

Computer Science Capstone Design
Assignment: Software Design Document

Introduction
After having spent much of CS476 specifically trying to avoid committing to “implementation

specifics” too early in the requirements specification phase, we are now ready to get to work on

actually implementing the product. It’s time to design some code!

The design specification is a description of your project's overall architectural design as well as the

design of each major module. It is essentially the blueprint for your final product. If it is complete

and well-executed, you should be able (in theory, at least) to send this document to any software

development outfit and – without having anything more to go on – they would be able to realize

your blueprint. As many software companies found out the hard way during the brief “software

outsourcing to India” craze early in the last decade, reality is a little different: even with a very

detailed software design specification, there are many tacit design details in the “context” of the

design that are hard to impart to an outside team. In any case, a strong software design document

serves to force you to make your implementation plans very explicit, and thereby often exposes

problems in your envisioned architecture in plenty of time to think them through…rather than

discovering them the hard way as you would if you had just started hacking away. Essentially the

“blueprint” metaphor is pretty much right on: just as a blueprint allows others (colleagues, builders,

structural engineers, the building department) to understand and evaluate your intended construction

of a house, so the Software Design document allows careful review and evaluation of your

implementation plan.

Ensure that you update this document as your project progresses, so that it remains a high-fidelity

representation of your actual design. In fact, you can utilize most of this document again in the “As-

built report”, that is deliverable as the final project report, and that documents the final software

architecture and use/maintain it.

This assignment write-up assumes that you will review your software engineering materials for

details on how to clearly specify architectural and module designs; the content outline focuses on

what should appear, not on how to actually create and present it.

Software Design Document Content Outline:

Cover Page

The customary cover page with the document title, your team's name and logo, team members,

sponsor and mentor names, and the date. The document title should be annotated with some

indication of which revision of the document this is (for example, "Version 1" or "Version 2.3").

Table of Contents

The contents of the document, and the page number on which each section begins.

Introduction (about 1-2 pages)

As always, every document you produce has to efficiently and clearly introduce a naïve reader to

your project. You can recyle the intros that you’ve evolved last term for your other documents, just

somewhat edited/extended/re-focused to serve as an intro to a Software Design document. After

generally motivating and introducing the project and your planned solution, you’ll want to focus

add in a brief overview of the key user level requirements, the functional/performance requirements

that you distilled from those, and any environmental constraints that you need to observe. Thus,

the second half of this section presents the key pieces of your Requirements in condensed form.

A successful introduction will leave the reader feeling that the project is interesting,

necessary/useful, and that the solution vision is exciting. More practically, the reader will also have

a solid view of the requirements and constraints that this implementation must meet. This sets the

stage for this document by providing a framework within which to understand and evaluation the

architectural specifications that are coming up.

Implementation Overview (about a page)

Before you dive into real architectural details, you want to paint a big picture of what you have in

mind and the technologies that you’ll be relying on. Start by referring again to your solution

vision, i.e., what it is that you will be building to solve the client’s problem (a smart embedded

robot controller, a cloud-hosted Web2.0 application the scales easily and flexibly, whatever). Then

go ahead and introduce the overall approach you’re taking: are you using a producer-consumer

pattern, what software frameworks or packages you’ll be using and what each of them contributes,

etc. It’s like introducing the names and roles of the player on your team before the real game starts.

This just gives the reader a general sense for the tools and techniques you’ve chosen for getting the

job done.

Architectural Overview (about 2 pages)

Now it’s time to get into some high-level detail about how the system will actually be built. This

section should consist of two parts: an architectural diagram of your system's high-level

architecture, and a discussion of this architecture. The architectural diagram should focus on the

most important of the system's components, while the discussion should explain: (a) the key

responsibilities and features of each component, (b) the main communication mechanisms and

information/control flows of the architecture, and (c) the influences from one or more architectural

styles embodied by this architecture.

The Architectural Overview should leave the reader feeling like they have a pretty good overall

understanding of what your system is doing, computationally speaking, to produce the desired

behavior. It provides the introduction to the really nitty-gritty description of software components

that is the meat of this document.

Module and Interface Descriptions (about 6-8 pages)

For each module in your architecture, provide a detailed design description consisting of the

following information: (a) a short natural-language description of the responsibilities of the

component and how it fits within the larger context of the architecture, (b) a UML class diagram of

the classes involved in this component, or -- if your system does not adopt an object-oriented design

-- a diagram of the sub-programs that the component consists of and how they are related, and (c) a

description of the public interface of the component that explicitly outlines the services that the

component provides -- for an object-oriented component, this will necessitate you elaborate on the

public methods (along with the return types and parameters) for the classes that this component

consists of.

Implementation Plan (about 1 to 2 pages)

Provide a design-centric implementation timeline for your project; in other words, a schedule that

focuses on the implementation of each component. Include a graphical display, such as a Gantt

chart, that shows when you plan on completing work on the implementation of each module, its

testing, and its integration with other components. Given that you have multiple team members, it

would be surprising if you didn’t have substantial parallelism in your chart, with multiple modules

being worked on at any given time. In the narrative that goes with your Gantt chart, briefly walk us

through the major development phases indicated in the figure and give any additional detail on

scheduling or non-visible plan details. If possible, find a way to convey assignments of work to

individual team members, either in the Gantt chart itself, in some sort of simple table presented

subsequently, or in the descriptive narrative.

Conclusion (about half-1 page)

Every document has to have a conclusion…preferably a happy one. Having been buried in the

architectural details, the job of your conclusion is to remind the reader of the big picture value and

importance of the project, to summarize what was discussed in this document, and then say

something about how it contributes positively to the project outcome.

DELIVERABLES
A complete software design document draft, professionally presented in hardcopy to your CS
faculty mentor on or before the date shown in BBlearn. Since this is a draft, you don’t need to
bind it; staple is okay.

A final hardcopy document, professionally presented in hardcopy to your CS faculty mentor on or
before the date shown in BBlearn.

Important Notes:

• The draft document is the first deliverable, and will be graded with exactly the similar
completeness/quality expectations as the final document, but for fewer points. The final
deliverable will be re-graded using the same expectations, but for 100 pts.

• You must include your marked up draft document to your CS faculty sponsor when you
submit the final document; part of your final grade depends on how well you addresses
critiques from the draft review.

	Introduction
	Software Design Document Content Outline:
	Cover Page
	Table of Contents
	Introduction (about 1-2 pages)
	Implementation Overview (about a page)
	Architectural Overview (about 2 pages)
	Module and Interface Descriptions (about 6-8 pages)
	Implementation Plan (about 1 to 2 pages)
	Conclusion (about half-1 page)

	DELIVERABLES
	Important Notes:

