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Introduction 
It is becoming ever more important to track and manage the biodiversity that lives on Earth. 
More and more animals and plants are becoming extinct everyday which can create a major 
impact on other parts of the ecosystem. The group that our team is involved with, 
Soundscapes2Landscapes, is a science-based project looking to further advance biodiversity 
monitoring in order to save the lives of plant and animal species. Biodiversity is the study that 
”refers to the variety of living organisms on Earth, how they relate to each other, their ecological 
function, and genetic diversity. All aspects of biodiversity are intimately linked to the functioning 
of ecosystems, where species interact with their physical environment. Biodiversity plays a vital 
role in many ecosystem functions, such as clean water, clean air, nutrient cycling, food 
production, and responses to disturbances, such as res.” [1] It is vitally important to conduct 
proper biodiversity monitoring, in order to understand the ever changing environments that 
humans share with plant and animal species. 
 
Our clients Colin Quinn and Patrick Burns are part of the Global Earth Observation Dynamics of 
Ecosystems Lab (GEODE). Colin Quinn is a PhD student and Patrick Burns is a Research 
Associate at Northern Arizona University. They work with Soundscapes2Landscapes to help 
achieve their biodiversity monitoring goals. Our clients use a specic type of monitoring called 
passive acoustic monitoring (PAM). This process allows more spatially extensive and 
continuous metrics for biodiversity. In Sonoma County, PAM has the ability to provide land 
managers and users with a better idea of animal species affected by development and 
conservation efforts. Our clients have assigned our team with the task of automatic sound 
identication from a soundscape, as currently sound identication is conducted in a manual time 
consuming way. 

Problem 
To understand the problems of the current implementation, the workow process will be 
discussed. First, soundscape recording data is collected from low cost audio recording devices 
that are placed in different landscapes across Sonoma County, California. Once placed, these 
devices record one minute of every ten minutes for three to ve days at each site. This has so 
far resulted in a total of over 500,000 minutes of gathered audio data.  The soundscape 
recording data then moves onto sound analysis where biodiversity can be identied along with 
the specic layers of biophony, geophony, and anthrophony. Once the identication and 
analysis are done, satellite imagery from the International Space Station is used to create visual 
representations of the surveyed sites. Finally, the satellite data and sound data are put together 
to create a species distribution model, which can be used to track locations of bird species and 
potential environmental changes in their ecosystems. 
 



The part of the process we are involved with is the soundscape manual analysis. Currently 
researchers would manually listen to audio les and draw boxes around various sounds. For a 
one minute clip, a researcher must listen to the clip, determine what the sounds are, draw 
boxes, and label each box with the corresponding audio component that is occuring. With noisy 
les, a researcher may spend over a minute going through a single le.  This tool is useful but 
takes too long for scientists to effectively research the biodiversity in Sonoma County, 
California. Because of the frequent recording of audio, the researchers have resulted in 
terabytes of sound data for each individual site. Additionally, our clients would like for 
volunteers, or citizen scientists, to be able to analyze their own les. For example if a volunteer 
is working out in the field and records some audio, there is no current way for this volunteer to 
analyze their file as most of the features of the current identification tool are closed to 
volunteers.  
 
Overall, the problems include:  
 

● The manual identication process is very time consuming. Terabytes of audio is 
collected from each site, and requires people to listen to the audio and manually draw 
boxes around the sound components being searched for.  

● Current interface is not easily accessible to volunteers. Soundscapes2Landscapes 
wants this tool to be able to be used by anyone, and the current interface is not very 
easy to navigate for non-tech volunteers. 

Solution 
Our solution to these problems was an application called the Soundscape Noise Analysis 
Workbench. This solution involves a user-friendly user interface that hosts a machine learning 
model. The goal of this application is to allow any user to upload their audio les for analysis. 
 
Overall, our solution will consist of:  
 

● User-friendly web application.  
● An ability to automatically classify different audio components in the inputted le using 

Neural Networks. 
● Calculated acoustic indices (data statistics used by sound researchers) for each 

uploaded sound file. 
● Visualizations of the analyzed audio components.  
● Table of audio components and acoustic indice values. 
● A way to export each models’ classification and the calculated acoustic indice values. 
● A standalone version of all the features of the web application for ofine use in the eld. 

 
The solution ingests audio les. Researchers from Soundscapes2Landscapes will use audio 
les that they collect with the low-cost audio devices being used around Sonoma County, 
California. We are using a machine learning algorithm to automatically classify different types of 



sounds in these recordings. Our machine learning model can accomplish the task of 
identification in a fraction of the time than current implementations, classifying an audio le in 
under a few seconds. The machine learning model requires training to accurately classify audio 
components. We have trained the model on previously classied audio data. This previously 
classied audio data consists of many audio les that have been labelled with each category of 
sound that we are looking for. The sound categories will include birds, cars, rain, wind, and 
others. Collecting data to train the machine learning model came from multiple sources, 
including open source data and data from Soundscapes2Landscape’s audio recorders. The 
results of this classication are visualized in a variety of ways. The visualizations include a 
labeled spectrogram, showing the classied components in the inputted audio, as well as a pie 
chart of the proportions of each sound category. These categories include geophony, biophony, 
anthrophony, and a no sound present category. Additionally a table of all the information 
collected from the analyzed file will be displayed. The solution will also be created as an 
application for ofine use in the eld. This application will provide users the ability to classify 
their audio without an internet connection. 

Process Overview 
In the beginning of development, our team decided to work within an Agile/Trello development 
cycle. Our team held weekly meetings to go over issues that surfaced along with tasks which 
needed to be completed for the coming week. The issues and bugs we encountered would be 
added to the weeks Github trello style project page. Finally we would assign the tasks to 
different team members, and were responsible for completing said task by our next team 
meeting. The main tool which helped our development cycle and version control was GitHub. 
Through development, our roles became apparent as what we were working on the most 
through each week. Steven was our team lead, but began to also take control of the overall 
process for the front-end development. Joshua worked thoroughly on the research and 
development of the machine learning models. Michael worked on the back-end API of the web 
application. Our roles were set, but this did not mean we couldn’t help each other's sections.  

Requirements 
From developing our planned solution to the problem our clients presented us with, we have 
created specific requirements that our envisioned solution needs in order to properly create a 
working final product. Our team has determined that this project contains these key domain 
level requirements: users will be able to upload audio les, then analyze the uploaded files, then 
see the results of the analysis visualized in a timely manner, and then export all results. 
 
From these key domain level user requirements, key functional requirements for the system 
were created. These requirements detail the specific features the product will provide our users 
when accessing the envisioned application. The application will ingest audio les, then use 
machine learning to classify the sound components in the uploaded file, then calculate acoustic 



indices, then display the results in multiple ways, then export these results, and finally an offline 
version of the application for fieldwork will be available. In addition to the specific functional 
requirements our product will need to solve our clients goal, specific non-functional performance 
requirements were needed for our product to succeed. The performance requirements include: 
uploading a one minute file should take less than 5 minutes, and should only take at most three 
seconds to complete a full analysis. As well as specific performance requirements our team 
realized one important environmental constraint featured in our planned system. Our clients 
work currently only consists of data from Sonoma County, California. Since the data only 
consists of Sonoma County data, it is not easy to guarantee a high accuracy from our machine 
learning model when data from other parts of the world is to be used with our application. 
 
After discussing with our clients the problem they are facing, we worked to find an envisioned 
solution to solve their problem. A specific design was created in order to finalize how the final 
product will be built. 

Implementation Overview 

Through our requirements acquisition, our clients helped to reveal the major problems which we 
looked to solve. The main problems which arose through our acquisition consist of the following:  
 

1. The clients currently use manual identification when analyzing their large storage of 
audio files, which has proven to be very time consuming. 

2. The current program, Arbimon, is not easily accessible to the client’s volunteers. 
3. The current analysis does not run efficiently on an HPC. 

 
The solution we have created for our clients is an application named the Soundscape Noise 
Analysis Workbench (SNAW). The SNAW consists of the following attributes:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1: Diagram of the Soundscape Noise  
Analysis Workbench System Components 

 
● A user-friendly web application and an offline 

application. 
● Utilizes a machine learning algorithm which can 

automatically classify specific audio components which 
are being searched for. 

● The online web application returns clear 
visualizations of the analyzed audio file. 
 
Our solution requires that the inputted audio files are in 
the WAV format, as the client’s audio recording devices 
collect and store data in WAV format. Once the files are 
uploaded, the application will then use a machine learning 
algorithm to start the identification process. The usage of 
a machine learning algorithm to identify sounds within an 
audio file solves problem (1) stated above. We plan to 
create a simplistic design for the web application to ensure 
that it presents a user friendly experience while 
maintaining full functionality for a complete analysis, 
creating a simple design that solves problem (2) stated 
above. Lastly, the creation of an offline application will 
directly solve problem (3) listed above, as it will be able to 

use the same functionality as the web application without the visualizations. The offline 
application will be better for analyzing bulk files on an HPC. 
 
The technologies we have chosen for the solution consist of the following: React, JavaScript, 
Flask API, and many Python libraries. Each of the technologies listed contribute and work 
together to create our product. React was used to create our web application and allow us to 
create a user-friendly front-end. The Flask API is used as the “glue” to connect our React 
front-end to our machine learning scripts. The Flask API will also be able to run the React 
front-end as a server which will receive API calls and present different pages through URL 
requests sent from the front-end. These technologies will be able to produce the tools we will 
need to finish the product according to how our clients expect it to be. To view more details on 
information for the specific Python and React libraries we have chosen to work with, please 
refer to the Technologies Appendix. 
 
 



Architectural Overview 
In the previous section, we discussed the implementation overview that our team has developed 
to produce our product. To understand the architecture of our system, we will discuss the 
high-level detail on how the Soundscape Noise Analysis Workbench will be built. Below are 
multiple diagrams of our system components [Figures 2,3,4]. 

 
Figure 2: Diagram Overviewing the S.N.A.W Server Architecture 
 
An outline of our Soundscape Noise Analysis Workbench server architecture is shown in Figure 
2. A Flask server runs the SNAW module. The server takes in inputs of either a directory of 
audio files, or a single audio file. The server connects to the libraries needed by each 
component of SNAW. The server sends data and receives data from our analysis module. 
Finally the server sends an exported file to the user. 



 
Figure 3: Diagram of the S.N.A.W.  Architecture’s Modules 
 
An outline of the Soundscape Noise Analysis Workbench’s architecture modules is shown in 
Figure 3. Taking in the inputted directory of audio files or a single audio file, the upload data 
module will handle the data and send the server locations of each file to the analysis module. 
The Analysis module uses the uploaded files and runs the Neural Network, Acoustic Indices, 
and Spectrogram Modules. These modules return the Data Structure as described in “Data 
Structure Description” to the Export Module and Visualization Module. The Export Module sends 
an export file to the user. 



 
Figure 4: Diagram of the Standalone Offline SNAW Architecture 
 
A diagram of the Standalone Offline SNAW architecture is shown in Figure 4. The component 
modules of the system work very similarly to the web application with a few differences. Firstly 
the workbench does not sit in a server but is instead a standalone python file. The libraries 
needed by each component are included in the file itself instead of being called by the server. 
Each module found in the analysis module is included in the offline file itself instead of being 
called by the server. Additionally the Spectrogram Module and Visualization Module are not 
included in the standalone application as the only output to the user is the exported file.  
 
Our product, the Soundscape Noise Analysis Workbench, will be developed in Python and 
Javascript. Python will be utilized for the back-end of our system with the microframework Flask. 
Our front-end will be developed using React, a Javascript library. Our offline version of our 
application will run as a single python script. Below we will overview the key responsibilities and 
features of each component of our system, which include: 

Upload Data Module 
The Upload Data Module is utilized to ingest audio files that will be analysed. The application 
ingests files in WAV format and stores them for further analysis. The user will be able to choose 



to analyze a single file or multiple files. This will be done by selecting the file(s) in the web 
application. 

Analysis Module 
The Analysis Module is used to take the ingested audio files and run multiple types of 
classifications on them. This includes running the audio files through a Neural Network to 
identify sound components, using a neural network to identify sound components, and run 
acoustic indices calculations. 

Export Module 
The Export Module will allow a user to export the analyzed results. The user will then be able to 
keep a log of the results on their local machine. The results will be in the CSV files. There will be 
one CSV file for the Neural Network classification as well as the acoustic indices calculations. 

Visualization Module 
The Visualization Module is used to visualize the results in a user-friendly manner. The user will 
be able to get an intuitive visual of what sound components were present in the file, where they 
were found, as well as how big of a proportion of the audio file was identifiable sound 
components.  

Standalone Offline Script Module 
The Standalone Offline Script Module is used to have a standalone version of the Soundscape 
Noise Analysis Workbench. This will be in the form of a script that can be run through a terminal. 
Using a standalone version of the application will be useful for anyone looking to analyze audio 
without a connection to the internet. The user will need to provide a path to a directory of audio 
files to be analyzed.  
 
These modules make up all of the functionality that SNAW provides. Now we will look into the 
communication mechanisms and information flows of our architecture. The web application 
connects the Upload Data Module, the Analysis Module, the Export Module, and the 
Visualization Module. The Upload Module will ingest the audio files and store them in a location 
that the Analysis Module will pull from. The Export Module will input the data from the Analysis 
Module and allow for the results to be downloaded. The Visualization Module also uses the 
Analysis Module’s output to create user-friendly visualizations for the end-user. The Standalone 
Offline Script Module is separated from all of the other modules. The control flow will be in a 
script that runs each classification offline. 
 
With the communication mechanisms and information flows discussed, we will discuss the 
influences from our architectural style embodied by our architecture. For our React App, we 



have modularized the application into many components. This allows for updating the code 
base in the future and debugging the application much easier. 

Module and Interface Descriptions 
In the previous section, we discussed the high-level details on how the Soundscape Noise 
Analysis Workbench will be built. To understand the lower-level details of our system’s 
architecture, we will explain each individual module in detail. 

Upload Data Module  
This module is used to ingest WAV files into the system. Files will be selected from a file 
chooser on the web application. An error will be shown if the user attempts to upload a file that 
is not accepted by the web application. The ingested files will be uploaded to a server to then be 
utilized by the Analysis Module. The Upload Data Module sits at the very beginning of our 
products architecture, as files are needed to move forward with the execution of the product. 
Below is a UML diagram of the Upload Data Module [Figure 5]. 
 

 
Figure 5: UML diagram of the Upload Data Module 
 
Input = A WAV file or multiple WAV files (unless we choose to accept other popular file formats). 
Output = An array of files uploaded to the server with a confirmation message to the end-user. 



Analysis Module 
This module will be used to run Neural Network classifications and acoustic indice 
classifications on the uploaded audio file(s). Once the Upload Module has completed, the user 
will be able to press the “Analyze Audio” button which will run 3 seperate classes and their 
methods to analyze the audio. The NeuralNetworkClassification classes will run our machine 
learning models on the uploaded audio file/s and return a JSON dictionary populated with the 
results from each of the classes. The AcousticIndices class will run many different methods to 
calculate the specific acoustic indices within the file, and then return a JSON dictionary 
populated with the result data. Upon completion of all three classes running successfully, the 
Analysis Module will then send a populated JSON dictionary to the Visualization Module to be 
processed and displayed on the front-end of the product. The results from the Analysis Module 
will also be sent forward to the Export Module. The Analysis Module is an important part for the 
overall product, as this is where the main portion of calculations on files is done for the product. 
Once completed, the product is then accessible through the Visualization and Export Modules. 
Below is a UML diagram of the Analysis Module [Figure 6]. 

 

 
Figure 6: UML diagram of the Analysis Module 
 
Input = Audio File(s). 
Output = JSON Dictionaries from each classification containing the results. 
 



The Analysis Module’s output references a data structure known as a JSON Dictionary, which 
will be one of our main data structures organizing our resulting data. JSON dictionaries utilize 
Key-Value pairs, in which a unique “Key” (string, integer, etc) is stored and will be attached to 
specific data or “Value” that we choose. We pass a single JSON object to the front end. This 
overall object contains a JSON object for each uploaded file. Associated with each uploaded file 
is a JSON object with the results of each of the four different back-end analysis functions. The 
UML Diagram below showcases the design that we have decided on for our JSON dictionary 
[Figure 7].  
 

 
Figure 7: Diagram of the JSON Structure 

Visualization Module 
This module is used to visualize the data needed by users in a user-friendly way. It accepts the 
results generated by the neural network and acoustic indice classifications from the back end. 
The Visualization Module will generate a certain number of extension panels imported from 
material UI, depending on the number of files uploaded by users. We have the 
ReceiveAndCalculate sub-module, which receives the dictionary that is passed by the Analysis 
Module running neural network and acoustic indices calculation. The dictionary contains three 
categories: anthrophony, biophony and geophony. The visualization module also has another 
GenerateGraph sub-module, which will calculate the number seconds each file contains each of 
the three categories respectively. This data will be placed in pie charts, one for each category. 
They all include the charts imported from the rechart package. This sub-module also takes the 
spectrogram from the results folder and displays it in cardmedia. The pie chart is a scalable 
vector graph. All the data in the table are from our calculation of classification dictionary and 
acoustic index dictionary. Here is the UML diagram of the visualization module [Figure 8]. 



 

 
Figure 8: UML diagram of the Visualization Module 

 
Input = Dictionary. 
Output = Spectrogram, Charts, Table of values of each of the acoustic index calculations. 

Export Module 
This module is used to export a CSV file that has been populated with result data from the 
backend. The Export Module will receive a JSON dictionary which is passed through by the 
Analysis Module which runs the Neural Network and acoustic indice calculations. The Export 
Module will be run by the ExportResults class, which contains methods for the Neural Network 
Classification and Acoustic Indices calculations. Using the data received from the JSON 
dictionary, the CSV that is created will contain the three different neural network classifications 
listed under Biophony, Geophony and Anthrophony. The CSV will also include the acoustic 
indices that were calculated from the file. The Export Module is found at the end of our products 
architecture as its main objective is to allow the user to retrieve the results of the product after 
the Analysis Module has been completed. Below is a UML diagram of the Export Module [Figure 
9]. 
 



 
Figure 9: UML diagram of the Export Module 
 
Input = JSON Dictionaries from the Neural Network Classification, and the Acoustic Indices 
calculations. 
Output = Data populated CSV files for each of the classifications and calculations. 

Standalone Offline Script Module 
This module will be used to run the classifications and acoustic indice calculations on the 
inputted files through a command line interface (CLI). The classifications will include the Neural 
Network models. The models are pre trained by the team and are ready to classify audio 
components. This offline script will allow users to use this model without a connection to the 
internet. This offline script will also allow users to classify audio files through a high performance 
computing (HPC) cluster. Our clients are looking to classify audio files on Northern Arizona 
University’s HPC cluster Monsoon. Below is a UML diagram of the Standalone Offline Script 
Module [Figure 10]. 
 



 
Figure 10: UML diagram of the Standalone Offline Script Module 
 
Input = File path to a single or multiple WAV files to be analysed. 
Output = The results of the Neural Network classification, and Acoustic Indices calculations as 
individual CSV files. 

Testing 
When designing a software system, many components tend to be developed independently with 
the intention to later be combined with other components to properly function. In order to ensure 
functionality of the entire system, a good measure is to test the system thoroughly. A great 
method for testing is known as Unit Testing, and is primarily used today in software design 
practices. Unit testing is the practice of testing each component individually. The components: 
upload, analyze, visualization, and export were isolated and tested separately from all other 
components. To execute unit testing for our software which consists of components written in 
both Python and Javascript; we used the unit testing frameworks unittest for Python, and Mocha 
for Javascript. From the unit testing completed we noticed unseen problems in the acoustic 



indices module. We added more error handling for broken files and files in the incorrect format 
so the website would not crash if uploaded. 
 
To verify that our softwares individual, independent components work as intended when they 
are connected to each other, integration testing is needed. There are many different modules in 
our application that interact with each other and depend on other modules to function correctly 
and display the right result to the user. It is prudent to test and make sure that all these different 
functions inside our modules correctly work with the other functions present, and ensure that 
each module functions in the expected manner.  We effectively managed our integration testing 
by creating testing ensuring that each of the inputs and outputs are handled in the correct way. 
In result of this testing we added error handling between components so that if one module 
failed, the other modules would continue to work as intended. 
 
Usability testing is one of the testing methods that makes our products better suited for 
end-users. The process is to allow our clients or users to try our products and interact with the 
functions of our products in various situations. Our goal is to see if there are any imperfections 
in our products or any opportunities to improve the overall user experience. Usability testing 
allows users or clients to understand how our website and standalone application work. Our 
main usability testing was done with our Clients interacting with the web and standalone 
application. The changes that were made had to do with the visualization module. The results of 
the classification were at first not easily readable to our clients. An update adding overlays to 
the spectrogram visualizations was added to increase the readability of the CNN classification. 



Project Timeline 

 
 
As shown in the gantt chart above, this is our entire schedule. In the beginning of our 
development process, some of our major milestones to complete were the MVP and Software 
Design Document. The MVP and Software Design Document were important to us as we 
wanted a good start on our product’s code base along with a great plan to be in place for how 
our product would be built. Once the MVP was finished, we continued to work on small features 
within each of the modules. We then came to the Phases 1-6, which entailed Development, 
training and improving our neural network, improving the front-end, implementing all modules 
together, and lastly testing and major bug fixes.  During the phases, we hit our second major 
milestone, which was the prototype tech demo, which allowed us to show our overall progress 
on our product. Finally as we pass the phases, we hit the last milestone being our product 
almost ready for deliverance. After our milestones had all been passed, we just had to stride 
ahead and finish our presentations, capstone poster, and final capstone documents.  



Future Work 
 
One of the ongoing desired features that our team has been looking to achieve is a Neural 
Network with proper accuracy to ensure the user’s are being given valuable results according to 
what may be present within their audio files. In order to achieve a Neural Network with high 
accuracy ratings, our team recommends more research be done to collect further understanding 
of the inner workings of a Neural Network along with proper audio data identification and 
collection to be used in training a Neural Network model. With proper resources, an accurate 
Neural Network model may be produced which would further the quality of the web application 
and standalone software. 

Conclusion 
The impact of human involvement on ecosystems has major consequences. More than one 
million plant and animal species are going extinct, with the majority happening within the last 
few decades (IPBES). There is an ever growing need to properly monitor the biodiversity in 
ecosystems, as well as the factors that impact biodiversity. Our clients Colin Quinn and Patrick 
Burns work with the science-based group Soundscapes2Landscapes to provide a more 
effective and efcient way to monitor biodiversity. They have tasked our team with building an 
automatic way to identify specic, individual sounds present in a soundscape recording. 
 
The problem that we solved is the time-consuming manual identication process of audio 
components in recordings from various sites in Sonoma County, California. Our solution was to 
develop a user-friendly web application that hosts a machine learning model to automatically 
classify these audio components. This solution allows researchers, as well as volunteers, to 
efciently classify the components of their recorded soundscape les. As a stretch goal, we 
implemented an ofine field-work application for use on a laptop in order for researchers in the 
eld to also use our application. 
 
This document's goal is to outline the specifics of how our team developed our envisioned 
solution. Using the requirements developed in our Requirements Document, our team has 
developed a software workbench that accomplishes all the requirements our solution must meet 
in a user friendly and timely manner. Our team was confident that we can provide our clients 
with a user friendly solution that solves all aspects of the problem outlined in our introduction. 
 
 



Glossary 
 
Anthrophony: Sounds produced by humans or human creations such as tools, vehicles, or 
people talking. 
 
Geophony: Sounds produced by landscapes on earth such as rain or wind. 
 
Biophony: Sounds produced by animals. 
 
Spectrogram: A visual representation of an audio file. 
 
Acoustic Indice: A statistic that summarizes the distribution of acoustic energies in sound 
recordings. 
 
CSV: Comma-separated values, commonly used with Excel Spreadsheets. 
 
WAV: Waveform Audio file format. 
 
Standalone Application: Software to be installed on a computer for use without an internet 
connection. 
 
UML:  Unified Modeling Language, used to create a standard way in visualizing the design of a 
software system. 
 
Neural Network: A machine learning model designed to mimic the human brain for predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A: Development Environment and 
Toolchain 

● Hardware: 
This application was developed on Windows. There are no minimum hardware 
requirements for effective development of this software. 
 

● Toolchain: 
Development environment was a python virtual environment  
We used JetBrains Webstorm and Visual Studio Code as IDEs. 
We used Node JS as the Javascript package manager for the web application. 
 
All needed python packages are located in the requirements.txt file in the 
Installation_Requirements repository on GitHub at: 
https://github.com/intelliChirp/Installation_Requirements  
 
All needed Javascript packages are easily attainable through Node JS. When setting up 
the web application locally, steps will be provided with NPM commands to gather all 
needed Javascript packages. 

 
● Setup:  

Each GitHub repository at our GitHub Organization IntelliChirp at 
(https://github.com/intelliChirp) contains a README that defines a step by step guide to 
install everything needed. 

 
The User Manual located on IntelliChirp’s website 
(https://www.cefns.nau.edu/capstone/projects/CS/2020/IntelliChirp-S20/documents.html) 
will contain in-depth step-by-step instructions for installing a Python Virtual Environment, 
installing Node JS, and all other setup instructions. 

 
Running Web Application Locally: https://github.com/intelliChirp/SNAW 
Standalone Application: https://github.com/intelliChirp/SNAW-Offline 
Neural Network Models: https://github.com/intelliChirp/Soundscape-Neural-Network 
 

● Production Cycle: 
Web Application: Start by activating your Python virtual environment. After editing some 
code in the front-end of the web application, run the command ‘npm run build’ in the 
\snaw-frontend\ directory. This will build a new version of the application with your 
changes. To run the application, navigate to the \snaw-backend\ directory and run the 

https://github.com/intelliChirp/Installation_Requirements
https://github.com/intelliChirp
https://www.cefns.nau.edu/capstone/projects/CS/2020/IntelliChirp-S20/documents.html
https://github.com/intelliChirp/SNAW
https://github.com/intelliChirp/SNAW-Offline
https://github.com/intelliChirp/Soundscape-Neural-Network


command ‘py api.py’. Once this finishes running, you will be given a URL to paste in the 
address bar of a browser to view the web application. 
 
Standalone Application: After making changes to the snaw.py file, save the file. After 
saving the file, re-run the terminal command: 
‘py snaw.py -i [AUDIO-DIRECTORY] -o [OUTPUT-DIRECTORY].  
Replace [AUDIO-DIRECTORY] with the directory of the audio files you would like to 
analyze, and replace [OUTPUT-DIRECTORY] with the name of the directory that you 
would like the exported CSVs to go. 


