

RAMPART
Remote Aerial Mission Planning and Radio Tracker
Requirements Specification Document Version 2.0
12/02/19

Team Members
Eric Gault
Samuel Gilb
Keller Mikkelson
Nathaniel Zeleny

Team Sponsor​: Dr. Michael Shafer
Team Mentor​: Mahsa Keshavarz

Accepted as baseline requirements for this project: Client:__________
Team:____________

1 Table of Contents
1 Table of Contents 1

2 Introduction 2

3 Problem Statement 3

4 Solution Vision 5

5 Use Cases 7

6 Project Requirements 8
6.1 Functional Requirements 8
6.2 Non-Functional (Environmental) Requirements 11
6.3 Environmental Requirements 13

7 Potential Risks 15
7.1 Technical Risks 16
7.2 Social Risk 17
7.3 Market Risks 17
7.4 All Risks 18

8 Project Plan 19

9 Conclusion 20

10 Glossaries and Appendices 22

1

2 Introduction
Wildlife radio telemetry is a very important tool for tracking the movement and behaviour
of virtually any animal attached with a transmitter. The reason why scientists want to
track these animals is to gather behavioural and movement data of any animal attached
with a transmitter. There are two main methods to tracking animals in this way, GPS
tracking as well as very high frequency tracking. But the use of VHF radio tags is
becoming the standard due to their low cost and the exponentially growing pool of
VHF-tagged specimens. This ensures that the VHF technology, and in turn, our work on
this project will be used at the benefit of biologists and mechanical engineers by being
able to more quickly gather transmitted data to the conventional method of having to
use a handheld receiver. While an overall positive tracking method, there are some
problems with VHF. One of the problems with this approach to data gathering is the cost
required to go and search for these VHF signals. Currently, the main way to gather the
data from these VHF tags requires someone to go out into the areas where animals
have been tagged and use either handheld scanners or scanners attached to cars if the
area permits vehicles. Our sponsor, Dr. Michael Shafer and his team have spent the
last three years working on integrating a VHF receiver to an unmanned aerial vehicle,
also known as a drone. They are currently being funded by a grant from the National
Science Foundation to help develop a drone with the ability to track wildlife. Their goal is
to decrease the cost of having to locate these animals by using the drone, which can
perform a more rapid, efficient, and complete scan of an area when compared to a
human. The way our client currently gathers data is to first go out into the field in the
general area in which the tagged animal he is looking for is located. He will then use his
laptop and open up Mission Planner, an open source flight planning software where he
plots the route the drone will be taking. He then opens a program he created himself
that connects with the drone so that he can send the correct configuration file to the
drone to match the data he is collecting as well as receive status updates from the
drone. The drone will then fly its path, collect the data, and then return to the starting
point where Dr. Shafer will collect it and then return to his office to process the new
data. Here are some specific problems with this workflow that we would like to solve:

2

➢ Having to use two separate applications requires constant swapping to ensure
maximum benefit from both pieces of software.

➢ The custom application developed by Dr. Shafer has a very slow launch time and
can take up to five minutes to initially load.

➢ How the drone configuration is handled, this could result in an error causing the
drone to crash while losing all gathered data and potentially damaging valuable
hardware.

Our solution to this involves taking all the preflight software and moving it into the flight
planner. This will take care of startup times and reduce required startup programs to
one. This requirements document will provide specifics about our planned solution, the
constraints of the solution, as well as our development schedule for the next year.

3 Problem Statement

To collect the positional data of tagged animals, our client follows a specific workflow:

Figure 1: Client workflow

1. He first plots his flight plan in his flight planning software and uploads the
configuration data to the drone from a separate MATLAB extension.

2. He then has the drone fly the route and collect data on the VHF tags which he
either has scattered along the flight path, or are already attached to the animals
being tracked.

3. He then returns to his office where he downloads and processes the flight data
using the MATLAB extension.

3

4. Once the data has been appropriately processed he carefully examines the data
and the program for errors. If an error is found he will make measures to remedy
it.

5. After making any needed changes, he will then repeat this cycle which is on
average repeated once a week.

The main issues in our client’s workflow are as follows:

➢ MATLAB must be opened to fly the drone because the data configuration is only

handled in MATLAB currently.

The MATLAB software can take upwards of five to ten minutes to launch. This
ends up being incredibly costly as if you add up the amount of time it takes for
MATLAB to open each year, it takes around the same amount of time as 52 extra
flights per person.

➢ QGroundControl cannot currently send the additional radio configuration data to

the drone (It controls the flight path but does not have a way to talk to the radio
antenna used to pick up VHF).

Because QGroundControl does not have an option to send specific configuration
data to the drone, this required our client to develop his own application so that
he could accomplish this. This now means that our client has to swap back and
forth between two different applications while he is in the field.

➢ QGroundControl does not display the status of the drone mid flight.

Since QGroundControl does not have any ability to access information relating to
the VHF receiver, our client would not know if any error with data collection
occurs mid flight. He had to build this in his own software, but now he will need to
swap between QGroundControl, which shows where the drone is along its path
as well as his own software to ensure that onboard functions are working
correctly.

4

4 Solution Vision
With the problem provided, our team needed to find a way to reduce the amount of time
of our client’s setup and consolidate the pre-flight steps into one program. The solution
we are planning, as seen in Figure 2 below, involves remaking the configuration
software of our client’s MATLAB code in QGroundControl so that our client’s total setup
time will be significantly less. The figure also shows that it will also be able to send all
needed configuration data through one program instead of two, introducing more ease
of use. Our solution will also address QGroundControl’s nonexistent status message
display by using the modified GUI to display these messages.

Figure 2 - Solution Overview

5

Our Solution will provide these key features:
➢ Complete configuration management in QGroundControl.

○ This is displayed in figure two where QGroundControl Generates a config
file and sends it to the drone.

➢ No MATLAB required for drone flight planning.
➢ Terminal display to show drone’s status messages.

○ This is represented in figure two through the status messages the drone
makes and sends back to the GUI which then displays the message
through the terminal interface.

➢ Ability to communicate with the drone to upload configuration files and download
flight data.

○ As shown in figure two, QGroundControl generates the config file and the
config file is sent to the drone. The flight data is created by the drone and
then downloaded to the field computer for processing.

➢ A Graphical User Interface (GUI) to manage the creation of configuration files
and how status messages are displayed.

○ As shown in figure 2 the GUI is integrated into QGroundControl and will
control both how configuration files are made and how the terminal
interface appears.

Our system will use data from the drone mostly flight data and status messages to let
the client know the status of the drone and provide useful results through the flight data.
It will also use data from the user such as the manually input configuration data,
start/stop commands, and a manually inputted flight path. This allows our client to be
able to use QGroundControl for setting up the drone for data collection. Our system will
generate a configuration file based on the user input. This file is used to control the
functionality of the VHF antenna located on the drone. With the implementation of these
functions, our client will no longer need to use MATLAB in addition to his flight planning
software for pre-processing data. This in turn means that he will only need to use
QGroundControl when out in the field as it will now possesses all the functionality of the
MATLAB code as well as some quality of life changes to QGroundControl.

6

5 Use Cases
To better explain our solution vision we have created some use cases. These will
explain the currently expected functionality of our product in the context of a user.

Use Case:​ Create a configuration File.
Primary Actor:​ User.
Brief:​ The client will be able to input the correct data into fields and be able to create
a configuration file from this data.
Postcondition:​ Successfully created configuration file.
Precondition:​ Empty form template for configuration data.
Basic Flow:

1. Client inputs data into the numerous fields.
2. Client inputs a name for this configuration data.
3. Client saves the configuration file.

Use Case:​ Upload configuration File.
Primary Actor:​ User.
Brief:​ The client will be able to send the configuration file from the computer to the
drone.
Postcondition:​ Successfully uploaded configuration file to the drone.
Precondition:​ Different or no configuration file on the drone.
Basic Flow:

1. Client inputs data into the numerous fields.
a. Client may choose to import configuration file instead.

2. Client names the configuration file if needed.
3. Client uploads the file to the drone.

Use Case:​ Start Drone Radio.
Primary Actor:​ User.
Brief:​ The client will be able to start the collection of data from the drone.
Postcondition:​ Drone radio is now on.
Precondition:​ Drone radio is not on.
Basic Flow:

1. Client clicks the button to start collection of data.
Alternate Flow:

1. Client clicks button to stop the collection of data.

7

a. Requires the drone to currently be collecting data.

6 Project Requirements
Now that we have briefly listed out what we are aiming for in our solution, as well as
mentioning a few user stories to give a better understanding on what our client wants,
we will now be going into more detail on the specific requirements our client wants for
this project and how these requirements can break down into smaller parts.

For overall domain level requirements, our software needs to be able to be the
following:

● A modified version of an open source flight planning software that implements
the GUI and functionality of our sponsors MATLAB program.

● A robust and bug free software that is highly reliable and easy to reason about.

Although we do not have many domain level requirements, we can break these down
into smaller subsections which we will go into in the next sections of this document. Our
client has also stressed numerous times that our final product has to work. Due to the
importance to our client, and therefore us, we believe that ensuring our product works
well and will not have any problems is a high-level requirement, we can later split this
into more lower level and specific requirements later in this document. As of now the
following is the current listing of requirements for this project. But we do understand that
there is a chance that things may change down the line as development starts.

6.1 Functional Requirements
Our client has been very clear on what our new piece of software needs to be able to
do. As mentioned in the previous section, we noted that we need to implement the GUI
and functionality of our sponsor’s MATLAB code into an open source flight planning
software. In our Technical Feasibility document, we discussed the pro’s and con’s of
different flight planning software as well as the mentality that lead us to choose
QGroundControl as our base for this project. We can now start from the top-level
requirement of creating a modified version of an open source flight planning software
that implements the GUI and functionality of our sponsors MATLAB program and break
it down into more steps.

8

➢ Ability to delete files:

One of the main reasons that our client has to use his own software is because there is
currently no system setup in his flight planner to be able to create or edit the
configuration file for VHF tracking on the drone. Therefore we need to implement this
and we can split it up into smaller subsections.

➢ Configuration file generator:

○ GUI Form to create the configuration file.

The first is that there needs to be some sort of GUI form that he can input the values he
needs to create the configuration file. This is straightforward as all that is needed in this
part is to ensure that we are using the correct fields as well as implementing them in the
same order to not mess with the workflow he has been using in conjunction with his
other application.

➢ Be able to import previously created files:

○ Be able to choose which file to import from a form of list.
➢ Save configuration files to computer for reuse:

○ Ability to name these saved files.

Our client also wants to have a system setup so that he can reuse previously created
configuration files. He would like this paired up with a way to choose which configuration
file to import, this means that we will also have to store names for configuration files so
that the client can choose which to import. Because of this we will also need a way to
save the configuration file within the system with also being able to name this file for
ease of use. Our client wants to be able to choose which configuration file to import so
we will have to create a way to see all configuration files saved on the device in a
specific location so whichever file is wanted can be chosen.

➢ Show FTP system connection status:

He also wants a visual indicator to ensure that the FTP system that is being used for file
upload and download is connected or not. This is to ensure that he is not trying to
transfer files when he isn’t connected and he will be aware that he needs to reconnect
to the server.

9

➢ Heartbeat Terminal:

○ Ability to receive status messages from the drone.
○ Logging of messages received and sent.

The next high-level requirement that our client wants within our GUI is a heartbeat
terminal. With this terminal he wants to be able to see incoming status messages from
the drone while it is in-flight. It is vital that this terminal shows the correct information
and does not miss anything. We also need to make sure that any messages that we
send from the ground to the drone are also recorded in this terminal. This part is
incredibly important to our client as if we do not ensure that the message was received
successfully this can lead to a lot of time wasted on behalf of our client.

➢ Display UDP connection status:

Our client also wants to have a signal indicator indicating the current status of the UDP
connection being used for the terminal information. This is to be used alongside terminal
updates to check the status to see if the drone is connected or not.

➢ Ability to start and stop the radio for VHF tracking:

It is also necessary to send radio messages from our flight planning software to the
drone’s radio system to start and stop the collection of data. With this terminal we also
need to have buttons that tell the receiver on the drone to start or stop receiving data.
This is to ensure that the drone will only be collected data when it is needed. It is also
needed to convey the starting or stopping within the terminal as well as ensure that
these messages are fully sent.

➢ Reliability:

○ Ensure messages sent to the drone are received correctly.
○ Ensure messages sent from the drone are handled correctly.

Due to the possibility of any message not being properly sent, we need to put in
measures to ensure that the drone receives the correct messages and acts accordingly.
If any message sent or received is incorrectly handled, this will cost our client time and
money. Therefore, we need to ensure that anything we send to the drone is sending the

10

same information that the user wants to send. We also need to make sure that any
information that is received from the drone is handled the correct way. If there is ever an
error when uploading or downloading files with the drone, our client wants to have some
sort of notification so that he is aware if a problem occurred so he can repeat his last
action. Our client has mentioned that this software must work and that he needs to be
able to fully rely on this product. Therefore we must take all possible measures within
the code we write to give him the reliability.

➢ File Transfer Protocol system
○ Ability to send and receive files from the drone
○ In a tree format

Our client has an FTP system setup on the drone to allow for sending and receiving
data. Therefore, we will need to implement this system into our modified program. Our
client must send configuration files to the drone to ensure proper data receiving as well
as downloading all the information after the flight has been completed. With the FTP
system setup with the drone, our client has a preference on this being shown in a tree
format.

6.2 Non-Functional (Environmental) Requirements
The functional requirements that create the shape and body of our project are important
to get started with the GUI, heartbeat terminal, and FTP connection design, but there
needs to be requirements that allow us to verify that the system is being used properly
and performing as expected. These requirements are the environmental requirements
that have measurable or quantifiable outcomes based on the system the team has
created. This currently this ranges from the performance time of an algorithm in the
code to if a user can properly operate the system with or without outside help.

The addition to QGroundControl (QGC) should not increase the software’s startup time
by 40%. In order to keep the new startup time to fly the drone below the time of 5 to 10
seconds, all the modifications to QGC cannot exceed the startup time past 14 seconds.
This means loading the QGC flight planner and opening the GUI widget we have
created must be able to load in that 14 second time frame. This is taking into account

11

that the GUI will load on its own and not require user input to load the widget every time
they want to fly the drone. In the initial installation and setup of our widget will take
longer than this 14 second time restraint but, it only needs to be done once. The time it
takes will be ignored in testing because it does not represent use in the field.

Since the software is open source, someone that is not a developer on the project may
want to change or modify our system’s code. Our documentation in the code should be
easily traversable and understandable for anyone interested in modifying it. Easy
traversion and understanding of our code can be constituted as having a person who
has little experience with software development be able to restate a code block’s
specific purpose by code comments. The person should not have to read any actual
code to understand the basic function, but just the corresponding comments. The
important part of the comment for this is the plain English description of the algorithm
that the person must read. If they cannot give an explanation of the code based off of
the comment, then it must be revised and rewritten.

In correspondence to documentation in the code, a person who wishes to use (but not
modify) our modification to QGC should be able to use it by reading the documentation
that will be provided on the Dynamic and Active Systems Lab (DASL) website. The
minimum experience required for complete comprehension is a novice user of QGC so
the guide does not have to start from the very beginning. When someone reads our
out-of-code documentation, they should be able to set up and run the drone on default
settings for gathering the VHF tag telemetry data. The setup will include downloading,
installing, and verifying the QGC program with our addition can be used without outside
help.

After the user has downloaded and correctly setup the QGC flight planner and our
modification, the user required functions of the modification needs to be able to be
understood by a user with at least a novice understanding of QGC. When the user
opens our GUI, they must be able to correctly identify all user inputs that they can
utilize. This includes text field inputs, start/stop buttons, drop down menus, and
import/export data buttons. For complete understanding to be validated, a novice user
should be able to send configured collection settings, upload the settings to the drone,

12

start/stop data collection, and download the VHF tag telemetry data with the out-of-code
documentation as mentioned previously while an experienced user should not have to
use the out-of-code documentation. This requirement does not use the ability to fly or
plot a drone flight plan as a validator because those are not in the scope of the modified
GUI.

Another requirement based off user comprehension is that a user needs to know exactly
what data they are downloading from the companion computer and where it is being
downloaded to. To validate this a user must be able to locate where the data has been
saved, open and identify the data being telemetry records of while the system was
running. A novice user of the system must pass this while being able to look at
documentation and similar telemetry data examples while and experienced system user
must be able to do this without any outside help.

6.3 Environmental Requirements
With the functional and non-functional requirements established, this document will now
discuss the environmental requirements that this project contains. Our client has a very
specific system, most of which cannot be immediately changed without radically
changing the hardware. This means that we are restricted not only by certain
requirements established by the client, but also the physical system that this project
revolves around.

That being said, the first, and one of the most important environmental requirements is
the fact that we must design our program to work specifically with the PixHawk 4 flight
controller. This is essentially a small computer that enables the drone to fly around a set
path via an auto-pilot. While there are many different variations on this device, this is the
one our client chose specifically, and changing said hardware would require additional
development time as well as additional funding.

Since we are required to use the PixHawk 4 flight controller, we are also restrained by
the fact that this device is only compatible with certain pieces of flight planning software.
As discussed in our technical feasibility document, we have chosen a program called

13

QGroundControl to be the flight planning software we will be modifying to implement our
solution. As such, we will be restrained by the frameworks implemented by this flight
planning software. To be specific, QGroundControl uses the QML modelling language
for structuring its user interface and the C++ programming language to implement its
programmatic functionality. This means that while we are working with QGroundControl,
we will be restrained to using these two languages in order to craft our ultimate solution.

We also had some environmental requirements requested directly by our client. Since
changing code within the drone’s computer itself is out of the scope of this project, we
must treat the drone as a “black box” of sorts. As such, any configuration files we
generate and send up to the drone’s computer must contain all of the same information
and formatting as our client’s current implementation. Similarly, our client has requested
that the interface used for downloading the data from the drone must be similar to the
interface he is currently using. Specifically, the client wants to be able to traverse the
files within the drone’s computer using an explorable file tree structure which allows the
user to download whatever file they have highlighted.

The final environmental variable we had to consider was the fact that our client wants
our work to be added to his own code repository. This means that our in-code[1] and
out-of-code documentation[2] must adhere to the standards used by the DASL. An
example of the in-code documentation is shown in Figure 3 on page 15. These are
comments done in MATLAB, so the exact format will be slightly different but the
explanations should be almost the same. A comment should include: the function name
(line 3), current version (line 4), description of what the function does (lines 7-13),
authors (line 16), input descriptions(lines 19-29), and output descriptions (lines
32-onward).

While this mostly boils down to matching the formatting of their documentation and
coding practices, it is important that we begin development with this in mind from the
start. This is because going through and changing the formatting of our code and
documentation after the fact would be an unnecessary time sink. On top of this,
submitting code that does not adhere to these standards would make our program look
out of place, making his code repository look less professional.

14

Figure 3 - In code Documentation Example

7 Potential Risks
When assessing the requirements and production of a system, recognizing and
prioritizing the potential flaws can help make preemptive safeguards during production
instead of after. Risks can appear in three different categories: Technical, Social, and
Market. Technical risks are problems that can arise due to poor implementation of a
system and are found by testing and “walkthroughs” of a software’s logic. Social and
Market risks are usually an outside body’s reaction to the software and its purpose,

15

whether it is legal action or community action they can still affect the software
development. These are mitigated by researching and evaluating the opinions and rules
set in place for similar systems.

Much like any project, there are a number of potential risks that we can run into during
the development of our project. The next few sections will talk about the risks that we
can currently see as possible problems in the future and how we will try to ensure these
problems do not happen, and if they do, how we can fix it.

7.1 Technical Risks
There are three different technical risks we need to watch out for. Physical drone
crashes are an issue can happen, the probability of it happening is extremely low
because even though we are not changing any flight pathing directly, our edits could
inadvertently create an issue. Even with the low likelihood, the setback can be very long
and expensive, which makes the concern high. In the event of a crash, there will be
records displayed in the GUI's terminal in order to help diagnose what went wrong and
prevent future crashes.

Issues that could happen more frequently, but would have less repercussions are the
data not being downloaded wirelessly and incorrect data collection. There is a possibility
that there could be connection issues to the client’s laptop and the offload of data from
the drone cannot be done wirelessly. Since our team is trying to reduce the amount of
time needed, the simple solution is to perform a wired download from the drone to the
laptop. Such a quick and simple fix makes this a low concern.

Another issue that arises from data collection is that the data from the VHF tags could
be incorrect. This would typically be due to user error in that the user could accidentally
input the wrong collection settings when configuring the drone, which could force the
user to re-run the drone's flight path. A way to combat this is to have a confirmation of
the collection settings which indicates the settings stored on the drone's computer. The
prompt will also provide an option to resend the configuration file if the user finds that

16

the settings are incorrect. Since this relies on the user to pay attention to what they
have entered, we feel that this has a medium chance of happening.

7.2 Social Risk
While our group does not have any issues at this time, there is a low possibility that
could change. For every large decision, we have a discussion on what needs to be
done and split it up in a way so that everyone believes that the work is even. For any
disagreements, the team will follow a majority-rules mindset. If the team is split on a
decision, we will go to our mentor for help on making a decision.

7.3 Market Risks
If this software modification comes to market, there could be possible risks in
competition or being made futile by integration from QGroundControl. While
QGroundControl is an open source software, the licensing they use does not require
developers to relinquish copyright of contributions if they choose not to. Because of this,
the likelihood of this happening is fairly low.

Regarding competition, there is an Australian company called Wildlife Drones that uses
UAVs to track animals with VHF tags. Since this is a fairly niche field, they are taking
some potential clientele from the DASL making this a medium concern. The likelihood of
Wildlife Drones overtaking our market is low because they only rent out the drones and
the DASL has a utility patent on the UAV system, meaning Wildlife Drones cannot
legally bring their business to the states.

17

7.4 All Risks
Table 1 - All Risks Assessment

Risks Concern Level Likelihood Plan
Tech​: Physical

crashes
High Low Create crash report

Tech​: Data not
downloaded

wirelessly

Low Medium Download through
wired connection

Tech​: Data is
incorrect

Medium Medium Confirm connection

Social​: Group
disagreements

High Low ● Majority rules
● Confer with

Mahsa

Market​: Obsolete
through integration

High Low ● Licensing
● Keep IP of project

Market​: Wildlife
Drones

Medium Low U.S. utility patent

In order to properly plan for the development path in a whole, our team found seven
different risks that could potentially hinder development and deployment of our project.
Three involved technical risks within the software itself: Physical drone crashes with a
high concern and low likelihood, wireless connection failure with a low concern and
medium likelihood, and finally incorrect data collection with a medium concern and
likelihood. One risk was a social risk where disagreements between the group can stall
development; we assessed that with a high concern but a low likelihood because of
communication redundancy. The last two were market risks: Being made obsolete by
integration with QGroundControl and an Australian company, Wildlife Drones, taking
potential clients from the DASL. QGroundControl is a high concern with a low likelihood
because of their licensing agreements and Wildlife Drones is a medium concern with a
low likelihood due to location and the DASL having a U.S. utility patent.

18

8 Project Plan
Currently, we are starting to work on our demo by implementing changes into the GUI of
our chosen flight planner, QGroundControl, so that we can get feedback on the layout to
ensure it fits our client’s needs. Some milestones to point out and expand upon in
Figure 4, are: Finished GUI, Config Generation, FTP Connection, and Quality
Assurance. The finished GUI can be split up into two sub-milestones. First, the
completed skeleton for the GUI must be placed in QGroundControl and approved by our
client. Second, the code stubs and comments will be used to bridge the gap between
the configuration and FTP milestones. The configuration generation milestone is adding
the functional requirements pertaining to configuration inside the skeleton GUI we
previously created. This involves the inputting, loading, and saving of user configuration
settings for data collection. Connecting to the FTP is another milestone that can be
expanded upon into two sub-milestones: terminal heartbeat and wireless data transfer.
Terminal heartbeats are already in the background of QGroundControl, so we will need
to have a live update of the heartbeat on the GUI by calling on that background process.
Wireless data transfer will be finalized when the drone does not require a wired
connection for any data download or upload. Our client has stressed multiple times that
this has to work, therefore, as we work on our final project we will be constantly testing
our code to ensure it will have no problems in the field.

19

Figure 4 - Gantt Chart Schedule

9 Conclusion
In conclusion, the positional data obtained by scanning for VHF tags can massively
inform researchers about the behavioral patterns of animals around the world. However,
as mentioned before, the traditional method of hand-held receivers can be incredibly
time consuming as well as occasionally dangerous. Using a drone to collect this data
solves these problems, but our client’s current implementation of this solution can still
be improved. Dr. Shafer still has to use two different programs for his pre-flight setup:
the flight planner QGroundControl and a custom MATLAB data collection configurer.
The MATLAB program is very slow to start and doesn’t need to run in the MATLAB
runtime environment. By porting his MATLAB program's collection configuration
functionality to the drone's flight planning software, we can save him and his colleagues
hours upon hours of time when collecting this critical wildlife data for ecologists and
biologists alike. After continuously obtaining feedback from our client, we have boiled
our requirements down to those discussed in section 5 of this document. By continuing
this regular communication, our requirements may change over time, but we are
confident that the foundation we have laid out in our requirements acquisition document
will exceed our clients expectations. While some of the risks we have discussed
previously can certainly put a hindrance on our development cycle, we feel that our

20

solutions to each risk should suffice in mitigating their negative effects, should they
occur. In the next developmental phase we will be finalizing the modified GUI on
QGroundControl, as well as porting the configuration subsystem out of MATLAB and
into QGroundControl.

21

10 Glossaries and Appendices

1) Schafer Michael, In-code documentation example.
https://github.com/dynamic-and-active-systems-lab/UAV-RT/blob/master/POST_
PROCESSING/uavrt_main.m

2) Out of code documentation example:
https://uavrt.nau.edu/index.php/docs/control/

Glossary
Configuration File: ​In this application,​ ​a formatted text file that holds the radio
frequencies and other settings that the drone uses to collect the radio telemetry data
from the VHF tags.
UDP:​ Otherwise known as User Datagram Protocol is a protocol designed to manage a
connection over the internet, unlike its cousin TCP (Transmission Control Protocol) UDP
allows for a connection which has less overhead but less guarantee of data being
received whole.
Flight Planning Software​: a piece of software designed to control a drone much more
precisely and consistently than a controller or other user-controlled device. Normally
used to reduce crashes.
File Transfer Protocol (FTP): ​A set of rules that computers use to talk to one another
in a network.
Graphical User Interface (GUI): ​A visual model for easily accessible input and output
for a user.
Heartbeat: ​A periodic signal from the drone to a user’s computer to indicate that the
connection is stable and the drone is functioning properly.
Radio Telemetry (RT): ​A specific use of radio signals to aid in determining the location
of VHF tags in relation to the drone.
Very High Frequency Tags (VHF Tags): ​A specific designation for radio frequency
tags that broadcast between the ranges 30 and 300 megahertz (MHz).

22

https://github.com/dynamic-and-active-systems-lab/UAV-RT/blob/master/POST_PROCESSING/uavrt_main.m
https://github.com/dynamic-and-active-systems-lab/UAV-RT/blob/master/POST_PROCESSING/uavrt_main.m
https://uavrt.nau.edu/index.php/docs/control/

MATLAB Runtime Environment: ​MATLAB is a programming language developed by
mathworks while the MATLAB Runtime Environment is an environment built by the
language for which its software is capable of running.
Mission Planner: ​An open source flight planning software developed by ArduPilot.
QGroundControl (QGC): ​An open source flight planning software by Dronecode.
QML: ​A programming language much designed to be used for building user interfaces
quickly and easily.

23

