TECHNOLOGICAL FEASIBILITY ANALYSIS

GNomes

MEMBERS
Jacob Christiansen
Allen Clarke
Yuanyuan Fu
John Jackson

MENTOR
Mahsa Keshavarz

CLIENTS
Dr. Toby Hocking
Christopher Coffey

November 5, 2019

Contents

1

2

3

Introduction
Technological Challenges
Technological Challenges

Technology Analysis

4.1 Selecting a genome browser

4.1.1 Metrics
4.1.2 Alternatives

4.1.3 Comparison and chosen approach

4.1.4 Proving feasibility

4.2 Selecting a database
4.2.1 Metrics
4.2.2 Alternatives

4.2.3 Comparison and chosen approach
4.2.4 Proving feasibility12

4.3 Optimal Ul framework .
4.3.1 Metrics
4.3.2 Alternatives . . .

4.3.3 Comparison and chosen approach

4.3.4 Proving feasibility
Technology Integration

Conclusion

11

12
12
13
15
15

16

17

1 Introduction

Team GNomes is working with Dr Toby Hocking to create PeakLearner, a
machine learning web app to process genomic data. The problem is that we
do not understand genetic diseases. To really learn about these, a massive
amount of data would have to be analyzed by biologist, charting what genes
are active in patients with diseases by hand as there is no automatic tool to
do this for them as of right now.

Our solution is to implement a machine learning algorithm that will
automatically go through this information to predict what genes are being
expressed. To make this as easy as possible to learn for biologists, we will be
building our solution on top of an existing genome browser, a common piece
of software for biologists researching genomic data.

Biologists’ usual approach to this problem is to hand-draw labels on
histone concentration charts (named for the protein responsible for gene
expression) to mark areas of high activity—“peaks”—in a genome. This
method is too slow and inefficient as there is an enormous amount of data to
sift through for even a single sample.

The solution Dr Hocking envisions is a quick, easy-to-use web application
for adding, examining, and editing peak-predicting models. To create this,
we are breaking the problem into three distinct subproblems which we will
cover at length in this document.

First, we will select a genome browser, is supplying an easy interface to
biologists, to solve this we are building our modeling in to a known tool called
a genome browser. We must be able to add a new plugin to one of these
interfaces to show our own information.

Our second task is to select a database for storing peak-models. This
model will need to update whenever a user updates an existing label as well
as add a new label. To create a system that can update as quick as possible,
we will be calculating new models on the NAU Monsoon High Performance
Computing (HPC) system. Not only that but the goal is to also have a
database to hold several models close to what the user is currently seeing and
access those before calculating new ones when the user makes an edit.

The final section, selecting a framework, is concerned with choosing a
Javascript front-end system that can communicate with Monsoon and the
database, integrate with our chosen genome browser, and quickly render peak
predictions to the screen.

2 Technological Challenges

Our project is specifically about bridging the gap between scientists and
statistics through machine learning. We are trying to show scientists’ DNA
data in a way that is easy for them to mark significant areas in the graph so
that the system can learn regions of interest and generate models to predict
the data. Currently, genome browsers can view but not modify the data,
so it is viewed in a browser and edited by hand. Starting with the major
challenges, we need to decide on what type of genome browser, database, and
framework we will be using.

e Genome browser. This display that users (scientists, researchers, doc-
tors) will be looking at needs to be incorporated into one of the known
genome browsers that users are already comfortable with, so they do
not need to learn another tool.

e Database. Another challenge will be storing a database full of these
models as we should not have to rebuild a model from scratch if we
have previously calculated a model that would fit the data provided.
We should have a handful of models ready to use and calculate new
ones for regions of interest if the existing models do not fit.

o Framework. Additionally, they will need a framework that allows us
to be able to use a mouse to add labels to their data to mark regions
of their sequencing data that contain a PeakStart, PeakEnd, Peaks, or
NoPeaks. This will generate a model for the data to learn where peaks
are in a given genome, which will be difficult to display.

3 Technological Challenges

Our project is specifically about bridging the gap between scientists and
statistics through machine learning. We are trying to show scientists’ DNA
data in a way that is easy for them to mark significant areas in the graph so
that the system can learn regions of interest and generate models to predict
the data. Currently, genome browsers can view but not modify the data,
so it is viewed in a browser and edited by hand. Starting with the major
challenges, we need to decide on what type of genome browser, database, and
framework we will be using.

e Genome browser. This display that users (scientists, researchers, doc-
tors) will be looking at needs to be incorporated into one of the known
genome browsers that users are already comfortable with, so they do
not need to learn another tool.

e Database. Another challenge will be storing a database full of these
models as we should not have to rebuild a model from scratch if we
have previously calculated a model that would fit the data provided.
We should have a handful of models ready to use and calculate new
ones for regions of interest if the existing models do not fit.

o Framework. Additionally, they will need a framework that allows us
to be able to use a mouse to add labels to their data to mark regions
of their sequencing data that contain a PeakStart, PeakEnd, Peaks, or
NoPeaks. This will generate a model for the data to learn where peaks
are in a given genome, which will be difficult to display.

4 Technology Analysis

In this section we will focus on three major design decisions that face us in
the beginning stages of our project. These are: choosing a genome browser
to incorporate into our web app, choosing a database to store models, and
choosing a Ul framework for our site. In each case, we will analyze the tools
under consideration, evaluating them according to specific metrics before
committing to a decision. (All metrics are on a scale 1-5.)

4.1 Selecting a genome browser

Gene recognition, which uses biological experiments or computers to identify
biologically-characterized fragments on DNA sequences, is the basis of genomic
research. Genomic browser technology is of great significance in gene sequence
analysis, genetic code interpretation, and complex disease research. We have
two prospective genome browsers; one is JBrowse, and the other one is UCSC
Genome Browser (hereafter UCSC).

4.1.1 Metrics

We will discuss these two genome browsers, evaluate them on the basis of
visual content, visualization, and software system architecture, and
select one to use.

e Visual content. To make sure the browser is clear and easy for users to
work on.

e Visualization. To make sure it can display all the useful information.

o Software system architecture. To determine if it is compatible and code
is available.

4.1.2 Alternatives

UCSC and JBrowse are two of the most widely-used genome browsers, and
each is distinct in its feature profile and its visual data types and visualization
methods.

The reason for choosing UCSC as one of the options is because UCSC
Browser is a graphical viewer optimized to support fast interactive performance
and is an open-source, web-based tool suite built on top of a MySQL database
for rapid visualization, examination, and querying of the data at many
levels [1].

And the reason for choosing JBrowse as one of the options is because it
is a genome browser with a fully dynamic AJAX interface, being developed
as the eventual successor to GBrowse. It is very fast and scales well to large
datasets. JBrowse is javascript-based and does almost all of its work directly
in the user’s web browser, with minimal requirements for the server [2]

Below, we introduce each browser, describe its advantages and disadvan-
tages, and assign a grade to it for each of our metrics.

1. UCSC GENOME BROWSER. UCSC is a powerful genome browser
developed by the University of California, Santa Cruz, which is used
to browse the genome and view genomic annotation information. It
does not make any conclusions by itself, but only provides users with
reference information. UCSC is currently used extensively throughout
the world, and many other genomic database projects, such as Ensembl,
use its genomic sequence data [3].

e Pros: UCSC Genome Browser is a very comprehensive genome
browser with more species and more complete visualizations. It
can generate genomic annotation images on the server and then
download the PNG image to the web browser.

e (Cons: The development of UCSC Genome Browser is still in the
era of webl.0, and the new generation of web technology and
partial refresh technology are not fully applied. Therefore, some
program-driven scripts in UCSC have certain restrictions on user
access frequency.

Table 1: An evaluation of the UCSC Genome Browser

Visual | Visualization | Software System
Content Methods Architecture
UCcsC 4 3 2

e Visual content. After entering the system homepage, you can
search for a gene based on gene name, keyword, etc., or you can
directly query based on the chromosome or nucleotide base range.
By scaling, the user can view the gene density of each region of the
entire genome from a macroscopic view, as well as microscopically
view the genetic information in a sequence region. Researchers
can add their own annotations from a scientific or educational
perspective. There are four main useful functions of visual content,
so we give 4 points in this part [1].

e Visualization. UCSC presents information in the form of a
track. The track is expressed as a horizontal or vertical strip.
Different areas on the strip represent different biological meanings
by different colors, lines, squares, etc. The main interface of the
system can be divided into three parts from top to bottom: search
query, visualization and track management. These are three useful
functions, but it operates with obvious stagnation, so we give 3
points for this metric [4].

e Software system architecture. The main development lan-
guages of UCSC are Java, Python, and C. The background database
depends on mysql, this is conflicted with our choices of the database
which is a serious drawback. The pros include that UCSC can be
well compatible with mainstream web browsers such as IE, Chrome,
and Firefox. UCSC is open source and supports multiple devel-
opment languages, which is good.But its storage database only
supports mysql, which conflicts with our selection in the database.
So we just give a score of 2 points for the first two advantages [5].

2. JBROWSE. JBrowse is an open-source genomic browser that applies
next-generation web technologies. Its main purpose is to apply advanced
local refresh technology in tools such as Google Maps to the genome
browser for a smooth visualization [2].

e Pros: JBrowse belongs to the next generation of genome browsers
and is based on the latest web technologies. In JBrowse, the server-
side load is greatly released, and the back-end server only needs
to send static files to the browser client. From the complicated
calculation work, a lot of calculation work is assigned to the front
end. At the same time, HT'TP cookies technology has also been
well applied to effectively record user preferences.

e (Cons: Although JBrowse puts the visualization work on the
browser side, its visualization method is just some ordinary HTML
markup. The front end needs to run a lot of script code when
drawing the image, and we have to consider the browser to the
new tag in HTML5. Compatibility issue.

Table 2: An evaluation of JBrowse.

Visual | Visualization | Software System
Content Methods Architecture
JBrowse 3 4 4

e Visual content. JBrowse can display the overall view of the
genome, as well as display gene span, tRNA, transposon, oligonu-
cleotide, protein binding site, enhancer, gene regulatory region,
non-coding RNA, point mutation, sequence variation information,
etc. Users can upload content that needs to be visualized and
support files in various formats such as GFF, GFF3, WIG, BED,
FASTA, Wiggle, BigWig, and BAM. It can satisfy our basic re-
quirements and it supports files in various formats. But it only
provides the genome information of humans, so we cut 2 points off
and give 3 points in this part [2].

e Visualization. JBrowse also visualizes track(Figure 2), providing
smooth dynamic movement and zooming, as well as navigation and
channel selection. JBrowse can display a variety of track views; in
addition to the basic view, users can display untranslated areas,
exons, intron structures, and so on. There are four main useful
functions, especially that it operates smoothly. So we give 4 points
in this part [2].

e Software system architecture. JBrowse is open source. The
main development languages are Javascript and HTML5. The
Javascript API is provided externally, and the data is formatted
by Perl. The front-end browser requirements are to support new
tags in HTML5 (such as canvas). The latest release version of the
browser requirements are Firefox10 + , Safari5 + , Chromel7+
and TE9+; the background server is mainly stored with json files.
Since json itself is a subset of Javascript-based, it can be seen as
objects and arrays in javascript, so faster front-end communication
can be achieved. It is relatively fast which is important for us
because we focus on improving the speed. But it needs to consider
browser compatibility. So it was reduced by only one point [6].

4.1.3 Comparison and chosen approach

Table 3: An evaluation of Berkeley DB

Visual | Visualization | Software System
Content Methods Architecture
UCSC 4 3 2
JBrowse 3 4 4

As seen in Table 3, we’ve determined that JBrowse offers the best
performance according to our analysis. First of all, it is compatible and user
friendly. Although it requires the latest HTML and web browser, it is in
common use. Also, its interface looks clean and operates smoothly.

4.1.4 Proving feasibility

We will prove that JBrowser is the best genome browser, that it is intuitive
for our labeling to add to, and that it will provide better user experience and
support files in various formats for users to submit in.

4.2 Selecting a database

We have large amounts of data that needs to be stored, including various
parameters for potential data models, how well a model fits a set, the labels
applied to a model, and the data in which we are modeling. Storing this data
in a database would be ideal as long as we can get it back quickly enough to
not affect the user from updating their data with labels. These models that
would be stored need to be updated as quickly as possible should a user add
any labels to the data.

4.2.1 Metrics

We are grading on speed to make sure our model is fast enough. We are
scoring on ease of use and ability to hold data because the chosen database
needs to be able to contain our model and be something that we can learn
and maintain.

e Speed. We are grading on speed to make sure our model is fast enough
to update as soon as a new label is added. The speed was tested by
recording the time it took to upload the data, and then by reading
speed comparisons online of the two systems [7].

e Fase of use. If the system is not easy to use and maintain, then we
will not be able to update it easily as new models are generated by the
Machine Learning Algorithm.

e Data Handling. If the database is to be a valid long term solution, it
should be able to hold the data necessary to form a model.

4.2.2 Alternatives

We have found a few database systems that have the potential to be used
in the system. The two databases we will consider are PostgreSQL (PSQL)
and Berkeley DB (BDB). We chose these because PSQL is capable of being
less structured than a standard database and BDB is designed for optimizing
speed.

1. POSTGRESQL. PostgreSQL was our initial thought because it is similar
to any other relational database but can hold JSON data types to
contain blobs of data. PostgreSQL is a powerful, open source object-
relational database system with over 30 years of active development
that has earned it a strong reputation for reliability, feature robustness,
and performance [8].

e Pros: The pros include PSQL’s ability to use a traditional relational
database system and use standard SQL queries. PSQL can also
handle JSON objects capable of holding any data type. It is also
scalable (able to handle very large amounts of data) which will be
necessary given the potential size of a bigWig file.

e Cons: JSON objects that can hold the abstract data is a relatively
slow form of structured data when querying. As the number of
stored models grows and a label on a dataset is updated, every

single model will need to be updated to see which one is the optimal
fit for the data. These updates are the largest area of concern
when trying to optimize the speed of the database.

Table 4: An evaluation of PostgreSQL.

Speed | Ease of use | Data handling
PostgreSQL 3 4 5

e Speed. PostgreSQL scored a 3 of 5 on speed because as the tests
grew larger and more complex, involving multiple layers of JSON
objects, the query times became longer. The speed was deemed
to be average in comparison to other Databases based on online
results, and thus scored a 3.

e Ease of use. This database scored a 4 in Ease of Use because of
its relational schema and SQL language, earning it 2 of 2 points.
The documentation can be sparse and confusing at times, which
is why it lost one point here scoring 2/3 in documentation and
combining for a score of 4.

e Ability to handle data. PSQL can handle JSON object capable
of holding any datatype. It is also scalable to handle very large
amounts of data which could be a possibility given the potential
size of a bigWig file. The Data handling scored a 5 as this was an
all or nothing category and PostgreSQL is capable of holding an
array, object or value we may need in the future.

2. BERKELEY DB. Berkeley DB was suggested by Dr. Hocking as it is
what he used in his previous research project to make sure data was
received fast enough. With that in mind, we decided to look into it
to see how it compared to a more known database system. Berkeley
DB is a family of embedded key-value database libraries providing
scalable high-performance data management services to applications.
The Berkeley DB products use simple function-call APIs for data access
and management. It enables the development of custom data manage-
ment solutions, without the overhead traditionally associated with such
custom projects [9].

e Pros: Speed was the biggest advantage of this database system.
The data is stored as key-value pairs and very easy to take out
as a value and turn into the necessary object. When running
it against the PostgreSQL database, both an insert and a select

10

statement were completed faster. The entire database is embedded
and capable of storing any Python objects, so it can store anything
we can possibly put in it. This is largely due to the existing bsddb3
Python library and modifications to the SegAnnDB code written
by Dr. Hocking for a previous project, which helps store only the
necessary information instead of the entire file [10].

e (Cons: Berkeley DB, as a NoSQL database, lacks the type of
relational system that many of us are familiar with using.

Table 5: An evaluation of Berkeley DB

Ease of use | Data handling
3 5

Speed
Berkeley DB 5

e Speed. Speed was the biggest advantage of this database system.
The data is stored as key-value pairs and very easy to take out
as a value and turn into the necessary object. When running
it against the PostgreSQL database, both an insert and a select
statement were completed faster. After running a few tests on this
database, it was clear that the speed was significantly faster than
the previous database, as shown below. Because the speed was
faster, BDB scored a 5 in speed

e Ease of use. The ease of use was not as apparent since the
documentation was lacking for BerkeleyDB in a similar fashion to
PostgreSQL, scoring 2/3 for documentation. Since the database
is not a traditional relational database, and lost one point in that
category, combining for a score of 3 in the ease of use.

e Ability to handle data. The system could handle all python
objects as data types, which is exactly what we need to store,
scoring a full 5 pts in the Data Handling category, which is reflected
in the table below.

4.2.3 Comparison and chosen approach

Table 6: A comparison of two database systems.

Speed | Ease of use | Data handling
PostgreSQL 3 4 5
BekeleyDB) 3 d

11

PSQL’s speed was suboptimal as we began to update many rows, especially
when JSON objects were involved. The SQL language was easy to use, but
the documentation for setting up a database was sparse and hard to follow at
times. The data handling however, was perfect PostgreSQL uses a relational
database system that we are familiar with and we can always store objects
inside of a JSON blob should they not fit into a conventional column.

After running a few tests on this database, it was clear that BDB’s speed
was significantly faster than the previous database, as shown in Table 6. This
score of 5 in speed by BDB is the reason we are choosing to use it over
PostgreSQL. The ease of use was not as apparent since the documentation
was lacking for BDB and the entire database is more complicated to use.
Lastly, the system could handle all python objects as data types using the
previously mentioned library and by adapting Dr. Hocking’s existing code,
which is also reflected in the table.

4.2.4 Proving feasibility

We are going to show that the BerkeleyDB database is perfect for storing the
data models in a similar manner to Dr. Hocking’s current SegAnnDB, which
is a BDB system that stores data models to detect breaks instead of peaks.
We will prove the speed is adequate by showing that a new model is applied
to the data as soon as new labels are applied. We are currently determining
exactly how fast is appropriate for the model to update. We will demonstrate
this by showing a model on a dataset, applying labels to it and observing the
model update to fit the new labels. in a reasonable amount of time.

4.3 Optimal Ul framework

PeakLearner is in essence a web application, so we will need a Javascript
frontend that is conducive to fulfilling the requirements of our project. In
order to create a dynamic, maintainable, and easily modifiable website, one
needs to use a Javascript framework.

4.3.1 Metrics

Since we want model updates to render to the page as quickly as possible,
our primary concern is a framework that is fast. Additionally, we want
a framework that is easily-usable (programmer-friendly) and adequately
functional. We made judgments by reading articles about how well the
frameworks fared in comparison with one another.

12

e Speed. Speed is how fast a framework renders changes to the DOM. We

want to minimize latency so that users get fast results [11].

e Fase of use. None of us are expert front-end developers, so this metric is

an estimate of the simplicity of learning the framework in question [12].

e [Functionality. Frameworks and libraries differ in how many options and

components they provide, as opposed to how many have to be imported
from third parties. This metric is a measure of the amount of options
the framework gives a developer [13].

4.3.2 Alternatives

The three most popular frameworks for professional projects are Angular,
React, and Vue.js. While React is more properly called a “library”—that
is, a collection of reusable code for solving Ul problems, but which doesn’t
structure the Ul itself—for simplicity, we will refer to it as a “framework.”
Although we believe each would be capable of satisfying the needs of our
project, a substantive examination of each framework is in order before we
commit to a final decision.

1.

ANGULAR. Angular is part of the MEAN stack of JS-supporting systems.
It was developed by Google, and is used by many large companies such
as YouTube and Apple [14].

e Pros: Angular uses the MVVM architectural pattern, which allows

allows two programmers to work on different portions of the code
at the same time, using the same data.

Cons: Angular’s large size makes it unsuitable for projects that
demand quick performance. It also has a steep learning curve. It
updates with extreme frequency, making it a challenge to keep
one’s knowledge current.

Table 7: An evaluation of Angular.

Speed | Ease of use | Functionality
Angular 3 2 5

Speed. Angular’s status as a fully-equipped framework is sure
to be advantageous for some projects, but its large size causes a
slower performance, making it unsuitable for our project.

Ease of use. Angular has a steep learning curve, and there are
many concepts to learn before one can begin building a UL

13

e Functionality. Angular has a built-in heavy library of compo-
nents, so it doesn’t require as much customization as React.

2. REACcT. Though more properly described as a “library,” React is
thought of as a rival to Angular and holds an even larger market share.
It’s maintained by Facebook and is used by many successful startups
including Airbnb and Uber [15].

e Pros: React has a huge community of users and a wealth of
packages, tools, and tutorials.React is easy to learn. It uses JSX,
which is similar to HTML. It’s highly modular and flexible, socode
can be reused in other parts of a project.

e (Cons: Since React is a library, it offers little in the way of predefined
structures. Programmers will have to make more decisions about
how to structure the Ul and manage the application they would
with a fully-featured framework like Angular.

Table 8: An evaluation of React.

Speed | Ease of use | Functionality
React)) 3

e Speed. React, as a lightweight library, is tied for the quickest
performance among the three frameworks, so it scores a 5.

e FEase of use. React uses JSX, a scripting language which is
similar enough to HTML that it shouldn’t present problems in
programming. In addition to learning JSX, one must learn to write
components, manage internal state, and use props for configuration.

e Functionality. React, as a JS library, offers only the essentials.
It must be combined with other libraries to build a complete UL

3. VUE.JS. Vue.js has a much smaller market share than the other two
frameworks and is maintained by a smaller team. Its developer, who
worked on Angular, wished to retain the parts of Angular he liked and
discard the rest [16].

e Pros: Vue.js is newer framework that is quickly growing in popu-
larity and reputation. Like React,Vue uses a scripting language
that’s similar to HTML. It’s well-suited to large-scale applications.

e Cons: As a smaller project with a lower market share, Vue.js has
fewer resources than the other two frameworks under consideration.

14

Table 9: An evaluation of Vue.js.

Speed | Ease of use | Functionality
Vue.js 5 4 4

e Speed. Vue.js, a lightweight framework, is at least as fast as
React.

e Ease of use. Vue.js’s learning curve is roughly equal to React’s,
and much lower than that of Angular. And, what it lacks in
community-shared knowledge it makes up for with ample docu-
mentation.

e Functionality. Like React, Vue.js is lightweight and focuses on
the core part of the library. Programmers will need to customize
the Ul to a greater degree than they would with Angular.

4.3.3 Comparison and chosen approach

Table 10: A comparison of three JS frameworks.

Speed | Ease of use | Functionality
Angular 3 2 5
React 5) 5) 3
Vue.js) 4 4

As shown in Table 3, we have elected to use React for our web app
frontend. Since Angular has the slowest rendering speed among the three,
we could eliminate Angular from consideration. React and Vue.js perform
about equally by our metrics, so the deciding factor was that our team has
more collective experience with the former. Therefore, we chose React. Even
though the functionality is slightly improved by Vue.js, we felt as though the
improved ease of use of React was the reason we chose to use it.

4.3.4 Proving feasibility

This is only a tentative conclusion. More research, prototyping, and discussion
(both among ourselves and with our client) is necessary before committing to
React. We will prove feasibility by using React to generate the data held in
the database for the tech demo. Ideally we will show that react is capable of
displaying data and creating a simple, intuitive user interface for scientists to
use. There is no better way for us to show React is usable than by using it to
create a demo.

15

5 Technology Integration

The first hurdle that we will cover in this section is that of usability. This
includes the issues of adding labels to the data to edit the generated model as
well as how biologists will be able to quickly pick up and use this information.
Both of these issues are solved by the choice of genome browser, JBrowse.
JBrowse is already a widely used genome browser, it also has built in devtools
for allowing custom click operations to happen inside of our code. This will
allow our project to be able to be picked up and used by biologists as quickly
as possible.

PeaklLearner

User Flow Chart

User Adds a Label Ul User Madifies a Label
denoting a Peak, no Peak \ denoting a Peak, no Peak r denoting a Peak, no Peak

or multiple Peaks | or multiple Peaks / or multiple Peaks

Managing Labels

User sees new updated
model displayed on top of
- their Data

- | o

The second problem is that of space. Bigwig files can approach multiple
gigabytes in size, and if we were to store them all, we would quickly run out
of space. To handle this we will keep only the samples currently being viewed
in the database and, when we need them to compute the model, access them
very quickly with binary searches.

Lastly, we examine the issue of speed. For this we have to consider the
database, server code, and access to Monsoon. We have determined that

16

NoSQL on the Berkeley DB database will be the quickest combination not
to bottleneck from Monsoon’s output. For the frontend, we’ve selected the
React JS framework so that at no point is information being held back from
the user.

6 Conclusion

Our project addresses a vacuum in the inventory of tools available to genomic
researchers; there is too much genomic data and not a good-enough tool to
process it to learn what genes influence genetic diseases. To create a web
app for this purpose, we will implement a machine learning algorithm across
NAUs Monsoon, and we will show the data in the form of a known genome
browser biologists already use.

Table 11: A summary of our conclusions.

Challenge Proposed Solution | Confidence
Genome Browser JBrowse 4
Database BerkeleyDB 5)
JS Framework React 3

This document has weighed the feasibility of such a web app. For a
genome browser, we have selected JBrowse, because of its large array of
documentation and its wide use in the real world. We selected Berkeley
DB for our database as it was shown to be the fastest of any we could find.
For our framework we are confident that React will give a quick and easy
implementation of all other needed parts of this project. Our solutions to
each problem are shown in Table 11. We determined the confidence level of
each choice by sitting down as a group and reviewing our own experience
with each subject as well as running short tests between each choice.

With the power that BerkeleyDB and Monsoon offer, we are positive we
will be able to provide our intended features quickly and without hold-ups.
Since JBrowse is widely used in industry, we believe many biologists can
quickly move to using our product without too much inconvenience. Lastly,
the React framework should supply us with a simple-to-implement architecture
to join these parts together. These solutions will build a sturdy foundation
for the implementation of our product. Our solution will give biologists the
information they need in order to learn more about these diseases that affect
and harm so many people throughout the world. This tool will eventually
lead to cures and new treatments. Overall, we are certain PeakLearner will
give biologists a new genomic tool that is valuable and easy to use.

17

References

[1] Wikipedia contributors. Ucsc genome browser — Wikipedia, the free
encyclopedia, 2019. [Online; accessed 3-November-2019].

[2] GMOD contributors. Jbrowse, 2016. [Online; accessed 3-November-2019].

[3] Genome Bioinformatics Group, 2018. [Online; accessed 3-November-
2019].

[4] D. Karolchik, A. S. Hinrichs, and W. J. Kent. The ucsc genome browser.
Current Protocols in Bioinformatics, 28(1):1.4.1-1.4:26, December 2009.

[5] Jian Shu. Genome browser compare list, 2019. [Online; accessed 3-
November-2019].

[6] M. Skinner, A. Uzilov, L. Stein, C. Mungall, and I. Holmes. Jbrowse: A
next-generation genome browser. Genome research, 19:1630-8, 08 2009.

[7] Integrant. When to use sql vs nosql, 2018. [Online; accessed 3-November-
2019].

[8] PostgreSQL. The world’s most advanced open source relational database,
2019. [Online; accessed 3-November-2019].

[9] Oracle. Oracle berkeley db, 2019. [Online; accessed 3-November-2019].

[10] T. Hocking, A. Williams, and A. Shrivastava. Seganndb, January 2019.
[Online; accessed 3-November-2019].

[11] Stefan Krause. Keyed results, 2018. [Online; accessed 4-November-2019].

[12] FusionCharts. Top javascript frontend frameworks comparison in 2018,
2018. [Online; accessed 4-November-2019].

[13] Daityari S. Angular vs react vs vue: Which framework to choose in 2019,
2019. [Online; accessed 4-November-2019].

[14] Angular. Features and benefits, 2019. [Online; accessed 4-November-
2019].

[15] React. Getting started, 2019. [Online; accessed 4-November-2019].

[16] Vue.js. Documentation, 2019. [Online; accessed 4-November-2019).

18

