Requirement Specification

Version 3.0
November 20, 2020

Accepted as baseline requirements for this project:

Client: % D&W 11/20/2020

[Z4

Signature Date
Team Biosphere: wj&"g 3 *’%b"“' 11/20/2020
Signature Date
P %
11.20.2020
Signature Date

Project Sponsor: Chris Doughty

Team Mentor: Andrew Abraham

Team Members: McKenna Chun, Gregory Geary, Wesley Smythe, Chufeng Zhou, and
Kainoa Boyce

Cyrus
11.20.2020

Table of Contents

1 Introduction
2 Problem Statement
3 Solution Vision

4 Project Requirements
4.1 Functional Requirements
4.2 Performance Requirements
4.3 Environmental Requirements

5 Potential Risk
6 Project Plan

7 Conclusion

Figure 0: Roaming Tiger

o a A~

11
13

15
17
19

1 Introduction

Tropical forests are biodiverse hotspots filled with many species of flora, fauna, and
fungi. Many of these species in recent years have become extinct, or are at risk of
extinction due to an influx of human activity in the wild. The root of this current mass
extinction lies in issues that have been unresolved for years, these include:

e Climate Change

e lllegal Deforestation / Logging

e lllegal Poaching

While these are not the only problems, they are some of the most well known and afflict
most of the damage to biodiversity in tropical forest regions. Many scientists around the
world have dedicated themselves to researching and collecting information on these
topics. From this, many solutions and models have been created and attempt to remedy
the predicament that tropical forests and other vulnerable areas are in.

Between all of the different suggestions made, a recent model has become known in
the biodiversity research community: the Madingley model. Models like this are used to
generate a general view of human impact on the environment, but the Madingley model
is different. It possesses revolutionary capabilities that allow it to surpass other existing
models, such as being able to represent all life on Earth.

It also includes the interactions between different species and the environment, which
can be specified for each ecosystem. With this unique feature, it allows for changes
over time in the interactions between species, since it is not a fixed concept as defined
in other similar models.

The data that the user inputs are also very specific factors like the amount of flora and
fauna in an ecosystem. This inputted data can also be altered to test many of the
different scenarios from current issues. For instance, the aforementioned logging or
poaching could be represented by a decreased input of flora or fauna respectively.
Using the interactions in the Madingley model (Fig. 1) below, it is clear that a significant
loss to any of the elements would cause a disruption to the entire ecosystem cycle.

Figure 1.0: The Madingley Model Interactions
Source: Madingley Model Github Repository'

N I

N
» Dispersal Metabolism ~

@ Mortali
= Ty Photosynthesis

~ 1k

/]
Predation, ‘»'

Reproduction Eating, Growth
-\

The output data shows how these situations affect the region, whether they do not
change much, or lead to the extinction of even more species, the model is able to
predict such an outcome and display simplistic but clear data. While the output of this
model is easy to understand, the calculations are much more complex and require
professionals in the field to guarantee accurate data.

One such professional is the sponsor of this project: Dr. Chris Doughty, an assistant
professor and leader of the Megabiota research laboratory at Northern Arizona
University. Dr. Doughty has focused his research on the ecological topic of megafauna,
which include large animals and their roles in ecosystems.

In his research, he has worked with the Madingley model to run several simulations
based on gathered data. This data is tested with different scenarios, and the output
allows scientists like Dr. Doughty to identify the outcomes of the test using the raw
datasets or graphing programs like NASA’s Panopoly. This analyzed data is then used
for research papers and projects by Dr. Doughty and the Megabiota laboratory.

! https://madingley.github.io

2 Problem Statement

2.1 Current Workflow

The NAU Megabiota laboratory is able to run the Madingley model with different
scenarios and data input to see the effects that may occur. The datasets that are
outputted allow researchers like Dr. Doughty to examine and draw results from them.

This data is then incorporated into other projects by Dr. Doughty and the rest of his
laboratory, such as scientific research papers or projects. In these papers, the numeric
data is “translated” from the raw data produced by the model, and turned into words or
visualizations for readers.

2.2 Current Problems

Issues that are present in the Megabiota laboratory research process can be focused
around the two core topics:

- Distribution of the data

- Visualization of the data

For the distribution of this data, it is currently used for aiding in research purposes and
in scientific papers. This does not allow for a wide range of audiences aside from other
individuals in the same scientific field. The limitations on the distribution of this data can
be further narrowed down into the following topics:

- Website is a small public platform

- Website can only be accessed from web clients

- Research papers typically read by only other researchers

- Graphical data can only be obtained from programs like Panopoly

As for the visualization of data, the Madingley model produces immense amounts of
data for places all around the world. Although Dr. Doughty is focused primarily on the
tropical forest regions, just the tropical forests hold a lot of data. The problems with
visualization can also be narrowed down to the following topics:

- Tables of raw data are unappealing

- Current graphics have no interaction with users

Through a combination of these two problems, the data being produced by the
Madingley model is not being properly introduced to the public as intended. Therefore
these issues need to be remedied in order for the data from the revolutionary model to
be fully utilized.

3 Solution Vision

The general solution to this problem is to create an application that allows the target
audience to visualize the results of the Madingley model. This describes the basic idea
of how to solve the problem. In order to guide the end-user through the application, a
handful of features must be identified.

e The user will be able to select a location based off of their own location or based
off of a location selected on a map.

e The user will be able to select a predefined Madingley Model scenario. The exact
scenarios for this application have not been identified by the client. However,
some examples include: bushmeat hunting, climate change, and deforestation.

e The user will be able to choose a visualization style to display tailored results
from the rendered scenario.

e The user will be able to export the rendered data.

In order to allow the user to select some location, the application will need access to the
user's GPS, or access to an interactive map object. In both situations the user will have
selected some location of interest. This location selection will allow the application to
hone in on the geographical area of interest.

The user will then be asked to choose a scenario from a predefined list of scenarios,
this list could include: climate change, deforestation, and bushmeat hunting. The
scenario will allow the application to narrow down what dataset should be considered.

Given the selection of the above mentioned choices, the application will then be able to
return a small finite set of data that will be of use to the end user. The final steps
remaining in the solution plan involve the user selecting what type of output they wish to
view. This option will then allow the application to tailor the scenario results to a
pre-specified sub audience. This specification is done to allow the user to quickly and
easily view the information of interest rather than a general output.

Once the user has viewed the rendered data, the final step that the user will be
interested in, involves exporting the information. This step will allow the user to save the
results of a scenario to be used later as they see fit, whether it be for further analysis or

for presentation purposes.
Figure 3.0: General outline of our solution.

Mobile User Climate
Application Selected Change
. — Visualize
End User Platform? Location? Scenerio? Deforestation Results
Web User Bushmeat
Application GPS Hunting

4 Project Requirements

In the following section, we will be going over all of the known requirements for our
application. These requirements will be broken down into three categories: functional
requirements, performance requirements, and environmental constraints. The first of
which are the functional requirements which are the operations that our application will
be able to perform such as being able to utilize the user's GPS location, or the ability to
send and retrieve data relevant to the Madingley model to be displayed by the
applications Ul. These will be followed by the performance requirements which are the
characteristics that aren’t functionally necessary, but are needed to ensure the
application is up to industry standards, and can execute its functions in an efficient and
safe manner. Some of these would include the speed of the application and its security.
Lastly, we will cover the environmental constraints of our application. These are the
constraints that have been put on by our team, mentor, and client for various reasons
such as the platform compatibility, or previously built components that are to be built
into the application. All of which have been initially put together through various
meetings with our team, mentor and client, and have been further refined through
intensive research and discussions.

4.1 Functional Requirements

The application will require numerous features to operate, this section will outline the
baseline functions that will be required for the application to be operational. The
following specifications have been outlined in a hierarchical fashion spanning from most
important to least important.

- Data Storage

- The ability to store relative application and user data amongst a

designated cloud system
- Graphic User Interface (GUI)

- The application will be viewed in a coherent and easy to understand way.

- The main menu of the application allow the user to select from a handful
of options to learn more about the project, technologies used, and project
sponsor(s)

- The application will provide for various biodiversity options that the user
can check off, and will be displayed by the simulation

- Location access
- Access to the user's GPS.
- Data processing

- A cloud based data processing back end that can interact with both the

stored data and the client side application.

Visualization
- The ability to visualize the results of a given scenario in the form of
heatmaps, graphs, and informational tables
- The ability to tailor the visualization to predefined subgroups like “policy
makers” and “general public”.
Data Exportation
- The application will have the ability to export the results of a scenario in a
raw (CSV) form as well as collection of images representing tables and
graphs generated from the scenario.

4.1.1 Graphic User Interface (GUI)

The first functional requirement of our application is a graphic user interface. This will be
the primary component connecting the user to the valuable data provided by the
madingley model. The GUI will be developed using the lonic framework since that was
the framework of choice for developing our Progressive Web Application. This GUI will
be broken down into the following sub requirements:

Intuitive Overall Design - New user’s should be able to easily navigate throughout
the application, and have no issues accessing any of its primary features.
Login Page - There must be a login page in order to distinguish policy makers vs.
general users
Main Menu - There must be a main menu that allows the user to navigate
between key features and information about our team and project. Some of the
menu items listed include:

a. Run Simulation

b. Simulation Info

c. Project Info

d. Team Info
Interactive map - Upon choosing to run a simulation, the user will then be
prompted to choose a location. This will be done a few different ways, the first of
which would be for him/her to manually enter their desired location. They will also
have the option to use their device's current GPS location, or select it from a
map. This is where the interactive map comes into play. User’s should be able to
navigate throughout the map and place a circle or square on their chosen
location representing the total area for which the simulation should be performed
on.
Input Options - After the user selects a location they will then be able to check off
different options which will determine the form of output they will be looking at
(deforestation, future predictions, bushmeat hunting etc).

Figure 4.1.1 below is a screen chart that models the general flow of the GUI we plan to
create.

Login Page Main Menu Start Simulation Display Results
User ID Run Simulation Location Heat Map
Application Info - input manually
Password - pick from map Graphs
Team Info - take from GPS
Stats Tables
Sim Options
- till being determined

figure 4.1.1 - Application Ul Flow Chart

4. 1.2 Hardware Access: GPS Services

The fundamental purpose of our app is to allow a user to input a location and various
options, and then display a visualization of the statistics output that is accurate
according to the Madingley model. Since a location input is required, it is usually
standard that the user has the ability to manually input a location, or use the device's
GPS location. Therefore it is necessary that our application has the ability to utilize the
user's GPS location of the user via whatever device they are using (Web Browser,
Android, iOS). This will be done using lonic’s built in GPS services package called
Geolocation.

4.1.3 Data Processing

Data processing will be another key functional requirement since various amounts of
data must be sent to and from the GUI to be stored in the cloud. This will start after the
user inputs their location and various simulation options into the GUI on his/her device,
it will be necessary to send that data to a cloud server due to fact which will then be
inputted into the spin up of the model itself. Since the application will be utilized from a
mobile device or web browser, all of the heavy lifting will need to be done by serverless
functions in the cloud.

The output data will need to be filtered or shrank down since the data sets returned by
this model are typically between 5 and 10 GB and not at all intended to be displayed on
a mobile device or web browser. This will be done by serverless cloud functions that
after their done formatting and filtering the data, will then send the remaining necessary
data back to the GUI to be shown to the user by the various Ul display components.

The figure 4.1.3 below shows how this will be done exactly:

Amazon AP Lambda
Gateway

Madingley Model Simulation

figure 4.1.3 - Application Data Flow Chart

As shown above, data will come from the user’s input into the Ul and/or will be pulled
using the previously mentioned Geolocation package. It will then be sent to one or more
AWS Lambda Functions via the API gateway, where it will be inputted into a spin up of
the Madingley Model Simulation. From there, the data output of the simulation will then
be passed back to the application Ul where it will be displayed using various charts and
such.

4.1.4 Visualization

The visualization of data will primarily be used by in-built javascript graphic libraries that
will allow for user interaction. Users will be able to change this visualization by selecting
specific areas on a map based on either a selected location or based upon the GPS
location of the user. The specific visualization of data will also be based upon the data
that is provided to the application, as less data will cause a smaller visualization of data,
and vice versa.

4.1.5 Data Exportation

The exportation of data in the application will primarily be done in a few ways using built
in libraries to bounce data between our AWS databases and the lonic application. One
such way is by using the mailto function in lonic’s Javascript library, this can be primarily
used to request data from the AWS database and sent to the user’s application. This
provides a quick and easy methodology to transfer data without complication, as it does
not have to worry about data security, due to the data that we are transferring in this
section is the data that wants to be shown to people.

While the mailto function can serve as the primary source of transferring data, it does
not have many security measures against data leaks. Therefore for much more secure
data transfers like user authentication, the AWS Simple Email Service, abbreviated as

SES will be used. AWS SES allows for a secure transfer due to its many built in security
features including:
- End-to-End Data Encryption

- Allows for data to be secure even if intercepted by using protocols built by
amazon such as S/IMIME or PGP which cause the data to be useless if
intercepted

- Virtual Private Cloud Usage (VPC)

- Shared computing resources created by Amazon for the specific reason of

transferring data between their services
- Receiver Authentication using Sender Policy Framework (SPF)

- Helps to avoid data leaks by preventing the forgery of a sender address,
as it flags transfers that are attempting to use the expected address, but
do not belong to it

- Sender Authentication using Domainkeys Identified Mail (DKIM)

- Checks that the place that data is being transferred to matches the correct
domain key that was provided before, to avoid middle-man interceptions of
data

Through the combination of these two features of our services, we are able to create
both efficient and secure data transfers when necessary. As they are both
interchangeable with one another, the transfer of non-private data may be used by one
or both of the specified methods.

10

4.2 Performance Requirements

This section outlines characteristics of the application as well as the entire system.
These characteristics are used to standardize the experience for all users as well as
ensure the application remains operational and functional with as few limitations and
hindrances as possible.

4.2.1 Global Access

Although the immediate target audience is located in the Americas, Gabon, Indonesia,
and across the tropics, it is important not to limit the possibility of all users to these
regions. The end goal of this application is to be used around the world. Given that goal,
the initial creation of this application should reflect that goal. As such components
should be hosted in redundant configurations and have servers located around the
global. Since the developers associated with this project are located solely in the United
States, this requirement cannot be tested, but it can be assumed based on
documentation provided by AWS, the App Store, and Play Store.

4.2.2 Responsiveness

This application provides the target audience with important information that cannot be
found elsewhere, as such, this application must be able to handle large amounts of
traffic and maintain a base level of responsiveness. There should be little to no screen
lag between application pages that do not rely on back-end components. If a new page
does rely on a back-end component there should not be a significant (10+ second) lag
for processing. In order to prevent this, code should remain simple and non-repetitive. If
it is determined that the sequential variation of the code cannot be improved upon then
the code base will be parallelized to the best of its ability. These steps should ensure a
responsive application that will be able to deliver the necessary information to the end
user in order to prevent delay in their research or policy related works.

4.2.3 Security

A typical development cycle focuses on implementing features as fast as possible
without consideration for the security of the features. The development cycle of Team
Biosphere will include a risk assessment prior to the addition of any new features.
Although the user will not be storing or inputting any information that is considered
sensitive, it is important to consider the security of application to prevent malicious
actors from hijacking sessions, or feeding malicious packets into the end-user’'s
connection. In order to ensure the security of the end-user, steps will be taken to

11

authenticate and limit the traffic and protocols accepted by both the server and client
sides.

4.2.4 Application Crashes

Applications that crash or fail frequently have a high likelihood of losing users to its lack
of usability. In order to limit changes of crashes there the application will run based on
lazy processing. This means that the application will only process content on a need by
need basis. This can limit the resources and runtime associated with the application.
This can be during the development process by keeping track of how many times the
application crashes at each iteration. If the number of crashes increases as the
iterations increases then the application is flawed at a very low level.

4.2.5 Language Options

A stretch goal associated with this project involves the ability to support multiple
languages. This constraint, or feature allows the application to reach non english
speakers. This requirement can be tested by copy-pasting the application text into some
translator(s) and determining if the output reflects the intended message.

12

4.3 Environmental Requirements

In order to tailor the solution to the specified needs of the client beyond the basic
functionality and performance requirements, a handful of constraints have been
imposed by the client, team, as well as the software used.

4.3.1 Programming Language Constraints

As a result of the selected SDK, and other system components, we have been limited to
what programming languages we will be able to use to develop our application. This
limitation causes our application to be susceptible to the benefits and pitfalls of the
specific languages chosen. The two languages that are anticipated to be used are
Javascript and Python.

Javascript, while simple and easily interpreted by the underlying system, has a number
of unintended consequences that must be considered. The first being its lack of browser
support. Every browser has its own interpretation of javascript and as such, applications
are subject to possible broken or missing features. This is especially true for outdated or
less popular browsers like Internet Explorer, Opera, GNOME Web. The overall effect of
this constraint is unknown since we do not know what browser or their associated
versions, the target audience will be using. Assuming that they will be using up to date
and modern browsers, then this concern could be close to non existent.

The primary back-end language will be Python. Python will be primarily used to handle
the fetching, simplification and some visualizations of the application. Although Python,
similar to javascript, is a popular language it has key downfalls that may limit the
responsiveness of the application. This stems from the fact that Python is an interpreted
language rather than a compiled or machine level translated language. The limitations
of an interpreted language can be lessened by using basic parallelization techniques
like multiprocessing or multithreading. That being said, the limitations of Python should
also be limited in the MVP stages. The limitations of interpreted languages could have
an effect on the responsiveness of some of the stretch goals, namely the ability for the
end user to make use of a toy variation of the Madingley. These limitations should be
considered given that the Madingley model is computationally expensive, regardless of
how simple the model may become.

4.3.2 Web and Mobile Application

In order to reach the largest number of people with our application, the client has
requested that this application run on at least two mobile platforms as well as a web
platform. In order to accomplish this without the need for duplication or restructuring of
code, it was determined that the best solution to this constraint would be to develop a

13

progressive web application (PWA). This will for the development of both an iOS and
android mobile application as well as a web browser variant that can be used by the
browser. However, this constraint limits the scope of the solution to web based
components and mobile based components. Due to the hardware limitations and
dependencies of both mobile and web based components, the amount of computation
done on an end user’s device must be limited to the capabilities and components that
are built-in to the device.

14

5 Potential Risk

Given that this project relies on system components that are dissimilar from each other
there is room for risks, as such, these risks should be managed. A failure that occurs at
a crucial location could spell disaster for some or all of the connected elements. In order
to mitigate and properly assess the risks an each component and its dependencies
should be considered and single points of failure (SPoF) should be avoided whenever
possible.

5.1 System calculation error

Likelihood : Extremely-low

Severity : High

There does not exist any application that has absolute precision, this application is no
exception. This application relies heavily on calculations done within the Madingley
Model as well as its interpretation for visualization. This calculation error could occur
because the Madingley Model is written in C#, the application back-end is in python and
visualized to the end user in Javascript. As a result of their varying levels of floating
point precision the results of a given scenario could be prematurely rounded. The
overall precision can range from 29 digits to 5 digits depending on the datatypes used at
each stage. Premature rounding on this scale means that any digit less than 0.00001
cannot be completely trusted.

5.2 AWS Service Disruption

Likelihood : Extremely-low

Severity : High

Given that all back-end files and functions will be stored in some form of AWS cloud
service, it is important to make note of the likelihood of these resources being
inaccessible. According to AWS’s internal status checker, there has only been a single
large scale outage in AWS’s history. That being said, about 50 users a day report some
sort of down AWS resource. This is extremely tiny in comparison to the total number of
users and resources. If the AWS services associated with this application experience a
disruption, this would cause the application to stop working until service is restored.

15

5.3 Security

Likelihood : Unknown

Severity : High

There are numerous attack vectors since this application relies on several moving parts.
Given the large attack surface there is a high likelihood for some level of attack,
however given that all resources are managed by trusted external parties the likelihood
is low. However, if the attack surface has a common vulnerability or severe exploit then
botnets and scrapers around the world could accidentally stumble upon this application
and cause maijor security issues. Given the above factors it is not possible to determine
the exact level of risk associated with this application. Once the attack surface is
analyzed and proper steps are taken to prevent intrusions, injection, or hijacking then
the likelihood of a security threat that could compromise the target audience,
stakeholder, or developers can be minimized.

16

6 Project Plan

Our team has accomplished a lot since we originally started this project. As seen
in figure 6.0.1., one of the main things we have accomplished so far is refining our MVP.
In addition to that task, we also created a rough model of the application, developed a

better understanding of the Madingley Model, and researched possible services that we
could use for our solution.

Mini Introduction Presentation

Technological|Feasibility

Design Review Presentation #1

Technical Prototype Demo

Understanding the Madindley Model

Rough Model of Application

Researching Potentfal Application Platforms

Researching Potentfal Frameworks

Researching Potentfal Storage Options

Refine MVP

Figure 6.0.1: Gantt chart representing the Fall 2020 semester. The orange tasks represent course-based
assignments. The green tasks represent our team driven tasks.

As the first part of our project comes to a close, we are optimistically looking
toward the second half of our project. This stage will start during our winter break. Over
winter break, we are planning on gaining more experience with lonic and AWS. At the
conclusion of break, we will be ready to complete the next steps of our project. The first
step our team is looking forward to is the development of the front end interface. The
main requirement that we will be adding first will be the implementation of a basic
Graphic User Interface. By doing this, we will have a working application for Android,
iOS, and the web.

Then, we will implement the code needed for data processing and location
access. This will require the use of databases, as seen in figure 6.0.2. Our team will
also implement the Madingley Model simulations, so that the user has a better way to
visualize the data. We won’t have to create the simulations. Instead, we will create a

17

better way to visualize the data from the simulations. In this version, we will also
implement the ability for the user to select an area on which they want to run the
simulations. This was one of the main requirements emphasized by the client, so it will
be vital for us to implement this at this part of the development process. Next, we will
add the back end of the program. The back end will give us the ability to process
information from both the user and the stored data.

Finally, we will create a full prototype that will have all the features we decided on
for the MVP. If time permits, we will also try to include a couple of the stretch goals into
this prototype. The first stretch goal that we plan on implementing is a multiple language
feature. The user would be able to use our product from a small group of languages. If
we get that implemented, the next feature we hope to add is providing the user with the
ability to export the output. This would allow the user to save information and eliminate
the need for them to rerun the program every time they want to visualize the same data.
However, before we can implement those features, we will have to make sure that all
the features of the MVP work almost perfectly. There might be a few areas of the code
that need to be perfected, but 90% of the project will be completed once we have
finished the full prototype. Lastly, we will fine tune and put the finishing adjustments on
our prototype, so that we can deliver the final product to our client.

Software Design Document
Design Review Presentation #2
IZTIRS O GLYT BB Full Prototype Demo
Design Review Presentation #3
Capstone Presentation
Acceptance Tech Demo
w Front End Development
Storing Data in Database
Implementing Madingley Simulations

WENEHRNENE Implement Map Selection

M Adding Several Languages (if time permits)

Figure 6.0.2: Gantt chart representing the Spring 2021 semester. The dark blue tasks represent
course-based assignments. The light blue tasks represent our team driven tasks.

18

7 Conclusion

The goal of this project is to provide information derived from Madingley Model
scenarios. The Madingley model is an ecological model that has the ability to model
biodiversity for the entire planet. It was determined that our target audience includes the
general public, specifically those interested in the decline and status of biodiversity on
the planet; as well as policy makers. Policy makers are interested in this information in
order to make more environmentally conscious decisions for the planet.
In order to accomplish this goal with as little hindereraces as possible, a progressive
web application (PWA) will be created in order to reach individuals on both iOS,
android, and personal computer browsers. This will prevent our target audience from
being inherently hindered due to a lack of platform support.
This document outlines some of the key functionalities and considerations taken to
ensure a secure and positive experience for the end user. Some of these functionalities
include:

- A security and response-time based development strategy.

- Word wide access to the application, assuming the target audience has internet

access.
- The ability to choose a location of interest either by use of the user's GPS or by
pinpointing a location on a map.
- The ability to tailor the output to their predefined preferences.
- The ability to export the data in both a visualized and raw form.

While this document does serve as a pseudo-formal contract between both the client
and development team as to what expectations and design choices are both realistic
and necessary for the success of this project. Its secondary purpose is to indicate that
our team is prepared to tackle the oncoming challenges with a plan that the developers
and project stakeholders are satisfied with. The next step is to take this plan and turn it
into a reliability.

19

