

Sponsor:

Mentor:

SOFTWARE TESTING PLAN
DIGITAL ROLL

JASON ROBINSON OF BEAUTYMARK DESIGN STUDIO

ISAAC SHAFFER

APRIL 3, 2019

Tyler Boice Caleb Johnson Tyler Malmon Brandon Measley

Table of Contents

1. Introduction ... 1

2. Unit Testing .. 3

2.1 Tools and Methods

2.2 Unit Tests for Data Collection

2.3 Unit Tests for API

2.4 Unit Tests for Workbench

3. Integration Testing Modules ... 7

4. Usability Testing ... 9

5. Conclusion .. 11

1

1. Introduction

Tabletop Role Playing Games (TTRPGs) started in 1972 with a game called Dungeons and

Dragons. What started as a small community of people and one game has blossomed into millions of

players worldwide with many different games and versions, and today, there are an estimated 5.5 million

people who play TTRPGs in the United States alone. These games have become so popular that they have

spawned many web applications (e.g. Roll20, which has over 4 million registered users). Since TTPGs

can be played online, players are not required to be in the same location anymore. This has led to the

games becoming less personal, as players are either forced to leave their dice behind in order to use

virtual dice rollers. They could still use their dice but since no one can see what they rolled it could lead

to a state of distrust.

Our client, Jason Robinson of Beautymark Design Studio wants to create an application that

solves this problem. His application with solve this issue by using object detection on a mobile phone to

detect a player roll and send it to the group. Unfortunately, Mr. Robinson does not have the knowledge to

create the models needed for object detection. It is team Digital Roll’s goal to create a product that makes

it easy for Mr. Robinson to collect the data needed for training and produce trained models that can be

used on mobile devices.

The software we are creating is threefold: a workbench designed to create machine learning

models that can be used to read dice on a mobile phone, a data collection application that will provide

ease of use for collecting the massive amounts of data that machine learning requires, and an application

program interface (API) that will make sure all the data is suitable for the workbench to use. These

sections of our software will need significant testing to ensure that our product functions in the proper

way we expect it to.

 As unit testing is the process of testing small sections of code, it is incredibly important for

finding any bugs that can occur within individual actions. For our software we are using unit tests in

every major section of our software package. The data collection app will be tested to ensure that the

2

correct actions have been taken by each function. The focus of the API unit tests is to ensure that all API

inputs and outputs are valid, and the required data is accurately stored and ready for the workbench. The

workbench unit testing will focus on making sure it will be able to create models and that the user can

load, verify, and save any preferences they might want to add. The testing will make sure that the models

are created, accurate logs are created, and that the models can be converted to CoreML.

 Our integration testing is going to focus mainly on the ways that the API and workbench function

together. This is going to ensure the API gives proper data that the workbench needs to produce

functional models, as well as making sure the model can be used with the API in a testing environment.

The other piece of the workbench software that we are going to test is the model converter. This piece of

the workbench needs to be capable of producing CoreML models that can be integrated nicely with an

Apple application.

 In order to make sure our software is usable; we need to test our products with users to ensure it is

easily understood and easy to use. Since our client does not have extensive knowledge in machine

learning, we will be testing with users in a similar background. For the tests we want to give the user as

little information as possible to ensure that it can be used and understood with little explanation. This way

when we hand the product to our client, he has everything he needs. The main pieces we intend to test are

the data collection app and the workbench. The workbench is the most complicated part of our software;

therefore, we will focus our usability testing more toward the workbench than the data collection

application.

 Our integration testing focuses mostly on the interactions within our software, making sure that

the critical pieces of software are really meshing together in the ways that we want them to. We focus on

the API because it is the piece of the puzzle that fits into almost every other aspect of our software. The

workbench is secondarily focused here because it needs to work well with the API as well as converting

the models it creates to CoreML so that the models work with the final expected implementation of our

models. For usability, we are focusing on the two pieces of our software e that will be directly interacted

3

with by users. The data collection app needs to be understandable by users to the point that they can get

work done with it in a timely manner that doesn’t require much training. The workbench is the biggest

part of the software that requires interaction, so making sure that it is understandable with the

documentation provided is of key importance.

2. Unit Testing

In software engineering a unit is the smallest section of code that can be ran to perform some

action. Often in programming units are any of the functions and methods created for the project. As

functions are able to be run independently of each other and lend well to a modular structure, they can

easily be executedone at a time with isolated parameters. This is what leads to unit testing. By selecting a

particular function and giving it inputs, one can test the outputs in a highly controlled setting. This is

useful for testing a functions actual outputs against its expected outputs. Additionally, it allows

programmers to conduct negative testing by giving a function incorrect parameters to test the robustness

of their code. Overall unit testing is an excellent tool for breaking down the components of one’s code

and help create more dynamic software. For these reasons we will be using unit testing on various

methods and modules in our project.

2.1 Tools and Methods

There are many possible ways to facilitate unit testing for software. The method our team plans to

use focuses on the two major coding languages we have implanted our project in Swift (in Xcode) and

Python. For Swift we will be using the built-in unit tester for the Xcode IDE (Integrated Development

Environment). This allows for direct access to all the functions in our app without needing to install other

packages. Furthermore, it will allow for more detailed debugging due to the testing reports Xcode

automatically generates. For Python we will use Pytest, which is a testing module that provides many

basic functions to help manage unit testing. Both Xcode and Pytest provide methods which allow

developers to create unit tests through a method of test and assert. The test is a function created

4

specifically to test many of the aspects of a single function, while the assert statements are within any

given test function. Asserts work as a conditional statement that returns true if the function when ran

matches your expected output and false if it does not match. With these two testing packages we plan to

generate basic tests for all our necessary functions.

2.2 Unit Tests for Data Collection

The Data Collection we are creating will need to have many of their basic methods tested. This

will ensure that they are generating the correct type of data before passing it off to our API.

2.2.1 Data Collection Units

Function Name Inputs Outputs Description

getImageSampleBuffer - Buffer:

CMSampleBuffer
- UIImage ORnil Captures an image and returns it

readAccelerometer - none - Float x
- Float y
- Float z

Reads and outputs the

accelerometer data off the phone.

boundingBoxPressed - Sender: Any - none Draws rectangle from two

touchpoints

sharePressed - Sender: Any - none Sends image, accelerometer and

label data to API

Table 1: Data Collection Units

2.2.2 Data Collection Tests

Using Table 1, the following functions for the data collection units will be tested:

getImageSampleBuffer: We will be testing input values from the (Compressed Media)

CMSampleBuffer to ensure that the media passed into the function is indeed an image and

not some other form of media such as video, music, or audio. If the buffer contains an

image the output should be an image and otherwise it will return nil.

readAccelerometer: We will be testing the outputs to ensure valid orientations of type float are

always returned when accessing the phone’s accelerometer.

5

boundingBoxPressed: We will be testing the range of inputs so the user cannot define a box with

parts outside the image. Additionally, this function will test to ensure two positions have

been assigned to be the corners of the bounding box.

sharePressed: We will be testing that an image has been taken, a snippet xyz accelerometer has

been recorded, a bounding box has been drawn, and that labels for dice size and face are

selected. This will ensure values are accurate for our API. Once the API returns a file, this

function will check the file type and send it to an external folder.

2.3 Unit Tests for API

Function

Name
Inputs Outputs Description

importer - picture: file handle
- xAccel: float
- yAccel: float
- zAccel: float
- sizeLabel: int
- faceLabel: int
- bndBox: float array

- none Handles input data passed to function. Converts

data into strings before passing parameters to

convert

convert - image: string
- xvec: string
- yvec: string
- zvec: string
- size: string
- face: string
- bndbox: string

- none Writes and formats the strings into a XML file.

output - outputFile: file handler - outputFile Returns the generated XML file

Table 2: API Units

Using Table 2, the following functions for the API units will be tested:

Importer: We will be testing the inputs given to the function. All inputs should be within

acceptable bounds. The picture should be of a jpeg format. The accelerometer variables

should be in the valid range of -1.0 – 1.0 for all three inputs. The size label should be one

of the seven possible dice sizes (4, 6, 8, 10(singles place), 10(tens place), 12, 20), and the

6

face label should be any number between 1 and the dice size. Lastly the bounding box

should consist of four float numbers, with the first two numbers being the x and y

coordinates of the first corner of the box and the second coordinates two being the

coordinates of the second corner of the box.

Convert: We will be testing if a new blank xml file has been successfully initialized for this

function. Furthermore, we will test to ensure the inputs are written into the file.

Output: We will be testing that the file we are outputting has all acceptable XML tags within it

and that the file itself is not empty. This will ensure we are always handing off a valid

XML file to our workbench.

2.4 Unit Tests for Workbench

Many of the functions we use in our workbench are based off TensorFlow and are already

rigorously tested. Therefore, we have decided to primarily unit test the functions that we have specifically

created or modified to better match the functionality of our workbench.

 2.4.1 Workbench Units

Function Name Inputs Outputs Description

load

- pref_path:

filehandle
- none Gets config file and sets up workbench

based on preferences in file strings

before passing parameters to convert

save - save_path: file

handle
- none
(prints save

information to

console)

Saves an updated config file and

changes old preferences.

run_export_tfserving - weights: string
- tiny: output:

string
- classes: string
- image: int

(img size)
- num_classes:

int

- none
(creates and saves

models)

Returns the generated XML file

7

export_coreml - output: string - none
(saves CoreML

model)

Converts a TensorFlow model into a

CoreML model

Table 3: Workbench Units

2.4.2 Workbench Tests

Using Table 3, the following functions for the workbench units will be tested:

load: We will be testing to ensure a valid config file was passed to the workbench and we will

test to ensure that the config file is formatted correctly. The testing of this function will

ensure that users cannot pass an invalid config file that would prevent the process of

creating models.

save: We will be testing that all preferences have indeed been updated. Additionally, we will test

to ensure that if a file already exists with the same name as the new preference file, that

the new file will not overwrite the old. Rather the new file will use an incremented number

to ensure no data is lost.

run_export_tfserving: We will be testing this function to ensure proper logs are generated when

this function runs. This function will be generating (You Only Look Once) yolo machine

learning models.

export_coreml: We will be testing to ensure that a correct TensorFlow model is created with

matching parameters to the type of information we collected in our API.

3. Integration Testing Modules

After we finish our unit tests and have verified every component of our product works, we must

ensure individually tested pieces can function together as a whole; to do this we will use integration tests.

Integration testing is a series of tests to expose defects in the interfaces of the software and the interaction

between the integrated parts of the system. For our project there are many working parts that save data for

other modules to read and utilize in their own process. As such, integration testing is necessary to

8

establish that the data is being saved correctly and can be used by different components of the program so

it does not interfere with the expected operation. In the case of our project the main two components are

our API and workbench which will need integration testing in order to see if these two major pieces can

work together as a whole.

The API is designed to produce data that can directly be used as input into the workbench or for

AI models. As such, the main focus of integration will involve that process. In addition to this the

workbench itself features a CoreML converter module which can be tested independently and thus should

also be tested for its ability to integrate.

3.1 Integration Testing Modules

3.1.1 API to Workbench

In order to verify the integration of the API and workbench the following is necessary. First the

API should produce data that can be immediately used by the workbench without any extra conversion

needed. Lastly the workbench should then be able to complete all unit tests involving data from the API.

The method for testing this will require the API to produce a series of varied pieces of data so that this

data can be placed somewhere the workbench can locate. The workbench will then be tested for full

functionality on the data provided and the expected outcome will be a showcase of full functionality and a

working AI model created from scratch via the data provided. A working AI model in this case will be

one that can demonstrate having learned from the data provided.

3.1.2 API to Model from Workbench

The API data used for training the workbench should also be immediately usable for testing with

any model produced by the workbench. The test for this would have the workbench produce a saved

model and then it would test this model against various pieces of data that came directly from the API, so

long as all data is fully usable and shows some amount of correlation to the given training then the test

will be successful.

9

3.1.3 Workbench to CoreML converter:

The CoreML converter on its own should be capable of taking any valid saved model of .pb

(TensorFlow model) or .h5 (Keras model) format and converting it into an Apple CoreML model. Since

the focus of the workbench is to output a saved. pb model, this is where integration testing comes in play.

To fully test these two parts interaction the test would have the workbench produce valid .pb which then

the CoreML converter will convert and output as a saved .coreml (Apple CoreML model) which will then

be tested to make sure the conversion worked and training was transferred.

4. Usability Testing

After the integration testing is done and we have a functional product that meets our

requirements, it is critically important that our client knows how to use it. Once we hand our product to

our client, it is almost useless if he does not know how to use it. As developers it is easy for us to use and

understand the product because we created it; therefore, we should not be the ones to determine the

products ease-of-use.

Usability testing is the perfect way to test how easy our product is to use, because it gets the

product in the hands of the end user so they can give feedback. The primary purpose for usability testing

is to understand the perspective of the user, by having them use the product and so we can alter the

product based on their feedback. This way we produce a product that we know is easy to use and

understand.

Our product is divided into three portions: the data collection app, the workbench, and object

detection app. Since the object detection application is there to prove the models created from the

workbench are functional, it is not a priority that the app is easy to use. Instead we will just test its

functionality with multiple models on multiple phones to verify that it’s compatibility with other iPhones

and iOS versions. For the other two portions of our product, the workbench and data collection app, we

will be conducting in-depth usability testing. The usability tests that we conduct feature a member of our

team acting as a proctor and a user that will test the product. For our tests we want to use users that have

10

the same knowledge as our client so we can make sure someone with his background can understand and

user the product without us walking them through it. After considerable amounts of usability tests with

users, we will conduct a final usability test with the client to verify its ease of use.

4.1 Data Collection App

Since the data collection app is simple, the testing for it will be basic. Our users will not need any

pre-existing knowledge to use the app, so we will sample random users. For some of the users we will

install the application onto their phone, while others we will have them test on a phone with the

application pre-installed. The person giving the test will inform the user the purpose of the application

and give them a document on how to use the it. Then we will supply a polyhedral dice and give the user

no additional information. The user will then be instructed to vocalize what they are thinking as they use

the app: Is it easy to use? Do they have any questions? Is anything unclear? If the user needs help, we will

not assist them unless it is obvious, they will not figure it out. By not helping the user, we will be able see

their thought process and determine why the issue is arising. The person giving the test will observe how

the user uses the app: What do they attempt to click on? What do they take a while to figure out? Where

do they struggle? After getting feedback and walking the user through the app, we can determine what

issues and errors arise so we can fix them to ensure we make an app that our client will not have any

problems with.

4.2 Workbench

One of the requirements described in our requirement specification document, is the user for the

workbench is expected to have basic knowledge in file directories and command line experience but does

not need any knowledge in machine learning. Therefore, the users we select will have basic experience

with command line interfaces. The tests will be conducted over a communication program such as

Discord or Zoom, so the user can screen share with the person conducting the test. Like the data

collection app, the user will be told what the workbench does and be given a document containing all the

11

instructions needed for installation and usage. As they work their way through the document, the proctor

of the test will ask the user to express what they are doing, thinking, and ask the same questions we asked

for the data collection application. The workbench is incredibly complicated and has many components.

Although all the components are laid out in the document, we realize it is easy to get confused. We will

let the user struggle but will assist them if they seem stuck. It is crucial that the feedback is honest and

that we get a wide variety of users so we can modify the document and workbench to be as simple to use

as possible. These tests are also crucial because the installation process is long, and we have only

conducted it on a handful of tests. Having the users test on their personal machine allows us to see if any

errors or issues arise with certain hardware/software restrictions.

After we have tested on enough people that we feel we have an easy to use application, we will

conduct one or two tests where the user walks through the entire workbench from data collection to object

detection to ensure we have a seamless product. Finally, we will conduct a final usability test with our

client to verify it’s easy of use. We have been in constant contact with our client and he has confirmed

that the interface of the comments of or product are good, but he has not yet used them. It is crucial to

conduct a usability test on our client as this product is intended for him and he should know what to

expect before the final turnover. We will also make sure that this test is conducted at least two weeks

prior to delivery, so we have amble time to modify the product to his liking, and it is ready for product

delivery.

5. Conclusion

At the end of the semester we will produce a product that will help our client create an application

that improves the experience of millions of TTRPG’s players. This product will allow our client to create

polyhedral dice classifiers by using our data collection application, workbench, and object detection

application. With these classifiers our client will have the ability to create an application that not only

12

allows online players to roll their own dice, buts also improves the overall experience help in-person

players, such as players that are blind or players that want to integrate technology into TTRPG’s.

In order to produce a product for our client that will be as error free and easy to use, we are going

to be implementing several forms of testing: unit testing, integration testing, and usability testing. For unit

testing we will test the major functions of the major components of our software. It is important to make

sure that errors or fraudulent data is not making its way through our workbench, as well as ensuring that

each section is creating and handling data in the correct way. For integration testing we will make sure

our API works with both the workbench and the models the workbench creates, by verifying the data is

usable by the workbench and testing the models. We will also ensure that the workbench works with the

CoreML model converter so the default models that are created can be correctly converted for use with

Apple products. Our usability testing will be focused on the two aspects of our product that require user

interaction. We will verify that the data collection app is easy to understand and quick to use for users

who have no experience with the app before. The workbench is the most important thing that we need to

have tested for usability. As the core of our product, the workbench needs to be capable of being picked

up by someone with little experience with command line interfaces and have them understand and use the

workbench with only a helpful document. At the end of our testing we feel that our extensive efforts will

produce a product that will be near error free and easy-to-use, as we are going to ensure the internal

components function together, and the user side is compatible with users who have never seen our

systems before.

