

Table of Contents
1. Introduction 2
2. Problem Statement 4
3. Envisioned Solution 6
4. Project Requirements 8

4.1 Functional Requirements 8
4.2 Performance requirements 13
4.3 Environmental Requirements 14

5. Potential Risks 18
6. Project Plan 20
7. Conclusion 22

1

1. Introduction
Robotics is a branch of engineering and science that includes mechanical engineering, electrical

engineering, information engineering, computer science, and other fields. The technology itself

serves the purpose of replicating human actions. Robotics have become much more common

since the 20th century, doing time-saving tasks that people would rather not do. Not only can

robots take on mundane tasks, but also tasks that would be too hazardous for humans, such as

rescue missions and exploration expeditions. Needless to say, it is a steadily-growing industry

with numerous applications; according to ​Million Insights​, the market size for robotics was

estimated at $25.68 billion in 2013, and is expected to reach $40.00 billion as early as next year,

2020 (Source:

https://www.prnewswire.com/news-releases/industrial-robotics-market-size-is-to-reach-4000-bill

ion-by-2020--million-insights-676656983.html ​).

One particular area of robotics and automation that has advanced very quickly in recent years is

navigation. Many of today’s largest companies are establishing self-navigating robots into the

lives of everyday people. Companies such as Tesla, Uber, and Google have self-driving cars

travelling on the roads alongside humans, some of which are even available to consumers. Even

here at NAU, there are robots that deliver food nearly anywhere on campus. The Smithsonian

museum has a guided robot, Pepper, with the capability of giving guided tours of its exhibits.

Needless to say, robotics and navigation is a rapidly growing field and will soon become a very

key part in all of our lives. Although we interact with robots more and more as time goes on, the

barrier for entry still remains high. Very few people possess the knowledge and capability to

understand, maintain, or create robots. This lack of knowledge surrounding the topic of robotics

can largely be attributed to the costs and lack of opportunities to learn about it.

Our sponsor Dr. Michael E. Leverington is a professor at Northern Arizona University. He has

taught multiple computer science courses including Operating Systems and Data Structures, and

2

https://www.prnewswire.com/news-releases/industrial-robotics-market-size-is-to-reach-4000-billion-by-2020--million-insights-676656983.html
https://www.prnewswire.com/news-releases/industrial-robotics-market-size-is-to-reach-4000-billion-by-2020--million-insights-676656983.html

also has a masters in educational psychology. As a result of his interest in the latter, he is

fascinated by the way students learn, as well as the best way for them to do so. He has always

held a passion for robotics and has been following the industry for many years. He believes that

the Thirty-Gallon Robot would be the perfect tool to gain interest in computer science and

engineering, in addition to being a cost-effective teaching tool.

3

2. Problem Statement
The Thirty-Gallon Robot is a three year long project to develop a robot with the ability to give

guided tours of the Engineering Building. Currently, NaviBot Systems is on the second year of

this project.

Last year’s team created the robot with basic movement capabilities for Part One, and they

named it Robot-Assisted Tours, or R.A.T. for short. R.A.T. is a robot, and the term “R.A.T.” and

“robot” may be used interchangeably throughout this document. As the project title implies,

R.A.T. is contained in a thirty-gallon barrel and can only move via direct human input. This

input is received using a hardwired Xbox controller, which means that R.A.T.’s controller must

trail five to six feet behind it in order for it to move at all. Although this is currently the only

method for R.A.T. to move around, it is equipped with certain technologies such as a Kinect

sensor, wheel counters and a Raspberry Pi that will assist in the transition to self-navigation

much easier. While last year’s team did a great job in actually building the robot, there is still

much to be desired.

Dr. Leverington is looking for a robot that can give tours of the Engineering Building, and

NaviBot Systems must produce a working navigation module for it. The following is a list of

problems which we must overcome in order to implement self-navigation for R.A.T.:

- Obstacles. ​ R.A.T. must be able to avoid any obstacles throughout the Engineering

Building such as walls, people, doorways and stairs.

- Self-navigation. ​ ​R.A.T. must be able to navigate to a desired location with minimal

human input.

- Mapping.​ ​We must be able to create a map of the Engineering building which is readable

by R.A.T.

- Localization.​ ​R.A.T. must be able to determine its location anywhere throughout the

Engineering Building.

- Taking input. ​ ​R.A.T. must be capable of receiving a location as input.

4

- Graphical User interface. ​ ​We need a GUI that can track R.A.T.’s movement and status

in case problems occur.

The above points represent the highest level problems in the existing systems. Through research

and feasibility testing, we have identified solutions to each of the above problems that we will be

looking into in the next section.

5

3. Solution Vision
In order to fulfill Dr. Leverington’s idea of a tour-guiding robot, NaviBot Systems will be

building upon last year’s work to bring a navigation module to the Thirty-Gallon Robot. This

module will require us to provide a way for R.A.T. to obtain a map of the Engineering Building,

some kind of localization method to help R.A.T. determine its location, a GUI that tracks

R.A.T.’s movements and status, and we need a module for reading and interpreting sensor data.

Here are the ways we plan to fulfill these needs:

● Mapping with Gmapping Library.​ The gmapping library will allow R.A.T. to roam

around Engineering Building and construct its own map using sensor data.

● Sensor Data via XBox Kinect.​ ​R.A.T. will use an Xbox Kinect to acquire its sensor data.

The data from the Kinect can be converted to 2D sensor data to use during the 2D map

construction.

● WiFi Localization.​ R.A.T. will use NAU’s WiFi network to ping nearby routers and

determine its relative distance using signal strength.

● Navigation with Map, Localization and Sensor Data.​ R.A.T. will use all of the above

mentioned techniques along with wheel counters to measure distance in order to traverse

through the building.

● Graphical User Interface. ​We will be developing a GUI using Qt Designer that tracks

R.A.T.’s movements and status as it traverses the Engineering Building.

The mapping process is done using the

gmapping library which is a SLAM

(Simultaneous Localization And

Mapping) algorithm. This allows for

R.A.T. to roam the building make a

map using the sensor data collected as

it moves. During this process, R.A.T.

will continue roaming and localizing

methodically until all areas of the

6

building have been mapped. This map will be in the form of a PNG image which will be used

heavily by the navigation module as seen in ​Figure 3.1.

The sensor data necessary for the mapping

and navigation modules will come from

an Xbox Kinect. The Kinect takes in

RGB-D data which can be converted into a 2D scan in order to construct the 2D map. An added

bonus of using the Kinect over something like a LiDAR sensor is that it initially collects 3D data

which will better equip us to detect stairs.

The navigation module will be fairly straightforward as long as the components mentioned above

are all in place. R.A.T. will use the map along with data gathered from its wheel counters in

order to determine it’s rough location throughout the building. This may accumulate error as

wheels slip and the counter data becomes less accurate, but we can solve this problem using our

WiFi localization technique in order to re-localize R.A.T. and make sure it’s perceived position

matches reality. Lastly, the Kinect sensor will be used to prevent R.A.T. from running into

obstacles such as stairs, people, backpacks, etc. Refer to ​Figure 3.1 ​ for a more in-depth

visualization of how all of these components work together to facilitate navigation.

The GUI will allow a user to view what is happening with R.A.T. in real time. This GUI will be

implemented using Qt Designer and it will display data about R.A.T.’s position and status. Along

with displaying R.A.T.’s location, the GUI will provide a place for users to give R.A.T.

commands for locations to navigate to.

These features will transform R.A.T. from a simple robot that can only move with human input,

into a self-navigating robot capable of receiving locations. These changes will also do an

excellent job of setting up R.A.T. with all of the tools necessary to give guided tours. Now that

our solutions have been covered, let’s take a look at all of the requirements that we’ve identified

for the Thirty-Gallon Robot.

7

4. Project Requirements
For this iteration of R.A.T. functionality developments, we will need to create the software

necessary to allow R.A.T. to perform the following actions:

1. Navigate throughout the Engineering Building

2. Take location input and travel to the desired coordinates

3. Interact with the user via a GUI that will display R.A.T.’s status

4. Localize itself within the Engineering Building

First, we look at functional requirements, which will cover the functionality of the software that

will be provided at the completion of this project. Next, we cover performance requirements,

which discuss how our functions are expected to perform. Finally, we discuss environmental

requirements, which are constraints and limitations that we must acknowledge during software

development.

4.1 Functional Requirements
We will develop four specific modules that are key in R.A.T.’s operations. These are functional

requirements that are essential to developing a self-navigating tour-guiding robot. The navigation

module will allow R.A.T. to operate its own hardware in order to traverse throughout the

Engineering Building. The mapping module will provide R.A.T. the capabilities to create its own

maps by utilizing sensors and collecting visible information obtained while navigating through

the Engineering Building. The WiFi localization module will give R.A.T. the ability to

self-locate itself within the Engineering Building, regardless of initial startup. Finally, the GUI

module will allow communication of commands between R.A.T. and an end user.

4.1.1 R.A.T. Navigation
In order to implement a successful navigation module, the following requirements need to be

fulfilled. The requirements are referenced as they appear in Figure 4.1.1.

8

R.A.T. needs to be able to navigate

throughout the engineering building on

its own (1.F.1). This is the highest

functional requirement for navigation

and represents the overall goal for this

project.

R.A.T. needs a navigation module

capable of detecting obstacles

(1.F.1.1). While a map of the

engineering

building will give R.A.T. a general

idea of its surroundings, it won’t be

able to account for obstacles such as

chairs, people, desks or backpacks.

While the map should also contain

markers for

stairs, the navigation module should have additional features in place to further ensure that stairs

are noticed by R.A.T. before a collision occurs.

R.A.T. will need to collect sensor data in real time to detect un-mapped obstacles (1.F.1.1.1).

The navigation module should use sensor data to path around such obstacles as well as assist in

avoiding more dangerous things such as stairs. This will ensure R.A.T.’s ability to traverse the

building during busier times when the hallways aren’t clear as the map would imply.

R.A.T. needs to be able to navigate across all three floors of the engineering building (1.F.1.1.2).

Since the end goal of the project is for R.A.T. to give tours of the engineering building, it is

important that our navigation module allows R.A.T. to access all three floors.

9

R.A.T. must ask for human assistance to operate the elevator (1.F.1.1.2.1). In order for R.A.T. to

fulfill requirement 1.F.1.1.2, it will need to stop at an elevator door and ask for surrounding

humans to take him to the desired floor.

R.A.T. must be able to tell which floor he is on at all times (1.F.1.1.2.2). With R.A.T. relying on

bystanders to help it traverse amongst the different floors of the building, there is a possibility

that they may take him to a floor that he didn’t ask for. To cover this case, R.A.T. should be able

to use localization techniques to ensure that he always knows which floor he is on. The

requirements for the localization module will be discussed in detail in section 4.1.3.

R.A.T. will need an accurate map of the engineering building (1.F.1.2). A map is a crucial

component in the navigation process. This map will help guide R.A.T. throughout the

engineering building and is absolutely necessary to have for the robot to be able to travel to a

given location. The requirements for the mapping module will be discussed in detail in section

4.1.2.

4.1.2 R.A.T. Mapping
In order to implement a successful mapping module, the following requirements need to be

fulfilled. The requirements are referenced as they appear in Figure 4.1.2.

R.A.T. needs a map of the Engineering building (2.F.1). This is the highest level functional

requirement for the mapping module. An accurate and map is absolutely necessary for the

navigation module. The following requirements will outline the important aspects of a quality

mapping module.

The map should label key points and dangerous obstacles (2.F.1.1). The map should have labels

for key points such as rooms and elevators. This will help to better facilitate the goal of having

R.A.T. give guided tours of the engineering building. The map should also have labels for

10

dangerous obstacles such as stairs. Having the stairs marked on the map will allow R.A.T. to

avoid the stairs as a possible path all

together.

The map should be easily storable and

readable (2.F.1.2). The maps of the

different floors should be easy to store

retrieve so that they can be reused each

time R.A.T. is booted up to navigate.

The maps should also, of course, be

readable by R.A.T. so that it can make

full use of the data stored within the

map.

R.A.T. must have maps for all three floors of the engineering building (2.F.1.3). Since we want

R.A.T. to be able to navigate across all three floors, it is important that R.A.T. has a map for each

of them.

R.A.T. must be able to switch between maps as is traverses across different stories of the

building. (2.F.1.3.1). Since each floor will have its own separate map, we will need some way of

switching the map that R.A.T. is reading data from to the relevant floor as R.A.T. moves on to a

different level of the building.

4.1.3 R.A.T. WiFi Localization
In order to implement a successful WiFi localization module, the following requirements must be

filled. The following functions will be referenced as they appear in Figure 4.1.3.

11

R.A.T. needs to be able to self localize itself within the engineering building (3.F.1). This is the

most important aspect of the WiFi localization module, as it will allow R.A.T. to find its location

regardless of where the robot boots in the engineering building.

R.A.T. will need to scan for

nearby broadcasting WiFi

signals (3.F.1.1). This is

necessary for R.A.T. to

perform so that it may collect

locations of nearby routers.

Obtaining the router

information is crucial for later

distance calculations.

R.A.T. will need to determine

if the broadcasting WiFi signals are

local to the engineering building

(3.F.1.1.1). Since many devices

such as cellphones and printers can provide wireless connectivity options (i.e. hotspots, shared

connections), R.A.T. should only perform calculations using local routers. This is for the sake of

consistent data, as routers are permanently established within the building.

R.A.T. will need to store router information and access the information as necessary (3.F.1.1.2).

This will ensure that the routers scanned in the area allow R.A.T. to compare what routers have

been stored in memory and access this information for later localization.

R.A.T. will need to trilaterate its location using router information (3.F.1.2). Trilateration will

allow R.A.T. to calculate its approximate location in the engineering building by using signal

strengths and determining the distance from each router.

12

R.A.T. needs to obtain router signal strengths for trilateration (3.F.1.2.1). The signal strengths

are important for R.A.T., aiding in calculating distance from each router, as each router is

physically anchored in specific areas throughout the engineering building.

4.1.4 R.A.T. GUI
The GUI is meant to be the middleman between operator and R.A.T. In other words, it is how a

user is able to see R.A.T.’s movement in real time, as well as give it commands. Said commands

should be about where in the Engineering Building R.A.T. needs to go to. The interface should

be able to handle sending R.A.T. to specific rooms and floors, while also displaying the location

R.A.T. is currently at using a map and a pin that shows its position, and perhaps even the

location of the routers R.A.T. would be using to reposition itself.

One of our stretch goals includes allowing R.A.T. to send specific status updates to the GUI.

This would ensure that an operator knows when R.A.T. is in critical condition, such as suffering

from low power, a hardware malfunction, or if it happened to fall down the stairs. In the case that

it’s on an elevator, the GUI would then display that its enroute or if it needs help pressing the

buttons to get to its designated location. Additionally, a second stretch goal is implementing an

abort button to the GUI. In the event that there is a disconnect between R.A.T. and the user

interface, and the operator is unsure of R.A.T.’s location, it would be resourceful to have a

command that shuts down all of R.A.T.’s movement. Or, if it was observed that R.A.T. was

heading towards the stairs with no intentions of avoiding a certain fall, effectively stopping the

robot in its tracks would be necessary.

4.2 Performance Requirements
Next, we will address the performance requirements. In this section, we will lay out metrics for

which we expect our system to perform. The following performance requirements are

enumerated as follows:

13

- 1.P.1 = R.A.T. needs to determine which floor it is on within 60 seconds

- 1.P.2 = R.A.T. needs to stop within a 50 cm ​2​ area in front of a doorway

- 2.P.3 = R.A.T. must build a map that is accurate to the real world with errors no larger

than 10 cm

- 2.P.4 = R.A.T. needs to generate a map of the Engineering Building in under one hour

- 3.P.5 = R.A.T. GUI should update the operator approximately every twenty seconds

regarding the data it is retrieving

- 3.P.6 = GUI should start moving within twenty seconds of receiving a command about

where to go

- 3.P.7 = R.A.T. should report to the GUI every twenty seconds its current condition

(stretch goal)

- 4.P.8 = R.A.T. needs to obtain router information within 60 seconds

- 4.P.9 = R.A.T. should be able to match its estimated location on a map within 20 seconds

- 4.P.10 = R.A.T. should orient itself accordingly within 10 seconds, meaning R.A.T. will

know how it currently sits during the boot phase

We will address these by referring to the top level requirements.

4.2.1 R.A.T. Navigation Performance
When R.A.T. switches floors during navigation, it should be able to determine which floor it

resides on within 60 seconds (1.P.1). This pertains directly to the functional requirement,

“R.A.T. must be able to tell which floor he is on at all times, ” (1.F.1.1.2.2). The longer the

delay, the longer a user will have to wait for R.A.T. to function accordingly (the stretch goal is to

develop a robot that gives tours, and keeping those accompanying the robot from waiting an

excessive amount of time).

R.A.T. should also accurately lead to a specific location, and with careful considerations of the

actual size of R.A.T., we believe that R.A.T. being able to stop within a 50 cm ​2​ area in front of a

doorway is a reasonable performance requirement (1.P.2).

14

4.2.2 R.A.T. Mapping Performance
While the mapping process should ideally only need to be done once, it is still important that the

process is time efficient. This will be most beneficial to the person/people who are watching

R.A.T. during the mapping process in order to ensure things go smoothly. Therefore, we can

establish the performance requirement that R.A.T. should be able to generate a map of the

Engineering Building in under one hour (2.P.4). This performance requirement pertains to the

functional requirement, “R.A.T. needs a map of the Engineering building,” (2.F.1). This will

allow R.A.T. to take enough sensor data to build an accurate map without wasting the time of

those in charge of facilitating the process.

Another important requirement for a good map is to ensure that it is accurate to it’s real world

counterpart. From this, we can establish the performance requirement that R.A.T. must build a

map that is accurate to the real world with errors no larger than 10 cm (2.P.3). This performance

requirement follows the parent function requirement of, “R.A.T. will need an accurate map of the

engineering building,” (1.F.1.2). This will ensure that R.A.T. can navigate throughout the

building using the map without risk running into an obstacle that wasn’t represented accurately

on the map.

4.2.3 R.A.T. GUI Performance
For the GUI performance, it should update the operator approximately every twenty seconds

regarding the data it is retrieving. Specifically, it should show up on the map every twenty

seconds minimum where it is currently moving to and stationed in the building (3.P.5). It should

also start moving within twenty seconds of receiving a command from the interface about where

to go (3.P.6). We do not want the operator to be confused as to R.A.T.’s status, which would

result from a disconnect between its actual location and the reported location. For the stretch goal

of showing status updates, it should also report to the GUI every twenty seconds its current

condition, so that the operator can catch issues in a timely manner, whether they are big or small

(3.P.7).

15

4.2.4 R.A.T. WiFi Localization Performance
During daily operations with R.A.T., localization should not need to occur very often. Prime

times for self-localization should only occur while R.A.T. boots from a cold start. A cold start is

when R.A.T. is set in some position within the Engineering Building and is switched on,

initiating the self-localization phase. Since there a number of operations are required to run only

once, we would like to keep self-localization operations under 60 seconds after initial boot

(4.P.8). During this time, R.A.T. will be pinging local routers, obtaining router information and

estimating its location. This time frame is subject to fluctuate in time, as router operation is

affected by network congestion. Any other time self-localization should occur is when

connection to the network is lost (i.e. system reboots, wireless connectivity issues).

For calculating its position with obtained router information, R.A.T. should be able to match its

estimated location on a map within 20 seconds (4.P.9), as no network responses are required for

this portion of the boot operation. R.A.T. is running an algorithm to trilaterate its position, and a

simple operation would not need much time to compute a number and pinpoint the coordinates

on the generated map. Finally, the robot should orient itself accordingly within 10 seconds,

meaning R.A.T. will know how it currently sits during the boot phase (4.P.10). This will ensure

that R.A.T. navigates appropriately once it localizes to the building location and its map.

4.3 Environmental Requirements
Since R.A.T. is a continuation of a previous capstone group’s project, we are met with very

specific and unavoidable constraints. The first is that we must use ROS for device control and

package management. It currently receives input from the Xbox controller, and the Raspberry Pi

(general-purpose computer, usually with a Linux operating system), which is another constraint.

The Raspberry Pi sends commands to the Arduino (a simple computer capable of running one

program over and over again), another built-in hardware constraint. The Arduino also controls

the motor drives, which is a necessary feature of R.A.T.

16

Because we are using ROS, that puts a constraint on the programming language we are able to

use, as ROS is written in the programming languages C++, Python, and Lisp. Also, since the

prior code that has already been written for R.A.T. was in C++, it was fairly reasonable to

assume we would have to use C++ as well. The Xbox Kinect sensor was also somewhat of a

constraint since it came with the project already built-in; however, we had the option to use a

different sensor at the risk of it not working as well for navigation and also not being able to

integrate with the hardware. Thus, we decided to keep it as a tool, especially since we discovered

its ability to do stair detection.

As for our navigation packages, a constraint is that we do have to write a wi-fi localization

package ourselves, since there weren’t any current packages that would have what we need.

However, there is an open source multi-map navigation package that we can modify in order to

easily switch between maps of the building, and has an elevator script that can be modified to

allow us to control the elevator. In general, the decision to attempt wi-fi localization of using

routers within the building came from a constraint that the client placed: we are not allowed to

place any sort of objects/tape/etc. around the Engineering Building that would help R.A.T.

determine where it is.

For mapping, we were constrained by two options: creating a map of R.A.T. ourselves, or letting

R.A.T. create its own map by roaming around the building. Once we decided on the latter choice,

we were constrained by gmapping and the SLAM algorithm since it is one of the few algorithms

that will work well with the Kinect sensor provided to us. SLAM is also supported and very well

documented in ROS via the gmapping library.

17

5. Potential Risks
There are multiple issues that may come with programming a navigation system for our

Thirty-Gallon Robot, Part Deux project. R.A.T. runs the risk of becoming a hazard to both itself

as well as to the people in its environment if it cannot avoid stairs or obstacles. Its severity would

be very high for the former, and moderately high for the latter, with low likelihood for both. The

challenge for both would be accurately getting data from the Kinect sensor, which should be

feasible with gmapping, our navigation package, and the chosen sensor.

The next risk refers to possibly losing R.A.T., and/or R.A.T. happens to malfunction. We

determined that this also has a low likelihood of occurring, with the challenge of ensuring

minimal disconnects between the GUI and R.A.T., and a potential abort command. This would

be feasible with adjustments to acceleration and our navigation package. The last risk we have in

mind is R.A.T.’s potential to ping unofficial routers rather than the ones it needs to self-locate.

The likelihood of it actually coming to pass with these changes made is low to medium. The

challenge is wifi localization using routers and differentiating router IDs, which should be

feasible with the wifi localization packages we’re writing and using. ​Table 5 ​has a summary of

the above.

Risks Severity Challenges Feasibility Likelihood

R.A.T. doesn’t
detect stairs

Very high Accurately
getting data

from the Kinect

Feasible with
gmapping, our

navigation
package, and
the chosen

sensor

Low

R.A.T. doesn’t
avoid

obstacles/people

Moderately
high

Accurately
getting data

from the Kinect
sensor

Feasible with
gmapping and
our navigation

package

Low

Losing R.A.T.
and/or R.A.T.

Moderate to
very high

Ensuring
minimal

Feasible with
adjustments to

Low

18

malfunctions disconnects
between the

GUI and
R.A.T., and a
potential abort

command

acceleration and
our navigation

package

R.A.T. pings
unofficial

routers

Very high Wifi
localization
using routers

Feasible with
wifi localization

package

Low/Medium

Table 5. Displaying risks, severity, challenges, and feasibility.

19

6. Project Plan
In order to prepare for potential challenges and risks during development, our team has drafted a

plan to keep our development well timed and on track. It is split into three parts: early

development and technological study, mid development (building off of working prototypes and

alpha testing), and late development (finalizing and beta-testing). Early development will take

place before the end of the semester on December 15th. Mid development will begin after the

semester ends on December 15th and will continue until mid-February. Between mid-January

and mid-February there will be some overlap with late development as alpha-versions are

finished and beta-versions are begun. Mid-February will mark the official start of late

development where beta-versions will be created and tested before the end of April. This will

leave the beginning of May to the end of the semester to finish testing and any final adjustments

on the project, as well as any possible extra development time that may be needed.

6.1 Early Development
Our early development consists of testing and prototyping our four functional requirements:

navigation, mapping, localization, and GUI. In the below figure we have these requirements in

their testing and prototyping phases. This includes a short phase to ensure that RAT functions as

it was supposed to at the end of last semester, which we have shown to be fully functional to last

semester’s standards.

Figure 6.1 Early development Gantt chart

6.2 Mid Development
Mid development will focus on moving from learning technologies, and testing prototypes to

building functional alpha versions of our four main functional requirements. It will start with

20

mapping, because the mapping package is central to the navigation functioning properly. The

mapping package, GUI (with only design, not functionality), and localization will all begin

December 22. Once the mapping package is finished in its alpha form we will begin

development of the single floor navigation package based on data from the mapping package.

Since the navigation package is essential to preventing many risks, it will be a full team effort for

the beginning of the planning and development. Once a strong baseline for navigation has been

established, elevator functionality and GUI functionality development will begin.

Figure 6.2 Mid development Gantt chart

6.3 Late Development
In the late development, we will expand on alpha versions of each package with beta

functionality. This will include taking commands remotely from the GUI, tracking from the GUI,

multi-floor navigation, and localization on boot. The below chart leaves an extra week at the end

of April in the event that extra time is needed in any development step. Once all packages are

finished we will do final testing and final adjustments leading up to the final project display in

May.

Table 6.3 Late development Gantt chart

21

7. Conclusion
Robotics is a growing field with high teaching potential, especially in higher learning. However,

the field of robotics has a high bar of entry and can be expensive. Dr. Michael Leverington has

commissioned our team, Navibot Systems, to build a fully functioning and cost-effective robot

for teaching and recruitment. Robot Assisted Tours, or R.A.T., will take guests on tours of the

engineering building using systems that our team will develop. Navibot Systems aims to create

four main functional packages to bring R.A.T. to the next level of functionality. These packages

will be a mapping package, navigation package, localization package, and GUI package. Our

team has identified potential risks and challenges that may impede our ability to reach our goals,

and to combat these Navibot Systems has drafted a project plan to keep our team on track with

developing around these challenges and risks. We are team Navibot Systems, and we are

confident that our team will overcome all challenges to create a fully functional robot that fills

our client’s needs.

22

