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Technological Feasibility Analysis
Steven Enriquez Michael Ewers, Joshua Kruse and Zhenyu Lei

F

1 INTRODUCTION

I T is becoming ever more important to track and manage the biodiversity that live on Earth.
More and more animals are becoming extinct everyday. Soundscapes2Landscapes is a science-

based project looking to further advance biodiversity monitoring in order to save the lives of plant
and animal species. At the moment, Soundscapes2Landscapes place low cost audio recording
devices in various sites in Sonoma, California. Once placed, these devices record one minute of
every ten minutes for three to five days at each site. This results in terabytes of saved audio
data per site. Using this data, a manual classification process is conducted by researchers and
citizen scientists to identify different species and other audio components. The problem is that
this manual identification process is an incredibly time consuming task with this much data.
Not only is the process too time-consuming, but is also not user-friendly to those who are not
tech-savvy as the current implementation uses a command line interface.

Our clients Colin Quinn and Patrick Burns are part of the Global Earth Observation Dynamics
of Ecosystems Lab (GEODE). They work with Soundscapes2Landscapes to help achieve their
biodiversity monitoring goals. They have assigned this task of automatic sound identification to
our team.

1.1 Solution
Our team has developed a solution around a user-friendly user interface that hosts a machine
learning model. We will be using a machine learning algorithm to automatically classify different
types of sounds in these recordings. The three broad categories of sound that we will be classifying
are biophony, geophony, and anthrophony. Biophony is a sound category for life, including
animals noises. Anthrophony is a sound category for humans, including people speaking, and
noises from cars. Geophony is a sound category for earth-related sounds, including rain, wind,
thunder, and other earth-related sounds. The results of this classification will be visualized in a
variety of ways on an easy to use, user-friendly web application. The solution will also be created
as a standalone application for offline use in the field.

1.2 Purpose
This document is a technological feasibility, discussing all of the technological challenges that
we will face with research found by the team for effective solutions. Each challenge will have a
solution picked out as the best choice to handle their respective challenge, with rationale and a
way to further test our decision.

1.3 Document Outline
We begin in Section 2 by analysing the major technological challenges we expect to encounter
during our project. In Section 3, we analyze each of these areas carefully, including looking at
alternatives, how we explored these alternatives, and rationale for choosing a particular solution.
In Section 4, we look at how the technology will integrate with each other with a diagram as well
as an explanation for each individual component.
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2 TECHNOLOGICAL CHALLENGES

Below are the technological challenges that our team IntelliChirp has found to be crucial for
providing a successful product to the clients, each with a brief description.

2.1 Machine Learning Algorithm
We will need a Machine Learning Algorithm to accurately classify the anthrophony, geophony,
and biophony in each sound file. This model must be efficient, accurate, and run fast with the
amount of data that we expect to access.

2.2 Building and Training the Machine Learning Model
We will need to build and train the Machine Learning Model on labeled audio data. With the
amount of data that we have and expect to access, this model must be able to handle that amount
of data.

2.3 Standalone App GUI
We will need a standalone application with a Graphical User Interface. This will be used to allow
for the stretch goal of bringing the solution into the field. Allowing this machine learning model
to be integrated with a laptop or Raspberry Pi.

2.4 Front-End Web Application Framework
We will need a front-end web application framework to allow users to use the machine learning
model and visualize the analyzed results. This framework will be used to build a scalable and
user-friendly interface in a timely manner.

2.5 Back-End Web Application Framework
We will need a back-end web application framework to host the machine learning model and
communicate with the front-end. This will be the connection between out model, the site, and a
database.

2.6 Database
We will need a database to save user inputted audio files for future training of the machine
learning model. Users will have the option to provide feedback on analyzed audio, letting them
verify if the classification of their audio was correct. In return, they will be asked if they would
like to help the organization by allowing the correctly labeled portion of audio to be saved in a
database for further training and greater accuracy in the machine learning model.

2.7 Visualization of Results
We will need a way to visualize the results of user inputted data fed into our machine learning
model. Examples of visualizations will include a pie chart of the different proportions of each
category (biophony, geophony, and anthrophony), as well as a labeled spectrogram of the
analyzed audio.

With the technological challenges overviewed, each challenge will be analyzed in detail to
determine the best solution in the Technological Analysis section below.
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3 TECHNOLOGICAL ANALYSIS

In this section of the Technological Feasibility, we will explain the options for solving each
technological challenge as well as provide justified reasoning on which is the best choice for our
product. Careful consideration and research is required to ensure a well-thought-out decision.

3.1 Machine Learning Algorithm
We will need a way to accurately classify the anthrophony, geophony, and biophony of an
inputted soundscape file. To accurately assess the data a machine learning algorithm trained
on specific categories using large amounts of training data is needed.

3.1.1 Alternatives
Deep Learning Algorithms are a popular choice, by modeling their internal structure off of how
the human brain stores memories. Clustering algorithms are also used when grouping different
types of data is needed, this uses a more statistical and math based approach. Many different
machine learning algorithms are used for classifying data and each has its pros and cons.

3.1.1.1 : Deep Learning Algorithms
A type of machine learning technique useful for large data sets. Generally neural networks
process given data as a stored vector, where the vector is passed through many different layers
of functions that produces the determination of which category the inputted data falls under.
These functions and layers are trained on large amounts of data points where each data point
will slightly alter the functions used to determine the category. Depending on the deep learning
algorithm used the functions and layers will differ in structure. This provides different benefits
based on the type of data to be categorized.

Pros
• Supervised learning is better for large amounts of categories.
• Deep learning is more accurate when large amounts of categories are needed to be defined.

Cons
• Need large amounts of training data for the model to be accurate.
• Training the model takes a long time and is process intensive.

3.1.1.2 : Clustering Algorithms
A type of machine learning technique that involves grouping or clustering different data
points together. Clustering is an unsupervised learning method, in which the categories are not
determined beforehand. The algorithm determines the categories after running through all the
data. The data points are grouped by the similarity of the data. For instance, if there are ten sound
files that contain a truck starting, and ten sound files that contain crickets chirping; these should
be evenly grouped without overlap by the algorithm. Then in the best case scenario, when a
sound file with unknown data is inserted into the algorithm, it would correctly identify whether
this file contains a truck starting or crickets chirping.

Pros
• Better when large amounts of testing data are not available.
• Faster at analyzing data than deep learning algorithms.
• Faster at training data than deep learning algorithms.
• Algorithm is more accurate when the number of training samples increases.

Cons
• Unsupervised learning are worse for large amounts of categories.
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• Complexity is worse when the number of training samples increases.

3.1.1.3 : Support Vector Machine
A type of machine learning algorithm that is similar to unsupervised learning clustering
algorithms but instead use supervised learning. Clustering algorithms try and plot similar data
in groups and then determine if new data falls into one of these groups. Support Vector Machines
are given the categories upfront and then the algorithms determines the lines that separate these
categories. When new data is entered into the model the algorithm determines if this data falls
into a region that a category defines.

Pros
• Better when large amounts of testing data is not available.
• Faster at analyzing data than deep learning algorithms.
• Faster at training data than deep learning algorithms.
• Supervised learning is better for large amounts of categories.

Cons
• Complexity is worse when the number of training samples increases.

3.1.2 Chosen Approach

From the information presented in [5, Tab.1], a Support Vector Machine should be our first choice
for an algorithm that will categorize sound files. Secondly, a Clustering algorithm should be
looked at, then finally a Deep Learning algorithm. A Support Vector Machine is our first choice
given the large amount of categories before training, trains on smaller datasets better than a Deep
Learning Algorithm, and will take less time to train the model than a Deep Learning algorithm.

TABLE 1
Machine Learning Algorithm Comparison Table

Better With Small
Amounts of Data

Large Number of
Categories Speed of Training Speed of Deploy-

ment Total

Deep Learning 1 5 1 2 9

Clustering 5 1 3 3 12

SVM 3 3 3 4 13

3.1.3 Proving Feasibility

In order to prove that a Support Vector Machine is the best model to go with numerous testing
processes will have to take place. Cross validation is a method of error checking that involves
many different iterations of training and testing data. Training is done on a percentage of data
from the full data set, and tested using another percentage of the data set. The results of this
testing is then cross validated with another set, that was trained and tested on a different
percentage of the full data set. This process is done numerous times in order to determine the
overall accuracy of the algorithm. To test our deep learning algorithm a confusion matrix is used
to test the accuracy of classification. This matrix gives data on which categories the algorithm
struggles with determining. In addition it gives data on which categories are very similar and
where the algorithm finds difficulty in determining if an input is one or another. In addition,
the overall accuracy of classification and the processing speed of identification will be a factor in
determining which algorithm is the strongest to use for our purposes.



6

3.2 Training the Machine Learning Model
The machine learning algorithm that is chosen will need to be built and trained in order to give
accurate results. Machine learning frameworks allow for the use of prebuilt libraries to assist in
the process of creating a high quality architecture without recreating the wheel. Training is also a
critical and time consuming component to the success of this product.

3.2.1 Alternatives
The solutions that are possible include TensorFlow with Keras, PyTorch, Apache Spark, and
MXNet. Choosing the correct framework is difficult, and depends on many factors. These factors
include which type of machine learning algorithm will be used, the programming language that
will be used, the purpose of the project, and the ability to use it for creating a model that is usable
on small devices such as a Raspberry Pi.

3.2.1.1 : TensorFlow with Keras
A very powerful and widely used machine learning framework for deep learning. TensorFlow
is open source and uses data flow graphs to build models. Developers using this framework are
able to create large-scale neural networks.
Pros

• Large Community with easy access to online resources.
• Developed by Google.
• Great visualizations with TensorFlow’s visualization toolkit, TensorBoard.
• Scalable to larger-scale models.
• Options for developing for smaller devices using TensorFlow Lite.
• Ideal for cross-platform products.
• Keras can be used as a powerful user-friendly interface, simplifying the approach to using

TensorFlow.
Cons

• Uses a Static Computation Graph, so you must retrain the model after any change to the
architecture.

• Higher learning curve than other frameworks.
• Debugging can be difficult.

3.2.1.2 : PyTorch
A flexible and high performing machine learning framework. This framework is used by
Facebook, IBM, and many other organizations.
Pros

• Easier learning curve than other frameworks.
• Uses a Dynamically Updated Graph, allowing for changes to the architecture without

having to retrain the model.
• Supports data parallelism for performance.
• Good for building quick prototypes.
• Powerful for many types of machine learning algorithms.

Cons
• Limited documentation is available.
• New framework that was initially released in 2016.

3.2.1.3 : Apache Spark
A popular machine learning framework. This framework was written mostly in Java, R, Python,
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and Scala. Any developers who are comfortable with Python and R would feel comfortable
working with Apache Spark’s easy-to-use APIs.

Pros
• Easy-to-use APIs that are familiar to developers that have used Python and R.
• Scalability to allow for the same code to run on bigger machines.

Cons
• Is not ideal for a multi-user environment.
• Fewer algorithms than other machine learning frameworks.
• There is no automatic optimization process.

3.2.1.4 : MXNet
A deep learning framework that supports many programming languages. This framework is new
and is used to train and deploy deep learning models.

Pros
• Can be run on any device.
• Very scalable and is used by large companies for speech recognition, handwriting recogni-

tion, and more.
• Offers support for many programming languages, including Python, Scala, Julia, Clojure,

Java, C++, R and Perl.
Cons

• Small community
• Not popular in the research community
• Relatively new framework

3.2.2 Chosen Approach
The chosen approach was TensorFlow, as presented in [7, Tab. 2]. This framework provides a
wealth of documentation online, a large community, as well as options for moving the model
to different devices. Despite a larger learning curve, Keras can be added to provide a simplified
approach as well as a plethora of documentation can be used to allow this powerful framework
to be used for our product.

TABLE 2
Machine Learning Framework Comparison Table

Learning Curve
Documentation
and Community
Size

Ideal for many
Machine
Learning
Algorithms

Portable for Small
devices Total

TensorFlow with Keras 4 5 5 5 19

PyTorch 4 3 5 4 16

Apache Spark 4 3 3 4 14

MXNet 3 2 4 5 14

3.2.3 Proving Feasibility
In order to prove that TensorFlow is going to be the best option for our software system, we will
create and conduct tests and visualization with TensorFlow and PyTorch. We will also need to
test the effect in time consumption for utilizing TensorFlow’s static computation graphs instead
of PyTorch’s dynamic computation graph. Those frameworks were the top two choices from our
team’s research.
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3.3 Standalone App GUI

We will need to create a standalone application which must be able to host a machine learning
algorithm. The application must run the machine learning model with any uploaded files
locally, allowing for offline use of the application. The application must also be able to produce
visualitions of the results. In order to build the application, we will need to look into different
GUI frameworks. There are plenty of GUI frameworks available, but we will need to choose those
which support cross-platform functionality.

3.3.1 Alternatives
The available alternatives for this technological challenge include PythonQt, ElectronJs, JavaFx
and JavaSwing. The available options are all viable for the creation of a GUI, but we will need to
determine the best solution based on criteria that we deem to be important. Our criteria consist of
the learning curve, how the visual design of the GUI is, how well we can implement our machine
learning model within the application, and how resource intensive the GUI will be while running
on a device.

3.3.1.1 : PythonQT
A python based GUI library. The PyQt library contains a visual application builder IDE, which
allows for much quicker and simpler designs of an application project. The library being run
in Python allows for our machine learning model to be accessed directly via the source of the
application.

Pros
• Simple design and building of GUI applications in the provided PyQt Designer.
• Runs in Python, which corresponds to our machine learning algorithms and scripts

required to utilize the algorithm.
• Available deployment across popular platforms without major source code changes,

including Windows, macOS and Linux.
Cons

• Not a default library included with the Python installation.
• Larger framework with learning curve due to all the available functions and methods.

3.3.1.2 : ElectronJS
Creating an application GUI with ElectronJS with Python is a different approach from using a
visual design builder. ElectronJS allows developers to create GUIs in the form of HTML and
CSS files, and may include Python in order to run any scripts. Allowing HTML and CSS files to
run the GUI will create opportunities for more intricate designs of the application GUI. Further,
we would be able to effortlessly import our web application files to mimic the web application
as a standalone application. Lastly, allowing Python to operate within the application is a great
advantage for our machine learning model to be run in scripts.

Pros
• Web application’s files can be used to create the GUI of the standalone application.
• Includes python integration, allowing for machine learning models to be utilized.
• Available deployment across popular platforms without major source code changes,

including Windows, macOS and Linux.
Cons

• No standalone visual design builder.
• RAM usage on host machine can be very high.
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• May start slow and run slower than other available GUI frameworks.

3.3.1.3 : JavaSwing
The JavaSwing framework is a simple Java GUI building framework, which allows the developer
to visually build an application. The commonly used IDE which supports visually building an
application project is Apache NetBeans. The framework is run in Java, which may pose some
difficulties when hosting and running any machine learning algorithms, as the machine learning
models are normally written in the Python programming language.

Pros
• Simple designing and building of GUI applications with tools in the IDE Apache NetBeans.
• Available deployment across popular platforms without major source code changes,

including Windows, macOS and Linux.
Cons

• There is a learning curve for building visual designs using “Layout” tools.
• Ran in Java, which requires extra libraries such as Java Runtime or Jython to access

required machine learning scripts.

3.3.1.4 : JavaFX
The framework is a simple Java GUI builder, and allows for visual development similar to
JavaSwing. The framework is run with a standalone JavaFX application, which is used to build
a visual representation of the application project. The JavaFX application may be connected to
the VisualStudio IDE for more fluid work from visual to backend of the application. Similar to
JavaSwing, the framework works in the Java language, which will pose difficulties when accessing
the machine learning algorithms and running them.

Pros
• Simple designing and building of GUI applications with the provided JavaFx standalone

designer.
• The connection from GUI to back-end code is highly understandable.
• Available deployment across popular platforms without major source code changes,

including Windows, macOS and Linux.
Cons

• Ran in Java, which requires extra libraries such as Java Runtime or Jython to access
required machine learning scripts.

3.3.2 Chosen Approach

The chosen approach will be ElectronJS With Python integrated from our Standalone GUI
development as presented in [10, Tab. 3]. The ElectronJS framework provides a great set of
tools for creation of a standalone GUI from Javascript, HTML, and CSS files. The framework
would allow us to port over our web application design to ensure that we have consistency
within all our deliverable applications. Along with portability, ElectronJS also allows for python
implementation. Python integration will allow for our team to include any machine learning
models, machine learning scripts, and visualization scripts.
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TABLE 3
GUI Framework Comparison Table

Learning Curve Visual Design
Process

ML Model Inte-
gration

Low Resource Us-
age Total

PyQT 5 5 5 5 20

ElectronJS with Python 5 5 5 3 18

JavaSwing 4 4 3 5 16

JavaFX 5 5 3 5 18

3.3.3 Proving Feasibility

In order to prove that ElectronJS is going to be the best option for our software system, we will
create a mini application which will need to be based off of a mockup web application. The
mockup web application will have back-end functionality to run python scripts, and we will
create a simple script to run for testing purposes. The mini application will need to show that we
can fluidly port the web application UI over as well as show that the application can run the test
script used in the web version. In the testing process, we will monitor the resource usage on the
OS while running beside a PyQt GUI application running the same test script.

3.4 Front-End Web Application Framework

We will need to create a web application that is easy to use for any user. The web application
will need to have an interactive UI which will allow users to upload audio files and be able
to visualize the results of their analyzed audio. A front-end framework will assist in creating a
user-friendly web application in a timely manner.

3.4.1 Alternatives

The available alternatives include ReactJS, AngularJS, and Bootstrap. These are all very viable
options for the creation of a web application’s front-end. We have created specific criteria which
we have found to be important for the development of our front end. The criteria we have defined
are the process and difficulty of building a web application with the respective framework, how
fluidly the visual designing process works, how well the front end can connect to our backend
framework, and how low the learning curve of the framework is. We will discuss the research of
each alternative below.

3.4.1.1 : ReactJS
A commonly used library for front-end development by providing a Model-View-Controller
style of building. ReactJS supports reusability of UI components, which are easily expressed
as functions when programming. ReactJS also allows for a generally more simple process for
developing interactive UIs.

Pros
• Creation of web apps becomes easier than using pure HTML files.
• Offers reusable UI components.
• Performance optimizations from virtual Document Object Models (DOM).

Cons
• Model-View-Controller models have a learning curve.
• ReactJS’s syntax will have a slight learning curve



11

3.4.1.2 : AngularJS
An effective JavaScript framework that provides developers with a structured Model-View-
Controller style of website creation. AngularJS’s data binding allows for a unique synchronization
of data between any view and model components.
Pros

• Data binding allows developers to not worry about their view and model components
having issues.

• Document Object Models (DOM) do not require manipulation from developers.
Cons

• Model-View-Controller models have a learning curve.
• Large amount of available directives.

3.4.1.3 : Bootstrap
An open source CSS framework which is tailored towards informative development of websites.
Bootstrap is more commonly used for the creation of web pages, and not web applications.
Pros

• Available use of JavaScript plugins with jQuery.
• A wealth of documentation is available
• Great grid system for structuring web pages.

Cons
• More directed towards informative web page development, instead of web applications.
• Websites can be plain, and takes extra work to create a more customized product.

3.4.2 Chosen Approach
The chosen approach will be ReactJS for our front-end web framework as presented in [11, Tab.
4]. ReactJS is ideal due to its usability within JavaScript, making the general learning curve low.
ReactJS’s JSX syntax allows for a combination of Javascript and HTML, making for a very fluid
development process.

TABLE 4
Front-End Web Application Framework Comparison Table

Web App Devel-
opment Process

Visual Design
Process

Connection to
Backend

Low Learning
Curve Total

ReactJS 5 5 5 5 20

AngularJS with Python 5 4 5 4 18

Bootstrap 4 3 4 5 15

3.4.3 Proving Feasibility
To prove the feasibility of ReactJS, we will implement a demonstration of an interactive UI which
will require a file upload, and be able to run a test script. The ability to run a test script will
ensure that we will be able to connect our front-end to our machine learning scripts and model.
The front-end demo will also be useful to test the creation of our standalone application.

3.5 Back-End Web Application Framework
Our product will need a back-end web framework that connects a machine learning algorithm
and database to our web application. A framework is needed that will allow for scalability and
reliability. The web application will not be monolithic, so a lightweight framework would be best
suited for the product.
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3.5.1 Alternatives
The researched solutions include Flask, Django, and Spring. Choosing the correct framework
depends on some factors. These factors include the documentation size, the learning curve,
whether or not the framework is suited for a small web app, and the speed of the framework. We
will discuss the research of each alternative below.

3.5.1.1 : Flask
One of the most popular Python web application frameworks. This web application framework
is lightweight, and provides the ability to get up and running easily. There are many Flask
extensions and libraries to provide added functionality to a web application.

Pros
• Minimalistic without the lack of power.
• Flask has as low learning curve, so it is easy to learn and use.
• Routing URLs is simple implement.
• Very flexible and easily extensible with extensions and libraries.

Cons
• Relatively new, being released in 2010.
• Limited documentation and community.
• Limited features, compared to other web frameworks
• The flexibility can lead to a large difference between conventions, making it possible to be

difficult to use by new developers

3.5.1.2 : Django
A popular Python full stack web framework that allows for quick and complete development.
This framework is free and open source. Due to the monolithic amount of features, this framework
could be seen as overkill for a small web application. This framework can provide everything a
web application needs, including a front-end framework.

Pros
• Allows for fast development from the many plugins and customization.
• Secure
• Django is very scalable, supporting large-scale applications such as Instagram and Pinter-

est.
• There is a wealth of documentation.
• APIs are available through the Django Rest Framework
• Django is widely used and has a large community
• Offers benchmarks for checking the speed and bottlenecks of a web application.

Cons
• Large learning curve
• Components get deployed together
• Not ideal for static one pagers or microservices

3.5.1.3 : Spring
A popular framework for enterprise Java. This framework is under the Apache 2.0 license and
was first released in 2003. Enterprise-class applications are possible with Spring and it is very
modular. The most popular aspect of Spring is Dependency Injection, which is useful for complex
applications with classes that developers want to be independent.

Pros
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• Modular with the many packages and classes Spring provides.
• Provides support for Dependency Injection.
• Very popular with enterprise applications.

Cons
• Bigger learning curve than other frameworks.
• Not suited for smaller web applications with the large size of the framework.

3.5.2 Chosen Approach
The chosen approach was Flask, as presented in [13, Tab. 5]. This back-end framework is
lightweight, flexible and easily extensible. Choosing Flask will be the best decision for a small
web application that only requires hosting a machine learning algorithm as well as connecting to
a database to save audio files for further training.

TABLE 5
Back-End Web Application Framework Comparison Table

Documentation
and Community Learning Curve

Lightweight for a
Small Web Appli-
cation

Speed Total

Flask 3 5 5 5 18

Django 5 3 4 4 16

Spring 4 3 3 5 15

3.5.3 Proving Feasibility
In order to prove that Flask is going to be the best option for our software system, we will
create a demo website, host a machine learning model found on the internet, and create a demo
connection to a database using the top two alternatives for this technological challenge. The top
two alternatives are Flask and Django. This will test the performance of Flask being used as a
back-end web framework.

3.6 Database
When users upload their audio files for analysis, the machine learning algorithm will classify the
audio components that were found. We will want to store correctly classified audio in a database
for future training of the machine learning model. Therefore, the user will be asked to verify if
the machine learning model correctly classified their audio, and if they would like to submit the
audio for this further training.

3.6.1 Alternatives
The solutions that are possible include MongoDB, DynamoDB, MariaDB, and MySQL. Choosing
the correct database is difficult, and depends on many factors. These factors include the learning
curve, scalability and performance. We will discuss the research of each alternative below.

3.6.1.1 : MongoDB
A document-oriented database. It is distributed and easily scalable geographically and horizon-
tally for better performance.

Pros
• MongoDB is a schema-less database which gives us flexibility and freedom to store data

of different types.
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• Easy to access documents by indexing.
• When you have to handle a large data, you can distribute MongoDB to several machines.
• MongoDB has advanced features for ad hoc queries.

Cons
• MongoDB doesn’t support JOINs like a relational database.
• There is data redundancy in MongoDB. This results in increasing unnecessary usage of

memory.
• MongoDB limits the document size to a maximum of 16MB.
• You cannot perform nesting of documents for more than 100 levels.

3.6.1.2 : DynamoDB (Amazon Web Services)
Amazon DynamoDB is a specialized NoSQL database hosting service that fully supports key
values and document data structures. DynamoDB is provided by Amazon as part of the Amazon
Web Services portfolio.

Pros
• DynamoDB is easy to integrate with AWS Lambdas and API Gateway.
• It is secure with all the different ways AWS can secure resources.
• Boto’s SDK is pleasant and easy to use.
• No infrastructure needs to be managed.

Cons
• Not possible to use DynamoDB without an AWS account.
• DynamoDB does not let you dump large JSON blobs in a key value store above a certain

size.
• DynamoDB does not back up your tables for free.
• There is a higher learning curve compared to other database options.

3.6.1.3 : MariaDB
MariaDB is a branch of the MySQL Relational Database Management System. This database
alternative is commercially supported. It aims to maintain a high degree of compatibility with
MySQL.

Pros
• MariaDB supports parallel replication and multi-source replication
• MariaDB is free and open-source.
• MariaDB is fast and stable.
• Large-scale web applications have transitioned to MariaDB such as Wikipedia.
• Extensible structure and plugins allow for customization.
• MariaDB has progress bars for query progress.
• MariaDB can encrypt at the network, server and application levels.

Cons
• MariaDB is fairly new.
• Free database but online support is not free.

3.6.1.4 : MySQL
MySQL is one of the most popular databases for web-based applications. It’s fully multithreaded
by using kernel threads, and can handle multiple CPUs if they are available, which allows a
higher performance than other models. MySQL provides transactional and non-transactional
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storage engines, and has a high-speed thread-based memory allocation system. It also works on
many different platforms.

Pros
• MySQL is free to use.
• There are a variety of UIs that can be implemented.
• It can be made to work with other databases.
• Provides stability for large amounts of data.
• Widely used with a large community.

Cons
• MySQL is hard to automate.
• There is no built-in support for XML or OLAP.
• MySQL is not completely open source.
• MySQL is Oracle-owned instead of community driven.

3.6.2 Chosen Approach
The chosen approach was MariaDB, as presented in [15, Tab. 6]. This database is flexible, easy
to learn, easy to use, and provides great performance. Choosing this high performance database
will be the best decision for our web application.

TABLE 6
Database Comparison Table

Learning Curve Scalability Performance Total

MongoDB 4 5 3 12

DynamoDB 2 5 3 10

MariaDB 4 5 5 14

MySQL 4 4 4 12

3.6.3 Proving Feasibility
In order to prove that MariaDB is going to be the best option for our database, we will create a
Maria database and connect it to a backend framework to simulate a series of operations such as
uploading and deleting audio files. This will test the performance of MariaDB as a database.

3.7 Visualization of Results
Data can be very difficult to understand when not displayed in an intuitive manner. The critical
aspect of data visualization is to present visuals in a way that provides the user with the
most insights into the information as possible while maintaining simplicity. We will provide
users of our product with a pie chart containing the proportions of different audio components,
including biophony, anthrophony, and geophony, as well as a labelled spectrogram with classified
components displayed.

3.7.1 Alternatives
After careful study, we believe that the visualizations of analyzed audio will not be as large of
a challenge than we expected. We analyzed many visualization tools on the market and found
that mainstream solutions include Plotly, Matplotlib, and others. Both Plotly and Matplotlib offer
visualizations of pie charts and spectrograms, and we can easily switch between different options
for visualization if that is needed.
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3.7.2 Chosen Approach

The chosen approach was Plotly as presented in [16, Tab. 7]. Choosing this web-friendly
visualization tool will be the best decision for our web application. This tool is capable of
displaying the needed visualizations that our product will need and more.

TABLE 7
Visualization of Results Comparison Table

Visualizes Pie
Charts and
Spectrograms

Functionality Low Learning
Curve Total

Plotly 5 5 45 15

Matplotlib 5 5 5 15

3.7.3 Proving Feasibility

After conducting research on different visualization tools, we have found a solution and feel
that proving the feasibility will not be needed. Many options are equally viable and come down
to choosing any of them. In case the visualization tool needs to be changed, the difficulty of
switching a visualization library is very low.

4 TECHNOLOGY INTEGRATION

The building of our envisioned system consists of the following components. Starting with the
higher level set of challenges, we will need to solve the implementation and testing of training our
machine learning model, choosing the correct machine learning algorithm to suit our problem,
and the creation of a database. The next level consists of the main pieces of our website, being
the front-end and back-end development. Lastly, the previous levels connect to the creation of
the Standalone application and Web application which will produce our visualizations and the
results from the machine learning model’s predictions. The visualization of our envisioned system
is illustrated in [17, Fig. 1].
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Fig. 1. Visualization of Envisioned System

Our web application will come together by connecting our MariaDB and machine learning model
to our application with the back-end. The back-end of our web application will be developed with
the Flask framework. Flask is a Python framework, which will be useful when calling our python
scripts. Our front-end UI framework will be developed with ReactJS, and will be responsible
for the intractability of our web application. ReactJS will connect to Flask to perform necessary
interactions such as button clicks, file uploads, etc, which will then fire any functions required to
run our scripts. The standalone application will use an ElectronJS GUI to incorporate all of the
functionality that the web application will provide. Provided in this section is how the technology
will integrate with each other to produce our product and provide all of the needed functionality.

5 CONCLUSION

The problem that we are trying to solve is the time-consuming manual identification process
of audio components in recordings from various sites in Sonoma, California. Our solution is to
develop a user-friendly web application that hosts a machine learning model to automatically
classify these audio components. As a stretch goal, we will also be implementing a standalone



18

application for use on a laptop or Raspberry Pi. In order to get one step closer in making this
solution a reality, we have put together this technological feasibility document. This document’s
goal is to make sure that creating this project is technologically feasible. A summary of each
technical challenge we are facing, and what technology we have chosen to solve each respective
challenge is presented in [18, Tab. 8].

Proving the feasibility will continue in further testing. This analysis process allowed us to look
intently at each technological challenge and research what some of the best solutions are. Our
solutions to the challenges below will allow us to complete our project effectively and efficiently.
Our team is confident that we will be able to produce a product that saves researchers and citizen
scientists time with automated classification and an accessible user-friendly interface.

TABLE 8
Chosen Technology Summary

Challenge Chosen Technology

Machine Learning Algorithm Support Vector Machine

Training the ML Model TensorFlow

Standalone App GUI PyQT

Front-End Web App Framework ReactJS

Back-End Web App Framework Flask

Database MariaDB

Visualization of Results Plotly
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