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1. Introduction 
Space exploration has always enthralled humanity. Every year, billions of dollars are 
spent trying to understand our Solar system. Humanity sends probes to other planets 
and to small bodies. Humans have not stopped looking for answers in space since the 
time of Galileo. This search has driven technological development in all areas. Velcro, 
computers and GPS are just some of the technological byproducts of space exploration. 
Every day, observatories like Lowell are gathering information to expand the 
understanding of the space humanity lives in. 
 
The clients, Dr. Audrey Thirouin and Dr. Will Grundy, work at Lowell Observatory to 
analyze astronomical data. They focus on analyzing data about small bodies farther from 
Earth in space which are harder to observe directly. Right now, they are working on 
modeling binary systems out in the Kuiper Belt. To do this, they need to use special 
techniques which make the most use of the data available. For most objects that far 
away in the Solar system from Earth, only a single point source can be observed. That 
point source can be used to determine the object brightness at a given point in time. 
These luminosity recordings can be combined together to form something called a light 
curve. A light curve is a graph of brightness values over time. 

Light curves can be used to infer properties about the objects that generate them. For 
example, an asteroid that is non-spherical will reflect more light when a larger amount of 
surface area is reflecting light from the Sun to the observer. Since the object is reflecting 
more light at certain points in its rotation, the brightness will be different depending on 
when it is observed in its rotation. Those brightness values can then be graphed. In most 
cases this will make the light curve sinusoidal. The rotational speed can then be found 
based on the period of the curve. The amplitude of the curve can be used to roughly 
guess at the proportions of the object. A large number of other characteristics can be 
found using light curves by a clever astronomer. 

The clients want to make use of light curves to better understand binary systems. A 
binary system is composed of two objects that orbit each other about a point in space 
called a barycenter. The gravity from both objects affect the other, sometimes causing 
tidal locking and precession. Binary systems introduce new challenges but also 
opportunities for light curve modeling. The two objects will cast shadows on each other 
which can be used to determine surface features and shapes of the objects.  

The clients want software that can model these binary systems and generate light 
curves. They plan on using the solution from this project to come up with models that fit 
the observed data of binary asteroid systems. Currently, the clients are modeling with 
fragmented code that is slow and lacks some functionality. This project’s solution will 
allow the modeling of binary systems quickly and accurately. 
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2. Problem Statement 

2.1 Problem Overview  
The clients at Lowell Observatory lack a comprehensive software solution for modeling 
binary systems. What they need is software that can take in properties of the asteroid 
system and return a theoretical light curve. They can then take the theoretical light curve 
and compare it to an observed light curve from the same time period. The clients can 
compare the two light curves and determine if the input system generated a correct light 
curve. If the light curve is correct, then they know that the asteroid properties they ran 
the model with are possible properties of the actual binary system. If the light curve 
model does not closely resemble the observed light curve, then they can change some 
of the properties and try again. By using minimization techniques (such as MCMC) they 
can adjust the parameters until they generate an accurate light curve model. 
 
Once the clients have a set of parameters that generates a theoretical light curve that is 
within a set tolerance of the observed light curve, they evaluate the asteroid system 
parameters and determine if the solution is realistic. If the solution is not realistic, they 
can redo the modeling until they come up with parameters that they think are accurate. 

2.2 Current Implementation  
Currently, the clients lack the software to take in asteroid system parameters and 
generate a theoretical light curve. They have pieces of software that they can combine 
with hand work to generate a partial solution. This method is not capable of handling 
large amounts of data or complex binary asteroid systems. The fragmented software 
also needs a number of small scripts to be written every time it is run to account for 
changes in how the software fragments need to be used. The lack of a cohesive 
software structure makes it nearly impossible for other astronomers to use. Astronomers 
would need to rewrite extensive portions of the code to make it usable for their research. 
The problems the clients have are: 
 

● No contiguous solution 
● Poor performance 
● Not enough documentation 
● No modularity 

 
The modeling can be computationally expensive for a few reasons. First, ray tracing 
needs to be done. The ray tracing has to check and see if the light from the Sun will be 
reflected at the correct angle for a given telescope to observe it. The clients’ current 
implementation does not make use of a framework and is written in an interpreted 
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language. This makes the current ray tracing slow and bottlenecks the whole program. 
Second, with two binary objects in orbit about a barycenter, it is possible that they can 
cast shadows on eachother. These shadows need to be accounted for when the ray 
tracing is done. 

 
All of the problems that the clients have can be solved by the solution. The solution looks to 
solve the integration, performance and modeling problems efficiently and modularly. 

3. Solution Vision 

3.1 Solution Overview 
The solution will address the clients’ problems by using frameworks and math libraries 
for increased performance. A framework will be used to render and ray trace the model. 
Math libraries will be used for vector arithmetic. The solution will be an API that has 
function calls which take in initial parameters and return the final results without 
intermediary steps by the user. The API will be well documented to allow users to 
maintain and update the code base. The design of the API will be modular to allow for 
new functionality to be added in the future. 

3.2 Solution Statement 
The solution will tie together all of the fragmented components that the clients already 
have. It will use a framework for ray tracing that adapts to the hardware available and 
maximizes the efficiency. The chosen technologies for this project include: Vulkan for ray 
tracing and rendering, Eigen libraries for vector math, and OpenMP for parallelizing 
sections of the code.  
 
The Vulkan API will be used for ray tracing and rendering. This API will handle the 
majority of the work with ray tracing. The math for ray tracing is done in function calls to 
the API, and is already optimized. Since the objects will be tiled for the ray tracing math, 
the rendering can be done with the same object later on. Vulkan also runs on whatever 
hardware is available. 
 
The math in the solution are mostly vector equations. The Eigen libraries will be used to 
do the vector math because it is already optimized and parallelized internally. OpenMP 
will be used throughout the solution for both data and task parallelism. This will make the 
most use out of whatever idle CPU cores are available, and increase the performance of 
the solution. 
 
The solution will be well documented. Each function call and object will have an 
explanation and clear commenting to allow the code to be modified in the future. The 
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documentation will also allow users other than the clients to make use of the API without 
having to fully understand the code. This solution meets the requirements of the clients 
which are detailed in the next section. 
 

3.3 Solution Steps 
The solution for modeling binary systems is to create a modular API. The clients want an 
API that can be called from within IDL, so C++ has been the chosen language for this 
project. The C++ API that will be developed will need to be able to do the following: 
 

1. Take in input parameters and accuracy settings 
2. Create objects in a coordinate space based on the Sun 
3. Set objects into the correct orbital positions and orientations for the given time 
4. Perform ray tracing on the objects to generate a matrix of brightness for each tile 

of the objects 
5. Save what tiles are visible to the observer and their brightness for rendering 
6. Sum up the total brightness of every tile and save it 
7. Advance the time and repeat steps 3-7 for each time interval 
8. Take all of the brightness values and graph with their corresponding time stamps 
9. If a rendering is wanted, use the saved information from step 5 to  

4. Project Requirements 
The solution will be a modular C++ API with a variety functions designed to work together 
optimally. This API will take in user input containing orbital parameters to generate a theoretical 
light curve. Additionally the features of this API will need to be documented to be accessible by 
other astronomers. 
 
In developing this solution, the clients have granted significant freedom in most of the design 
decisions for the project. However, there are a few core requirements established by the clients 
to structure the project. These requirements can be broken down into 3 subcategories: 
Functional, Performance and Environmental. The following sections will outline how each 
requirement impacts the project and how the solution will have to consider each requirement.  

 
 
 

  
5 



 

4.1 Functional Requirements 
 

 
Figure 1: The Forward Model 

 
For this project there is one major use case that must be satisfied, the Forward Model, 
which is displayed in Figure 1 above. 
 
Implementing the Forward Model involves 3 major steps: performing astronomical 
calculations, ray tracing the scene, and producing an integrated brightness value. This 
set of functions will be called multiple times in succession from a minimization routine 
with different or unchanging time values entered at each iteration. The final iteration of 
this minimization routine will produce a final matrix of brightness values which represents 
a light curve. 
  
The user must also have the option to request a rendered image of the binary system 
modeled in the ray tracing step. 

FR1. Accept User Input 
The software must provide the capability to read in large input files with a 
predefined format similar to the format of existing ephemeris tables. Although 
currently the format in the clients’ solution is not strongly established, ephemeris 
tables from the Jet Propulsion Laboratory (JPL) will be used as a base reference 
in terms of complexity and types of data. These tables provide the majority of the 
input data necessary to perform the astronomical calculations in the first step of 
the Forward Model.  
 
Input files will be located through strings passed into the API. Additional values 
can be passed into the API to provide additional data not found in ephemeris 
tables, such as the times to model, or to adjust the accuracy of the model. The 
latter includes modifying the resolution of facets used to create the objects in the 
ray tracing. All input data presently accepted in the clients’ existing solution must 
be supported by the API, either through input files or function calls. 

  
6 



 

The API must accept input files providing the following parameters: 
 

● Keplerian orbital elements​​ - a set of variables necessary to calculate 
positional data for the binary system and observer. 

○ Period 
○ Semimajor axis 
○ Eccentricity 
○ Inclination relative to J2000 equator 
○ Mean Longitude at epoch (epsilon) 
○ Longitude of ascending node (Omega) 
○ Longitude of periapsis (w~) 
○ Reference date 

● Time value(s)​​ - one or more times to be evaluated in other calculations. 
○ Total number of time values 
○ Times at observer's location 
○ Times at the target location (accounting for light travel time) 

● Ephemeris table​​ - this table will provide locations of the observer, the 
target binary system, and Sun at each time value 

● Object shape parameters​​ - a data structure for each object that will 
provide the necessary information to generate a shape.  

○ Number of vertices 
○ Number of facets 
○ Array of vertices 
○ Array of facets 

There will also be optional prebuilt shapes for the user to select. 
● Spin states​​ - a data structure for each object that will provide the 

direction of the spin axis, the time of a rotational period and an epoch 
when the rotation angle is zero. 

○ Unit vector pointing to spin pole 
○ Rotation period 
○ Reference time 

● Hapke parameters​​ - a set of parameters for each object that will 
determine the reflectivity of light. 

○ Single scattering albedo 
○ Single scattering phase function 
○ Type of Pg function to use 
○ Opposition effect amplitude 
○ Opposition effect width parameter 
○ Macroscopic surface roughness 

● Optional accuracy setting​​ - this parameter allows the user to adjust the 
accuracy tolerance within the API to either produce slower, more detailed 
computations or faster, less detailed computations. 
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FR2. Perform Astronomical Calculations 
The first step of the Forward Model is to perform numerous astronomical 
calculations to generate the data necessary to build a model in the ray tracing 
step. While performing the ray tracing, all calculations and data can be computed 
with different points as the origin, such as the Sun, the binary system, or the 
observer to find the most accurate results. The math in this step can be broken 
down into 3 major functions: 

1. Work out the times at the binary system 
One iteration of the calculations will revolve around a specific time and provide 
essentially a snapshot of the object’s exact location in space. This time value will 
serve as a key to find all relevant orbital data for the objects of the binary system 
in the provided ​ephemeris table​. The specific time will be either entered directly 
by the user inside an API call or calculated by the API itself.  Calculating the 
specific time for a binary system will be based on the light travel time reflected off 
the objects towards the observer. 

2. Calculate binary system location 
The location of the objects in the binary system must be calculated using a 
specific time determined from the previous step of the calculations. Keplerian 
orbital elements must be used in conjunction with the specific time to determine 
the exact location of the bodies in the system. 

3. Calculate orientation of bodies in binary system 
In binary systems, the two objects can be in a variety of orientations relative to 
each other. Utilizing user input that provides the rotational axis, rotational velocity 
and starting orientation of the binary system along with a specific time value, the 
orientation of the two objects at an exact point in their rotation will be determined. 

FR3. Ray Tracing 
After the first step of the Forward Model has been completed, the data necessary 
for the second step has been generated. The second step will use ray tracing to 
construct and position a model of the binary system based on the calculated data 
and user input. The ray tracing within this step of the Forward Model can be 
broken down into five steps: 

1. Generate objects composed of triangular facets 
To start the ray tracing, two 3D objects composed of triangular facets will need to 
be generated and these will be used in a simulation of the binary system. By 
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default, the two objects will be spheres, however there will be other options for 
the user to generate custom shapes. Additional basic sphere-like shapes will be 
offered as options through an API function call, and the API will also accept a list 
of vertices that will represent a shape predetermined by the user. 

2. Position the binary system and observer 
The positioning of the items inside the model will occur with the following steps: 

● The objects simulating the binary system must be placed inside the ray 
tracing model relative to the light source, which corresponds to how the 
actual binary system is positioned relative to the Sun.  

● The observer will have to be defined and placed within the model as well. 
When positioning the objects in the binary system and the observer inside 
the ray tracing model, the Sun has to be used as the central point of the 
coordinate system.  

○ This central point will be critical in building an model with the 
objects and observer properly aligned with the Sun and with each 
other.  

3. Trace rays from light source 
A light source will be defined within the ray tracing model. This point will cast out 
rays towards the binary system and these rays will be tracked individually to trace 
their path and identify what the rays collide with. 

4. Test if rays intersect a facet 
Each facet of an object in the binary system will be evaluated to determine if a 
ray intersected the surface of an object. This evaluation determines what parts of 
the objects are lit up. 

5. Check and record facets reflecting light towards observer 
Light reflected off the binary system may not reflect towards the observer and 
therefore the solution will have to distinguish which of the facets reflect light 
towards the observer. These facets are relevant to calculating the integrated 
brightness value and rendering an image. 

FR4. Adjustable Accuracy 
 

The client needs options that can adjust accuracy to have the ability to run quick 
tests to determine if a model is a rough approximation of their observed system. 
Then tests with higher accuracy can be run afterwards to find a higher resolution 
model. 
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1. Object resolution 
The largest impact on accuracy will be the resolution of the object models used 
for the Forward Model. This parameter will be taken in when the Forward Model 
is called. The resolution will determine how many facets are generated to define 
the object. An increased resolution will cause the generated object to have more 
facets. The increase in facets will allow the ray tracing to calculate reflection 
angles with a higher level of precision. 

2. Accuracy presets 
The software will provide a number of preset accuracy settings. Different 
accuracy settings will enable the clients to run various scenarios for testing 
purposes. For this solution the accuracy settings will include 3 different options: 
 

1. Best Performance 
2. Best Quality 
3. Balanced 

 
The level of accuracy used to run the functions inside API will vary on the setting 
selected by the user. These settings will adjust various internal parameters used 
for both the astronomical calculations and ray tracing. Parameters to be adjusted 
inside the calculations include the level of tolerance for Newton’s method and 
using lookup tables over calculating values with trigonometric functions. The 
following points will outline how each setting will impact the parameters and 
result speed: 

  
● Best Performance will adjust the parameters to produce the quickest 

result at the cost of accuracy in the results. 
● Best Quality will adjust the parameters to produce the highest resolution 

result with no reduction of accuracy. This setting will be the most time 
expensive of the 3 settings. 

● Balanced will adjust the parameters to produce a result that minimizes 
accuracy loss while trying to optimize runtime in the calculations. The ray 
tracing will produce the best resolution possible with the optimized 
calculation results. 

 
The speed difference between these settings will not vary greatly when 
compared in a single iteration. However, since the Forward Model will be called 
numerous times and perform these calculations for each iteration, the difference 
in runtimes will add up. 
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FR5. Implement Hapke Modeling 
The solution will implement a function to perform Hapke modeling and calculate 
the light-scattering properties of the surface of the objects in the binary system. 
This function will help identify and determine the irregular surface of the objects.  
 

FR6. Generate Integrated Brightness Values 
The final step of the Forward Model will be to return a matrix of brightness values 
to the user, corresponding to the input time values. This brightness values will be 
calculated based off the results of the ray tracing steps. A matrix of these values 
can be interpreted to generate a light curve graph.  

FR7. Render an Image 
The user will have the option to request additional output from the Forward Model 
call in the form of a rendered picture. This output will be generated through the 
use of ray tracing. Additionally, this output must be modifiable by input 
parameters to adjust the resolution or pixel count of the image. 
 
A single specific time or set of times will be passed in from the user and an 
image, or set of images, of the binary system will be rendered based on the 
entered time. 
 
The image will display the two objects of the binary system with two key 
characteristics in the following steps: 

1. The shapes of the objects will be variable based on the shape the user 
selected for each object.  

2. The facets on the objects will display varying grayscale values based on 
how much light the facet reflects.  

○ Lighter colored facets represent parts of the asteroid that reflect 
more light than the darker colored facets which represent parts 
that do not reflect as much light. 

4.2 Performance Requirements 
Currently the clients’ solution is not complete and requires a substantial amount of 
overhead time to set up the data to be parsed. A script is needed to produce a light 
curve or to render an image. Each time the clients want to model a new binary system, 
they have to recreate the necessary data and rewrite the script. The ray tracing in the 
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clients’ solution is written in an interpreted language which does not run efficiently 
compared to using C++ libraries for ray tracing. 

PR1. Calculate Low-Resolution Light Curve 
The solution needs to generate the data required to determine a low-resolution 
light curve. The clients gave a rough estimate of this task taking between 30 and 
120 seconds on a workstation laptop. A workstation laptop will be defined for this 
project as a laptop with both a stronger CPU and faster GPU than that of an 
average notebook laptop. The steps to complete this task is composed mainly of 
quick mathematical calculations, thus this requirement should be easy to 
accomplish.  

PR2. Render High-Resolution images 
Generating a high-resolution image will involve ray tracing objects with a higher 
count of facets which requires more processing to analyze each facet to render 
the image. To render a high-resolution image of a calculated binary system, this 
should take the solution 3-5 minutes to accomplish on a workstation laptop.  

PR3. General Usability 
The API in our solution will be built with additional documentation. This 
documentation will provide explanations of the functions in the API and 
necessary parameters each function will require. With the documentation, the 
API will be more accessible by other users besides the clients. 
 

The clients’ focus is on a complete solution to save them time and money as the current 
solution has recurring overhead costs. The solution simply being complete will be a 
significant performance improvement over the clients’ current implementation. However, 
this solution has to satisfy these performance requirements as well as certain 
environmental requirements covered in the following section. 
 

4.3 Environmental Requirements 

ER1. Linux Systems 
The solution needs to be able to be compiled and run on Linux systems, specifically 
Ubuntu and Red Hat. It does not need to be able to run on any other type of operating 
system. Support for MacOS is a stretch goal. 
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ER2. Supports CPU and CPU-GPU Configurations 
The solution must be able to run on computer that only has a CPU, but also make use of 
a GPU if one is available. Any code or framework that the solution has needs to be 
compatible with laptops and be able to run within the performance requirements without 
access to more powerful hardware. The software needs to adapt to the hardware 
available without any additional input from the user. 

ER3. Callable From IDL 
The solution needs to be callable from within an IDL environment. IDL is an older, 
interpreted language, mostly used by astronomers, and does not provide support for 
many modern languages. One language it does support, though, is C. Thus, a C 
interface will need to be written for the C++ solution. The parameters passed through to 
the code will be primitive or IDL types and need to be handled accordingly 

4.4 Conclusion 
The client needs to generate a model of a light curve based on binary asteroid system 
parameters. They need a documented API that has all of the functions necessary to generate a 
Forward Model. The API needs to have functions that are modular and a function that 
incorporates all of the work involved with creating a Forward Model. 
 
The Forward Model generation is the major function that needs to be implemented by the API 
solution. This major function will call upon many other functions inside the API to complete 
astronomical calculations, ray tracing, and calculating a final brightness matrix.  
 
The solution must be able to calculate a low-resolution light curve in between 30 and 120 
seconds on a workstation laptop. It must also be able to generate a high-resolution image in 3-5 
minutes. Environmentally, the solution has to run on Linux systems, support CPU and 
CPU-GPU configurations, and must be callable from IDL. 

5. Potential Risks 
These requirements naturally introduce certain challenges that need to be accounted for. 
Overall the requirements are relatively low-risk, since they only require refactorization and 
optimization. The project would be higher risk if the calculations and equations were not already 
established. However, there is still a reason why the software needs to be rewritten and there is 
potential to refactor in a way that does not support future requirements. 
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5.1 Scope Expansion 
The first major risk is that the scope expands significantly to the point that it breaks the 
solution. It is also highly likely to happen. The solution that is being built is not a one-off 
solution, this is software that will be modified in the future. The clients have many ideas 
about future improvements and features, some of which rely heavily on utilizing existing 
code. 
 
If the API was solely designed for the capstone requirements, it could need to be 
significantly refactored to add some of the new functionality that the clients may want. 
This is a normal risk for every software project that is not a one-off solution, but there is 
some insight that makes this a more specific risk. Specifically, the requirement is to 
implement a Forward Model. Eventually the clients will implement, on their own, an 
inverse model. The details are unknown, though it will need to iteratively call the Forward 
Model and constrain the parameters. Concepts like this should be accounted for ahead 
of time. 

5.1.1 Mitigation 
A modular design can be used to account for a feature without knowing the 
implementation details. The currently translated code already partially does this. For 
example, there is a module for handling the orbits and a module for the ray tracing. 
 
To incorporate a feature without knowing the implementation details, a black-box module 
can be utilized. This means that the solution will not need to know the implementation 
details of this module, just how it will interact with the other modules. By doing this the 
solution can prepare the existing modules to account for this new inverse model feature. 
This may mean breaking up the Forward Model into more functions than currently 
necessary, since the inverse model may need only specific functionality from the 
Forward Model. 

5.2 Varying Ray Tracing Results 
Another risk that has been identified is that when the ray tracing module is implemented, 
there is a high probably that the results will differ from the existing solution. This is 
important because the entire model’s accuracy is affected by the ray tracing.  
 
The ray tracing code that the clients are using is handwritten and specific to the purpose, 
whereas a framework is generalized (the low-level details are often hidden to the user). 
A reference needs to be established that shows how accurate or inaccurate the results 
are. It is unsafe to assume that they will be similar to the current solution. 
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5.2.1 Mitigation 
To mitigate these risks, one needs to first establish references. There are two 
sources of references: the handwritten code and existing observations. 
 
The easiest reference to establish is to run a data set through the existing 
handwritten code, then run the same dataset through the new module. Then one 
must identify if the results are even in a ballpark range. It may be challenging to 
debug the two solutions and see where specifically the calculations differ. The 
most realistic approach is to identify probable areas of code that could differ in 
results, such as one big function call to a framework versus dozens of lines of 
handwritten code. 
 
A reference can also be established against known observations, though that is a 
larger task, since it would involve running through the entire Forward Model and 
not just the ray tracing. This reference is more so a backup in case the more 
accurate solution -- handwritten versus framework -- cannot be determined. 
 
Once the references are established, unit tests should be written for the ray 
tracing module. Unit tests will constantly verify the results. This will occur after 
having already written an initial ray tracing implementation. Many iterations of 
refactoring and optimizing the ray tracing module will likely follow, since it is the 
bottleneck and meat of the code. During this phase, the unit tests will indicate 
when modifying the code has changed the accuracy. 
 
In summary, establishing references along with writing unit tests will significantly 
mitigate the risk of the ray tracing module producing inaccurate or unexpected 
results. 

6. Project Plan 
This project started by first establishing how the team would work together and then moved 
immediately into assessing the project and gathering requirements. This can be seen in Figure 
2, which is appended to the end of this document for readability purposes. 

6.1 Current Work 
One of the current tasks is translating the code. This means writing all of the core logic of 
the fragmented, IDL solution into the language of choice, C++. In reality this task is a 
second semester requirement. It does, however, provide a significant head-start and can 
be used as a technical demonstration to show that the code can in fact be translated 
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without many roadblocks. There already exists verified functionality, a deeply featured 
build system, a unit testing framework, and even continuous integration. The goal here is 
to be able to immediately go into the design phase next semester and work directly with 
C++ code. 
 
Before a solution can be designed, there also needs to be demonstrations for the 
technologies that were chosen. There are four demonstrations: 

1. Demonstrating Vulkan, which performs ray tracing and rendering 
2. Demonstrating vector arithmetic in the language of choice 
3. Demonstrating compatibility with IDL 
4. Demonstrating a section of translated code 

6.2 Future Work 
The design phase begins in the second semester and consists of first conceptualizing a 
modular solution and then implementing it using the translated code. The language of 
choice, C++, is object-oriented, which allows the architectural solution to be designed 
modularly. From a user perspective, the API will just be a variety of functions, but 
internally it will be implemented in a modular manner. The implementation will involve 
direct refactoring of the already translated code, though the core logic will remain the 
same. 
 
There is a big window of time for optimization, which was strategically planned for. 
Overall, a significant section of the programming work is already done. A complete 
solution will be delivered on time. The goal of this capstone is to deliver the best solution 
possible to the clients and meet their stretch goals, which in this case is optimization. 
This is simply because Paired Planet Technologies is passionate about the domain of 
space. 

7. Conclusion 
Space exploration has always enthralled humanity. Every year, billions of dollars are spent 
trying to understand what is in the Solar system. Binary asteroid systems have always been 
challenging to understand due to their small size. The clients, Dr. Audrey Thirouin and Dr. Will 
Grundy, work at Lowell Observatory on understanding binary systems in the Kuiper Belt. They 
accomplish this by using software that models binary systems. 
 
One challenge is that these systems are so far away that only a single point source can be 
observed. The required calculations to account for this are relatively complex and the clients 
have only had time to develop a partial solution for the modelling. This partial solution is slow 
and fragmented, meaning the functionality is spread apart and scripts have to be written to 
utilize the code. The clients would like an API that is significantly faster and integrated, meaning 
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they can receive the model in a single function call in a code base that follows consistent coding 
and naming practices. The plan is to create a modular C++ API that uses Vulkan for ray tracing 
and rendering and Eigen for vector and matrix arithmetic. 
 
Extensive requirements acquisition has been done for this document. This provides a contract 
with the clients stating the definition of a final solution. The solution plans to address the clients’ 
problems through a modular design that utilizes efficient libraries for increased performance, 
particularly Vulkan and Eigen. The modular design will provide greater support for upcoming 
features and will also expose many internal functions while providing an integrated function that 
returns a model in a single call. The API will be callable by IDL and will be well documented to 
allow usage by other astronomers. 
 
Containing the likely risks, such as scope creep and varying ray tracing results, is easily 
achievable because of the mitigations strategies discussed. The performance requirements will 
also be achieved almost trivially, because the current solution is unoptimized and written in an 
interpreted language. The environmental requirements do not impose many challenges either. 
With a solid solution outline and a significant head-start for the second semester tasks, Paired 
Planet Technologies is confident that a top-quality solution will be delivered to the clients at the 
end of the second semester. 

  
17 



 

 1

1  ​Figure 2: Gantt chart showing previous, current, and future tasks 
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