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1. Introduction 
The mission of the USGS Astrology Center (USGS) is to further our knowledge of the 
solar system through their research into planetary cartography, geoscience, and remote 
sensing. Their responsibilities include the development of a software toolkit for working 
with planetary images called the Integrated Software for Images and Spectrometers 
(ISIS), participation in mission planning, and the archival of all NASA planetary image 
data. USGS maintains the Map Project On the Web (POW) website to facilitate the 
public and scientific distribution of these images. The site allows for the selecting of 
images from the planetary database and utilizing their in-house processing cluster to 
apply desired ISIS tools onto the image.  
 
Our clients, Scott Akins (USGS IT Specialist) and Dr. Laura Jay (USGS Research 
Scientist) have brought us on to upgrade the current processing pipeline that lies 
between the user selecting images on the POW website and processing on the POW 
cluster. Currently, after selecting the images, the user is presented with prebuilt options 
for modifying the images. These options utilize a set of difficult-to-maintain python 
scripts that offer only a static subset of options. The images selection and options are 
then handed off to an external scheduler within the processing cluster.  
 
Pypline will replace the existing POW pipeline with software to dynamically created 
image processing workflows to be utilized by a new workflow management tool 
deployed at USGS. Airflow, our recommended management software, allows for 
workflows to be broken down into the individual processing steps and submitted as 
python scripts that are unique to each image processing job. The included UI will allow 
for viewing submitted jobs as directed acyclic graphs (DAG) providing easier monitoring 
and troubleshooting of generated workflows. Finally, USGS is requiring containerization 
of all components of the final solution to allow for easier maintenance post project 
completion. This document breaks down the client request and analyzes what 
technology stack will be needed in its development. 
 

2. Technological Challenges 
In this section we provide a high level view of the major components of our overall 
solution, how they will integrate, and the technical challenges we foresee in their 
implementation. The challenges are as follows: 
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● Containerization 

USGS requires delivery of all software as container images. Containers provide 
OS level virtualization by bundling an application and all runtime files needed for 
its execution together into a single image. Because of the isolation between 
containers, our chosen software will need to support a method of exchanging 
data between multiple container instances. 

 
● Workflow​​ Management 

This project requires us to deploy a workflow management tool to represent and 
execute ISIS pipeline jobs. The management software will need to include an 
internal scheduler to ensure correct execution of the of the workflow or provide a 
easy method of integration of an external scheduling solution. Additionally, the 
software must provide a means of monitoring the submitted jobs and ideally a 
dashboard that allows for job management within the UI. Since the workflows will 
be generated dynamically it will also need a way to recognize and execute newly 
created workflows. 

 
● Dynamic Workflow​​ Generation 

USGS hosts data collected from a wide of instruments that were deployed over 
decades of missions and stored in spacecraft specific formats. Due to this 
variety, our workflow generator will need the ability to parse configuration files 
that determine how to correctly convert the image into an ISIS standard format 
and what compatible tools can then be applied. This data will be combined with 
imputed processing steps from the user to dynamically generate a job specific 
DAG. These unique DAGs will then be submitted and processed by the 
management software. Our main technological concern is finding a language that 
offers a well defined library for parsing files and lends itself to easy post-project 
maintenance by the client.  
 

These challenges present three distinct problems to be solved by three equally unique 
technologies. Below is our analysis of a number of possible solutions for each of these 
problems. 
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3. Analysis 
The entire purpose of this document is to justify our choices for the technologies we will 
implement to complete this project. This section will present our arguments concerning 
various criteria for selecting the technologies we choose to implement. Our arguments 
are based on rigorous research into the various technologies listed below and what 
would make them appropriate choices for their associated requirements. 
 

3.1 Containerization 
 
3.1.1 Introduction 
Containerization represents a major step forward in both portability and performance in 
comparison to past virtualization tools. Application containerization allows for 
deployment and isolated execution of applications through OS-level virtualization 
without the overhead of running an entire virtual machine. Applications are made highly 
portable by bundling their specific runtime components needed within the container 
itself. This allows for applications with different library version requirements to be run 
from the same host machine and preventing application breakage from updates to the 
underlying OS. Our project seeks to take advantage of containerization for these 
reasons to add to the efficiency and usability of our final project. One of the main 
challenges of leveraging multiple container instances is breaking of the containerization 
to allow the exchange of data between parts of the overall solution. Our solution will 
need to allow for method for passing the created workflows between the container with 
our DAG creation software and the scheduling server itself. 
 
3.1.2 Alternatives 
The choice of container options is largely dependent on the underlying OS they will be 
deployed from. We limited our search to those with Linux support which is currently 
being run on USGS servers. Our team only wanted to consider well developed projects 
and further limited our field of choices to those applications with a high adoption rate. 
Our team found the field of Linux containerization to be dominated by Docker with most 
sources estimating 80% of containers using the software. Rkt, developed by CoreOS, 
aims to provide better container security and is the only competition with a sizeable 
deployment.  
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● Docker 
One of the major benefits of Docker stems from its dominance in the industry. 
Docker images can either be built by hand or downloaded from the Docker Hub. 
Docker Hub provides Docker Certified images to provide standard libraries on 
which to build Pypline. While the team has not decided on using prebuilt images 
or not, it allows for the option during development. During our client meetings, 
USGS detailed the extensive use and familiarity with Docker within the 
organization and strong preference for the platform. One of the concerns with 
Docker is that the daemon runs with root privileges and spins off new containers 
as sub-processes. If an attacker breaks out of the container it can obtain 
system-wide root level access. 

 
● CoreOS rkt 

CoreOS introduced rkt in 2014 as open source alternative to Docker with the aim 
to increase containerization security. rkt implements the app container (appc) 
specification while maintaining Docker image support. rkt achieves its additional 
security goal by removing the need for a daemon process to launch containers. 
In comparison to Docker, rkt does not require root privileges to create containers, 
preventing attackers from gain root privileges. An additional advantage of the 
daemonless architecture is the ability to upgrade without stopping containers that 
are already running. The main disadvantage of using rkt for this project is the 
infrastructure change that would be required by the client. The appc specification 
is not currently supported by the Docker engine, currently in use at USGS, and 
would require rkt to be run in parallel by the client.  

 
3.1.3 Chosen Solution 
To help with a decision between the alternatives, both containerization platforms were 
installed and used to execute multiple Alpine Linux containers. Installation and setup 
was simple for both platforms and allowed a prebuilt Alpine Linux container image to be 
downloaded from each of the alternative’s image repository. Docker accomplished the 
image build and execution in 10 seconds with rkt requiring 13 seconds for the same 
task. Docker maintained its slim lead when using a larger application for testing. The 
execution of a nginx server container taking 1:05 and 1:19 for Docker and rkt 
respectively. Differences in performance between Docker and rkt while running multiple 
instances of the containers proved to be negligible. Using each solutions built in 
monitoring tools, memory utilization was 2.5 MB per nginx instance for both 
applications. As seen in Figure 1, both solutions will provide the needed containerization 
and offer fast runtimes. Our team decided to move forward with a recommendation for 
Docker in our project. While the security improvements with rkt were interesting, they 
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did not outweigh benefits of USGS familiarity with Docker. The applications were too 
similar to provide us with a compelling reason to suggest the USGS run an additional 
container management platform.  
 

Figure 1. Containerization Comparison  
 Client Familiarity Containerization Fast Build and Run Strong Security 

Docker X X X - 

rkt - X X X 

 
 
3.1.4 Proving Feasibility 
To prove the feasibility of Docker as our containerization technology, we have built a 
Docker image that represents the environment all possible Docker containers will 
implement. We then ran said Docker image on multiple machines to ensure consistent 
performance of this image. Docker allows for the mounting of either external directories 
on the host machine or Docker managed drives called volumes. Multiple containers can 
be configured to mount the same directories or volumes. We tested this feature by 
mounting a host OS directory in two Docker containers. Then verified files could be 
created from one container that were accessible in the other instance. We are confident 
this feature will allow us to break the container when needed to pass data between the 
overall components of our solution. 
 
3.1.5 Conclusion 
Containerization represents an exciting and relatively new technology and its integration 
into our project will bring a number of positives to our solution. We believe Docker to be 
the most appropriate choice for our project, for reasons beyond our client’s familiarity. 
Further, Docker will serve as a more than adequate environment for any technology we 
may select for both workflow management and dynamic DAG generation. 
 

3.2 Workflow Management 
 
3.2.1 Introduction 
The main task within the Pypline project is to dynamically generate a list of instructions 
to be applied to a planetary image or list of images as chosen by the POW user. Once 
generated, that list must be put in the form of a workflow that is then processed and 
submitted to POW cluster. 
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3.2.2 Alternatives 
Several software options were found that could possibly meet the client's needs. Airflow 
is an open source workflow management system developed by Airbnb and is currently 
undergoing incubation under The Apache Software Foundation (ASF). Luigi is an open 
source Python module developed by Spotify to build complex batch jobs to provide 
workflow management. Pinball is a workflow management platform developed at 
Pinterest. 

 
 

● Airflow 
Airflow was found to have the easiest combination of tools for defining the 
workflows that are in use at USGS. Airflow allows for workflows to be submitted 
as a directed acyclic graph (DAG) made up of individual tasks. While the DAG 
represents how to proceed through a workflow, operators are used to describe a 
single task within it. Airflow includes a large list of operators by default, which will 
allow their inclusion of common tasks, such as Bash commands, directly into 
DAGs without the need for their creation during the project. Each of these 
workflows can be visualized in graph form and then monitored or edited on the fly 
via the included web interface. Additionally, DAGs can be viewed as tree view 
spanning across time, providing a quick overview as to which process in a DAG 
is producing a bottleneck. Workflows are executed via the scheduler running 
within Airflow. Airflow was found to offer some advantages during the testing 
phase of new code as well. DAGs can easily be rerun either from the beginning 
or from one specific task onwards via the web interface. Additionally, Airflow 
allows for DAGs to be directly submitted without having to wait for the scheduler 
to schedule them. In our testing, installation was completed via the pip installer 
and our team found writing simple DAGs using the included Bash operator to be 
a straightforward process.  
 

● Luigi  
Luigi includes many of the same features as Airflow but lacks some of the polish 
we found in Airflow. Luigi includes a simplistic webui for monitoring of workflows 
but the available views are limited to only an overview of tasks and simple 
dependency graph. It does not provide additional views such as a task duration 
or a list of task variables that Airflow provides. Importantly Luigi does not include 
a complete scheduler as part of the project and users have to rely on cron for job 
execution. To achieve parallelization of jobs, pipelines first must be divided into 
sub-pipelines and given to separate cron processes. While not impossible, 
parallelization in Luigi requires additional coding that is handled automatically by 

 
8 / 16 



 

the Airflow’s built-in scheduler. The team also found Luigi lacking some features 
that aid in the testing of new code. Determining why a job failed requires finding 
and examining the cron log file for that particular run. Luigi does not include a 
way to directly submit a pipeline, instead requiring it to be picked up by the 
scheduler. Workflows have to be manually started by the user and do not include 
a method for re-running previous jobs. Luigi only maintains a small library of task 
definitions that can be reused with workflows. This will require additional code to 
be written for any task required by the Pypline project as compared to Airflow. 
Luigi was tested using an installation from pip and then by using a pre-built 
Docker image from Docker Hub. Writing tasks to execute Bash commands was 
similar in difficulty to Airflow.  
 

● Pinball 
Pinball was found to have the least maturity of all the options considered. 
Documentation for the project was found lacking with major sections missing. 
This was a concern not only for the development of this project but also the 
future maintainability by the client. The project is slow moving with only 3 
commits in the last 30 days and currently lacks any major adopters. During our 
testing period, the pip install was broken, preventing hands-on evaluation. Based 
on the documentation we were able to find, Pinball does offer a web interface 
and scheduler with comparable to the features found in Airflow. However, due to 
these issues with installation and documentation, the team determined that 
Pinball involved too much risk to be considered for the Pypline project. 

 
3.2.3 Chosen Solution 
Airflow was initially required by the client in the project description but our team found 
they were open to alternatives. Through our research, we found Airflow to not only fulfill 
all of the project requirements but was the best management software alternative. 
Airflow allows for a dynamic set of individual tasks to be combined and submitted as a 
DAG for processing fulfilling the main client requirement. The DAGs are written in 
Python, which is currently the main language in use at USGS, and will allow for 
additional mission cameras to be added into the system post project completion. The 
separate scheduler offered by Airflow allows USGS fine control over the processing jobs 
sent into their cluster. Additionally, it aligns with future plans at USGS to leverage the 
scheduler set up in the Pypline project to be used for future task scheduling. Airflow’s 
superior dashboard allows for visualization of currently in process and scheduled jobs 
as well as providing pre-built reports and metrics for the client. Airflow additionally has 
built-in support for monitoring for the presence of new DAG files and launching their 
execution. Luigi, by comparison, has no central process to automatically trigger a job to 
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launch. Pypline would need to recreate this functionality during the project since jobs 
will be created dynamically. As seen in Figure 2, Airflow was the only option that fulfilled 
all of our evaluation requirements. 
 

Figure 2. Workflow Management Comparison 
 Dynamic Workflow Support Dependency Checking Dashboard Scheduler Alternate Executor 

Airflow X X X X X 

Luigi - X - - - 

Pinball - X X X - 

 
 
3.2.4 Proving Feasibility 
During the evaluation of these products, our team has been able to setup Airflow within 
a Docker image. Small DAGs executing bash commands were written and successfully 
sent to the Airflow server. The next step in prototyping will be creating Airflow tasks that 
define a selection of tools within the ISIS toolkit and combined into a handwritten DAG. 
Finally, a dynamically generated DAG will need to be created and processed by the 
Airflow server as part of our technical demonstration. 
 
3.2.5 Conclusion 
Through our research we have found that Airflow is the only real choice for workflow 
management in our project. A large portion of the reason for this is its compatibility with 
dynamic DAG generation. 
 

3.3 Dynamic Workflow Generation 
 
3.3.1 Introduction 
An important aspect of the above-described workflows is that they will need to be 
dynamically generated. In order to achieve that, we will be developing a script that will 
take input--involving the files to be pushed through the pipeline and the operations to be 
performed on those files--and generating a workflow (DAG) based upon that input. This 
input will come in the form of a JSON object and DAGs will need to be written to a new 
file. Therefore support for these actions will be an important factor in choosing a 
language. Additionally, our group considered code simplicity, client familiarity, and 
performance when analyzing programming languages. 
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3.3.2 Alternatives 
We originally decided on three possible choices for implementing a script to the end of 
Dynamic DAG generation, based upon our experience with different programming 
languages throughout our academic careers. Python, C, and Java all represent 
possibilities due to their ubiquity and unique attributes. 
 

● Python  
Python is a muti-paradigm programming language that sees use primarily in 
scripting and API design applications. The language has seen large success due 
to its focus on readable syntax and popularity in open source circles. Python was 
found to represent both the easiest to implement and best-supported tool for 
implementing dynamic DAG generation. Python has powerful, well-documented 
libraries for both the parsing of JSON and file I/O included out of the box. These 
libraries will be paramount in parsing recipe input and writing generated DAGs. 
The Python standard library also contains tools for string formatting and 
manipulation, among others, which allow Python to ease the process of 
generating output in a standardized format. DAGs will be generated in such a 
standardized format. Additionally, Python’s strict styling requirements allow for 
more readable code, with fewer developer enforced styling principles. Finally, 
Python is in use in a variety of projects maintained by the USGS. This would 
allow our client to better support a Python-based generator when compared to a 
Java-based generator, as shown in Figure 3. 
 

● C  
C is a general purpose, imperative programming language with a focus on 
mirroring machine-level actions. Such a focus grants the language a great deal of 
speed when compared to other modern programming languages. However, this 
speed comes at the cost of abstraction offered by the other languages our group 
has analyzed. A lack of abstraction translates to greater difficulty in 
implementation. This is the primary and most important drawback of C. The tools 
provided by Python and Java are simply not present in C. Where there is an 
entire library dedicated to parsing JSON in Python, a solution would have to be 
manually implemented in C. Alongside performance, C is in use for many 
projects maintained by the USGS. This would allow our client to better support a 
C-based generator when compared to a Java-based generator, as shown in 
Figure 3. 
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● Java  
Java is an object-oriented programming language that has seen a great deal of 
use in application development, especially in enterprise environments. Java was 
found to represent a middle ground between Python and C in terms of most 
categories. As described in Figure 3, Java has extensive library support for 
JSON and file I/O. However, Java is not a scripting language. An object-oriented 
programming language, such as Java, requires far more code to accomplish a 
task when compared to a scripting language, such as Python. This added 
overhead leads to inherently verbose code that can be difficult to read. 

 
3.3.3 Chosen Solution  
Python is our language of choice for creating the script to dynamically generate DAGs. 
Python represents the most powerful choice for both parsing information and 
dynamically generating output to a file. Additionally, Python’s syntax is inherently the 
simplest and most readable of the languages we analyzed. Python does suffer 
somewhat in terms of performance, being the slowest language analyzed. However, 
while it was an attribute we considered, our group decided performance is less 
important than the categories that Python excels in. Instead, we prioritized library 
support and code simplicity as we felt these were most important for our script.  
 

Figure 3. Dynamic Generation of Workflows 
 Library Support Code Simplicity Client Familiarity Performance Focus 

Python X X X - 

C - - X X 

Java X - - - 

 
 
3.3.4 Proving Feasibility 
In order to prove the feasibility of Python as our scripting solution, we implemented a 
test script that took in sample output and generated file output. 
 
3.3.5 Conclusion 
Our dynamic DAG generating script is largely the workhorse of our project. We are 
confident that Python is the right choice for the script due to its overwhelming success in 
most of the criteria we set. We believe Python will best aid the success of not only our 
project, but any future implementations of our solution. 
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The integration of these technologies will be the crux of our project and where the 
majority of its complexity lies. As such we have outlined the particular challenges of 
integration below. 
 

4. Integration 
Each technology that we have chosen will serve in a principal aspect of our project, and 
as such have been selected because we believe them to be the best solutions at our 
disposal. However, it is vital that these technologies also are able to interact well with 
each other. 

4.1 Integrating Docker 
Docker is already being utilized by USGS and we can leverage their existing process for 
adding containers into the swarm. The portability of Docker, due to its reliance on a 
pre-built image, will ensure that our integration will not run into problems with differing 
runtime environments or lacking dependencies.  
 
Docker can run multiple containers at the same time for a given host but our project only 
requires two. These containers run directly within the local machines kernel which 
allows for more containers to be running compared to a virtual machine. Our container 
will be loosely isolated to allow for a secure connection which is exactly how we will be 
able to run both containers simultaneously.  
 
This means it is separate from the rest of the system and will require the user to map 
ports to specific files of what the user prefers to be or not to be inside the environment. 
Therefore, our two containers will result in greater compatibility of the given recipe and 
DAG generation. This shouldn’t be looked over as the Dockerfile will behave the same 
way it runs.  

4.2 Integrating Airflow 
Integrating Airflow provides a number of benefits that can be reused at the developers 
discretion. It creates a web server that can be used to render views and a metadata 
database to store models. This in turn allows for access to databases while being able 
to properly connect them. Likewise, an array of workers will be used and will adhere to 
respective dependencies. Airflow also provides fundamental libraries and abstractions 
that will simply allow the client to continue off our work for stretch goals and features. 
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Integration of Airflow will center around how to allow execution of individual ISIS tasks 
to the processing cluster within the USGS. The purpose of Airflow is to schedule and 
facilitate workflows as DAGs of given tasks. This can be done from the command line 
interface which provides a multitude of operations to be performed on a DAG. One of 
which is called ​run ​and is used to run a single task instance. It uses positional and 
named arguments and can be paused, unpaused, tested, etc. This is in light of 
supporting development and design of applications while being able to test functionality 
along the way. 
 
Additionally, Airflow will be configured to allow for monitoring and workflow metric 
retrieval by the USGS.  

4.3 Containerizing Airflow 
To start, Docker and Airflow will obviously have to be installed. Then an image will have 
to be pulled from the puckel/docker-airflow repository followed by entering the command 
docker pull puckel/docker-airflow​. This will install the Docker image that can then run 
Airflow in a Docker container. 
 
The next step is to create a running container so Airflow is running on the users 
machine. This is done by using the command ​docker run -d -p 8080:8080 
puckel/docker-airflow​ and allows access to the UI.  
 
If the previously stated steps have been executed correctly the next step is to begin 
running DAGs. A DAG is created by defining the script and adding it to a DAG folder 
within the directory. However, it is not advised to add them directly to the DAG folder 
due to the lack of a text editor and more importantly the user cannot build the image the 
container runs on from the Dockerfile. 
 
This is where ‘volumes’ come into play as they allow the user to share a directory with 
the machine being used and the Docker container. Thus, anything added to the 
container will also be added to the directory. From here a volume can be designed with 
intention of mapping the directory which contain the DAG definitions.  
 
Once the DAG has been copied to the local machine it can then be tested by the 
operations of the command line interface which will return the success or failure of the 
individual tasks. 
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4.4 Integrating Python For Dynamic DAG Generation 
Integration of Python will revolve around running our developed script in a Docker 
container, which mirrors running it in a standard terminal window. This does not 
represent any particular challenges due to the simple nature of this script as a black box 
within our greater project. The Dockerfile can be written to fetch and include any 
additionally required libraries needed by the script for recipe parcing and DAG 
generation.  

4.5 Overall Integration 
These technologies will be integrated together in our final product in a fairly simple 
pattern, briefly described in Figure 4. As stated above, both Airflow--specifically the the 
Airflow scheduler--and our dynamic DAG generating script will be located and run in 
Docker containers. We will implement the technologies in two separate containers. 
These containers will need to communicate for the sole purpose of sharing files. As 
such, they will share a directory mounted to the containers. 
 
Airflow’s included sequential executor will provide a method for testing of generated 
scripts throughout the project. When moved onto USGS servers, near the completion of 
the project, a customized executor designed to interact with the processing cluster will 
need to be created.  
 

Figure 4. Integration Diagram 

 

5. Conclusion 
Chosen Technologies: 

● Containerization - Docker 
● Workflow Management - Airflow 
● Dynamic DAG Generation - Python 
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In addition to its research, USGS provides an invaluable service to scientific community 
and public through its distribution of planetary imagery. The current pipeline is in need 
of replacement to improve the user experience by allowing greater flexibility in 
submitted image processing workflows and provide USGS with better methods for the 
inclusion of future mission data. The purpose of this feasibility report is to consider to 
major technologies to include within the new pipeline and the challenges we foresee in 
their implementation. The Python language provides the necessary libraries for the file 
parsing and script generation needed by our team to create a dynamic workflow 
generator. Our team is confident that Airflow will provide USGS with the best workflow 
manager for visualization and execution of submitted jobs. The included scheduler 
combines the needed ability to recognize newly created DAGs, as well as a means for 
their submission to the cluster. Finally, the new pipeline will be able to integrate within 
the already existing USGS infrastructure through its delivery as containerized Docker 
images. Docker’s volume management and mounting options provide a method for 
overcoming the challenges of working with the isolation inherent to containers. Overall, 
our team is confident that the chosen technologies will allow for delivery of an vastly 
improved image processing pipeline to USGS. 
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