sample of
people. Ideally, we would also want a similar number of users from each of the three
user types (general user, scientist, and policymaker) to test out our application.
However, we know that finding someone who falls under the policymaker category will
be harder than finding someone who qualifies as a general user. Therefore, our goal is
to have at least three different groups of users test out the general user functionality, at
least two groups of users who can test out the scientist functionality, and at least one
test from a policymaker. By testing them in groups, we should get better communication
and it will hopefully result in more detailed suggestions. We are hoping that by getting
feedback from more than two groups for each user type, we can limit the feedback
based on one person’s prior experiences or personal bias.

4.2.2 User Studies and Acceptance Testing
Since our team has three different user groups, we are hoping to tailor some user
stories specifically for each group. Some of these user type dependent tests can be
seen in tables 9-11. Overall, tables 8-11 show that each task will correspond to one of
the modules mentioned previously and list out several factors to determine if the task
was successfully completed or if it needs to be refined.

13

14

Examples of Tests for All Users

Tasks Associated
Module

Acceptance Testing Testing Results (up to
March 19)

The user should
be able to create a
PDF of the results

4.1.1
4.1.2
4.1.3

Success:
● If the user can correctly navigate the app and get a PDF using the

button on the results page
Needs Work:

● If the user can't get to the results without assistance
● If the user uses the browser to create a PDF instead of the provided

button

Success
5/5 groups were able to create
a PDF. However, ⅗ groups had
at least one person who took
longer to find the button than
we would like.

The user should
be able to start a
new simulation
and get the results
for ____ (insert a
mixture of
countries all over
the world)

4.1.1
4.1.2
4.1.3

Success:
● If the user can get results for the specified country.
● If the user can start a new simulation and it displays new information

from before
Needs Work:

● If the user can't start a new simulation without assistance
● If the user gets results for the wrong country

Success
5/5 groups were able to move
the circle to the specified
country and get results for that
specific region.

The user should
be able to use
these latitude and
longitude
coordinates to find
the corresponding
results

4.1.1
4.1.2
4.1.3

Send latitude and longitude coordinates to the user in the zoom chat
Success:

● If the user can get results for their specified location
● If the results page shows a circle with the specified radius

Needs Work:
● If the user doesn't know where to input the values without assistance
● If the user gets an error or the results don't populate correctly

Success
All the tested groups* were
able to get the results
matching the latitude and
longitude coordinates that
were entered.
*only tested on ⅗ groups.

The user should
be able to walk
through the app in
the French
language

4.1.3 Success:
● If the user understands what all the text means in the French language.

Needs Work:
● If the user has trouble navigating the app because they don't understand the

text without assistance
● If the user uses Google Translate outside of our app

Success
Camille from scientist group 1
was able to navigate the app.

Table 8: User Study for All User Types

Table 9: User Study for General Users

15

The user should
be able to explain
what the
Madingley Model
is and explain
what each of the
scenario options
mean

4.1.3 Success:
● If the user got a good understanding of the app from the About page
● If the user correctly summarizes the main points of the Madingley

Model and the scenario variables
Needs Work:

● If the user doesn't understand what the Madingley Model is without
Googling it.

● If the user is just clicking buttons and doesn't understand what the
scenarios mean

Needs work
⅖ groups (which had no
previous experience with the
Madingley Model) had a hard
time understanding that the
results were based on the
Madingley Model. The getting
started page should be edited
to include some Madingley
information

Examples of Tests Specifically for General Users

Task Associated
Module

Acceptance Testing Testing Results (up to
March 19)

A general user
should be able to
easily select a
new output
variable (out of
the 4 possible
options)

4.1.2
4.1.3

Success:
● If the general user can select a new variable and the map refreshes to

display this new information
Needs Work:

● If the general user doesn't realize that they can select a new output
variable without assistance

Success
5/5 groups were able to change
the variable from the current
default of “allelic diversity” to any
of the other output variables.

A general user
should be able to
describe what
each of the output
variables mean

4.1.2
4.1.3

Success:
● If the general user can define what each of the output variables mean

Needs Work:
● If the general user has no idea what they are clicking.

Needs Work
3/3 of the general user groups
had a hard time understanding
what the variables meant.
Suggestion: add descriptions
next to the variable name

Table 10: User Study for Scientists

16

Examples of Tests Specifically for Scientists

Task Associated
Module

Acceptance Testing Testing Results (up to
March 19)

A scientist
should be able to
easily interpret
the results
shown on the
results page

4.1.2
4.1.3

Success:
● If the scientist can explain what the results are showing

Needs Work:
● If the scientist doesn't know what is being displayed on the page.
● If the scientist is overwhelmed with all the information being displayed

Needs work
Scientists weren’t able to get
the results to display. The
users were stuck on the
“Madingley Data loading…”
notification.

A scientist
should be able to
select between
the 20 raw data
output variables

4.1.3 Success:
● If the scientist can switch from 1 output variable to another one and

the results change as a result
Needs Work:

● If the scientist doesn't know that they can select one of the other 19
output variables

● If the scientist gets the same map even after they individually select
several of the other variables

Needs work
Scientists weren’t able to get
the results to display. The
users were stuck on the
“Madingley Data loading…”
notification.

Examples of Tests Specifically for Policymaker
Testing results for this user type is planned for March 22

Task Associated Module Acceptance Testing

The policymaker should
know that the variables on
the results page are
calculated EBV values. Test
by asking the policymaker
what each of the variables
represent

4.1.2 Success:
● If the policymaker can identify that the variables are calculated based on

their selection in the app
Needs Work:

● If the policymaker thinks that the variables are hardcoded values

Table 11: User Study for Policymakers

Some of the follow-up questions that we asked throughout our current usability testing:
1. I noticed you struggled with _____ part, do you have any suggestions on how we can improve that for other users?
2. In the beginning, did you feel that there was enough background information to understand the key parts of the

app?
a. Did you get a good understanding of the app’s purpose?

3. What are some other features you might like to see in this application?
4. Can you summarize what the line plot and bar graphs on the results page are saying?
5. Does the button layout make sense?

a. Was it easy to know that they were buttons and not just text?
6. Can you tell me what each page does?
7. Can you easily find the main operation of the application?

Specific areas that we took notes on while we were analyzing the screens of the different users:

1. Did the user have any problems scrolling up and down the page?
2. Were there any pages of the application where the user spent too much time trying to figure out what to do next?
3. Were there any problems with the user getting their current location?

17

The policymaker should be
able to get results in a
reasonable amount of time
or get a warning that it might
take a long period of time to
retrieve the requested data

4.1.3 Success:
● If the policymaker gets results in less than 2 minutes.
● If the policymaker gets an alert that it might take a long time to process their

results
Needs Work:

● If the policymaker thinks the app is broken because the app is on the
"Loading Madingley Data" page for too long

4.3 Testing Timeline

Figure 2: Usability Testing Timeline between March 11 and March 22

The team was able to complete about 80% of the usability testing during the week of March
15. However, we still have some last-minute testing that will take place during the week of
3/22. The first test the team did involved Roo, Camille, and Dr. Doughty on 3/11. This group
of individuals all work with the Megabiota lab at NAU, so we classified them as scientist
group number one. When it was Camille’s turn to test out the application, we had him use
the French translation so he could give us feedback on the French version of the app.

Next, Kainoa met with the rest of the Megabiota lab to get feedback from group two of
scientists on 3/15. Then, Wesley held a zoom meeting with Dr. Araya-Anchetta (Dr. A) on
3/17. Dr. A is an introductory biology and genetics professor at NAU. Since Dr. A doesn’t
specialize in biodiversity, she was considered our first general user group. We considered
her to be a general user who has a large variety of scientific experience. This gave us a
different perspective from someone who knows less about scientific topics. Wesley then
met with another general user group on 3/17. This group consisted of three high school
aged students. We aren’t sure if high school students will find this app useful, but we
wanted to see if they could still understand the basic parts of the app. This group helped us
find some technical assumptions that resulted in problems accessing current location.

Once those tests were completed, Greg met with another general user group on March 18.
He got some insight from a member of his fraternity. This test helped us get feedback from
a college student who isn’t pursuing a Bachelor’s in a STEM related field. Lastly, we hope to
get at least one member from the United Nations to give us some feedback on our
application. If all goes according to plan, we should be meeting with this policymaker during
the week of 3/22.

18

5 Conclusion
Biodiversity and species richness are key measurements in ensuring the ecosystems
around the world remain healthy. Currently, there is a strong decline in biodiversity and
species richness. This is causing a degradation of ecosystem services like air filtration,
water purification, and pollination. The depletion of biodiversity and these services will
turn huge areas of earth into barren and uninhabitable wastelands.

In order to combat this decline, the Madingley model was developed to provide
forecasts based on current and theoretical trends / scenarios that input biodiversity. The
Madingley model is a genius piece of scientific software that requires a high level of
expertise and computational power to operate in a reasonable amount of time. As a
result of these limitations, there are very few people who can operate this model.

The goal of this project is to allow the target audience to have access to a predefined
number of pre-run Madingley model scenarios. In order to reach the largest number of
people, a progressive web application (PWA) is being developed. The application has
several key modules including the: front-end user interface (UI), a cloud-based
back-end used for data processing, and storage, a geolocation module for location
based services, and most importantly a visualization module which showcases the data
in a meaningful and easy to understand format.

As a result of these numerous modules, it is crucial to test these modules for: improper
usage, security vulnerabilities, user experience (UX), edge cases and heavy or
prolonged usage. In order to test all modules as thoroughly as possible this document
outlines how the team will utilize: unit testing, integration testing, and usability testing
amongst a wide array of users and environments to gain an understanding of the
shortcomings of the application.

After some preliminary testing involving project sponsors, and various stakeholders
some shortcomings were identified in the UX experience aspects, as well as the time-
based restrictions caused by the sequential nature of the back-end. The UX and
back-end efficiency will be areas that will have a stronger focus for the remainder of this
development process with various iterations and testing done as improvements are
made.

Given the rigor and continuous nature of the testing, the application delivered by this
team will contain few to no instances of extreme lag from the back-end or an unclear
user interface and experience.

19

