
Thirty Gallon Robot Part II
Sponsored by Dr. Michael Leverington, Mentored by Scooter Nowak
Diva Ferrell, Logan Behnke, Peter Aaron Giroux, Benjamin Peterson, George Cadel-Munoz

The purpose of the Robot-Assisted Tour robot, also

known as R.A.T., is to serve as a cost-effective

teaching tool to gain interest in computer science,

engineering, and the university as a whole. We at

NaviBot Systems were tasked with creating a robot

that could not only give tours of the Engineering

Building on Northern Arizona University’s campus,

but navigate using Wi-Fi localization and be tracked

with a GUI.

A Tour Guide Robot

Key Features: The GUI and Wi-Fi Localization

Technologies

● Python

● ROS/Kinetic Kame

● C++

● Raspberry Pi

Challenges
Solutions

Hosting the GUI on a web server that also supports the connection to the Raspberry Pi
Pivoting to Django (Python web framework) and Heroku (cloud platform)

Wifi Signal to Distance equation and power/antenna gain values
Tighter outlier constraints and getting values by testing

Not having accurate control of the wheels
Rewriting the drive system to a PID control system

Future Work

In future iterations of this project, R.A.T. will be able to provide voiced tours of
NAU’s Engineering Building. That iteration will allow R.A.T. to navigate anywhere in
the building, even utilizing an elevator with its very own robotic arm.

In cooperation with Dr. Leverington, NaviBot
Systems proposed four modules necessary to
meet his needs.

1. GUI + Server Connection: allows a user to
interact with the robot, send commands, and
read status information.

2. Wi-Fi Localization: allows R.A.T. to find itself
anywhere in the building by scanning nearby
routers and calculating an approximate
distance they each may be from the robot.

3. Mapping: allows R.A.T. to understand the
layout of the building, providing the base as
to how the robot can navigate throughout
each floor of the Engineering Building.

4. Navigation: allows R.A.T. to move itself
appropriately throughout the building based
upon instructions from the mapping module,
providing the ability to avoid obstacles such
as stairs, objects, and people.

Solution Overview

Challenges Resolutions

Hosting the GUI on a web server
that also supports the connection

to the Raspberry Pi

 Pivoting to Django (Python web
framework) and Heroku (cloud

platform)

Wifi Signal to Distance equation
and power/antenna gain values

 Tighter outlier constraints and
getting values by testing

Not having accurate control of the
wheels

 Rewriting the drive system to a
PID control system

QR Code to the NaviBot
Systems Website

Figure 1. Phase II R.A.T. Figure 2. Local map creation

Architecture

