

Requirements Specification
Version 2

12/9/18

Sponsor

Lowell Observatory

Clients
Audrey Thirouin, Will Grundy

Team

Paired Planet Technologies
Zach Kramer, Brian Donnelly, Matt Rittenback

Mentor

Isaac Shaffer

Accepted as baseline requirements for the project:

For the client: ________________ ______ For the team: ________________ ______
 Signature Date Signature Date

 ________________ ______
 Signature Date

Table of Contents

1. Introduction 2

2. Problem Statement 3

3. Solution Vision 4

4. Project Requirements 5

5. Potential Risks 1​​3

6. Project Plan 1​​5

7. Conclusion 1​​6

1

1. Introduction
Space exploration has always enthralled humanity. Every year, billions of dollars are
spent trying to understand our Solar system. Humanity sends probes to other planets
and to small bodies. Humans have not stopped looking for answers in space since the
time of Galileo. This search has driven technological development in all areas. Velcro,
computers and GPS are just some of the technological byproducts of space exploration.
Every day, observatories like Lowell are gathering information to expand the
understanding of the space humanity lives in.

The clients, Dr. Audrey Thirouin and Dr. Will Grundy, work at Lowell Observatory to
analyze astronomical data. They focus on analyzing data about small bodies farther from
Earth in space which are harder to observe directly. Right now, they are working on
modeling binary systems out in the Kuiper Belt. To do this, they need to use special
techniques which make the most use of the data available. For most objects that far
away in the Solar system from Earth, only a single point source can be observed. That
point source can be used to determine the object brightness at a given point in time.
These luminosity recordings can be combined together to form something called a light
curve. A light curve is a graph of brightness values over time.

Light curves can be used to infer properties about the objects that generate them. For
example, an asteroid that is non-spherical will reflect more light when a larger amount of
surface area is reflecting light from the Sun to the observer. Since the object is reflecting
more light at certain points in its rotation, the brightness will be different depending on
when it is observed in its rotation. Those brightness values can then be graphed. In most
cases this will make the light curve sinusoidal. The rotational speed can then be found
based on the period of the curve. The amplitude of the curve can be used to roughly
guess at the proportions of the object. A large number of other characteristics can be
found using light curves by a clever astronomer.

The clients want to make use of light curves to better understand binary systems. A
binary system is composed of two objects that orbit each other about a point in space
called a barycenter. The gravity from both objects affect the other, sometimes causing
tidal locking and precession. Binary systems introduce new challenges but also
opportunities for light curve modeling. The two objects will cast shadows on each other
which can be used to determine surface features and shapes of the objects.

The clients want software that can model these binary systems and generate light
curves. They plan on using the solution from this project to come up with models that fit
the observed data of binary asteroid systems. Currently, the clients are modeling with
fragmented code that is slow and lacks some functionality. This project’s solution will
allow the modeling of binary systems quickly and accurately.

2

2. Problem Statement

2.1 Problem Overview
The clients at Lowell Observatory lack a comprehensive software solution for modeling
binary systems. What they need is software that can take in properties of the asteroid
system and return a theoretical light curve. They can then take the theoretical light curve
and compare it to an observed light curve from the same time period. The clients can
compare the two light curves and determine if the input system generated a correct light
curve. If the light curve is correct, then they know that the asteroid properties they ran
the model with are possible properties of the actual binary system. If the light curve
model does not closely resemble the observed light curve, then they can change some
of the properties and try again. By using minimization techniques (such as MCMC) they
can adjust the parameters until they generate an accurate light curve model.

Once the clients have a set of parameters that generates a theoretical light curve that is
within a set tolerance of the observed light curve, they evaluate the asteroid system
parameters and determine if the solution is realistic. If the solution is not realistic, they
can redo the modeling until they come up with parameters that they think are accurate.

2.2 Current Implementation
Currently, the clients lack the software to take in asteroid system parameters and
generate a theoretical light curve. They have pieces of software that they can combine
with hand work to generate a partial solution. This method is not capable of handling
large amounts of data or complex binary asteroid systems. The fragmented software
also needs a number of small scripts to be written every time it is run to account for
changes in how the software fragments need to be used. The lack of a cohesive
software structure makes it nearly impossible for other astronomers to use. Astronomers
would need to rewrite extensive portions of the code to make it usable for their research.
The problems the clients have are:

● No contiguous solution
● Poor performance
● Not enough documentation
● No modularity

The modeling can be computationally expensive for a few reasons. First, ray tracing
needs to be done. The ray tracing has to check and see if the light from the Sun will be
reflected at the correct angle for a given telescope to observe it. The clients’ current
implementation does not make use of a framework and is written in an interpreted

3

language. This makes the current ray tracing slow and bottlenecks the whole program.
Second, with two binary objects in orbit about a barycenter, it is possible that they can
cast shadows on eachother. These shadows need to be accounted for when the ray
tracing is done.

All of the problems that the clients have can be solved by the solution. The solution looks to
solve the integration, performance and modeling problems efficiently and modularly.

3. Solution Vision

3.1 Solution Overview
The solution will address the clients’ problems by using frameworks and math libraries
for increased performance. A framework will be used to render and ray trace the model.
Math libraries will be used for vector arithmetic. The solution will be an API that has
function calls which take in initial parameters and return the final results without
intermediary steps by the user. The API will be well documented to allow users to
maintain and update the code base. The design of the API will be modular to allow for
new functionality to be added in the future.

3.2 Solution Statement
The solution will tie together all of the fragmented components that the clients already
have. It will use a framework for ray tracing that adapts to the hardware available and
maximizes the efficiency. The chosen technologies for this project include: Vulkan for ray
tracing and rendering, Eigen libraries for vector math, and OpenMP for parallelizing
sections of the code.

The Vulkan API will be used for ray tracing and rendering. This API will handle the
majority of the work with ray tracing. The math for ray tracing is done in function calls to
the API, and is already optimized. Since the objects will be tiled for the ray tracing math,
the rendering can be done with the same object later on. Vulkan also runs on whatever
hardware is available.

The math in the solution are mostly vector equations. The Eigen libraries will be used to
do the vector math because it is already optimized and parallelized internally. OpenMP
will be used throughout the solution for both data and task parallelism. This will make the
most use out of whatever idle CPU cores are available, and increase the performance of
the solution.

The solution will be well documented. Each function call and object will have an
explanation and clear commenting to allow the code to be modified in the future. The

4

documentation will also allow users other than the clients to make use of the API without
having to fully understand the code. This solution meets the requirements of the clients
which are detailed in the next section.

3.3 Solution Steps
The solution for modeling binary systems is to create a modular API. The clients want an
API that can be called from within IDL, so C++ has been the chosen language for this
project. The C++ API that will be developed will need to be able to do the following:

1. Take in input parameters and accuracy settings
2. Create objects in a coordinate space based on the Sun
3. Set objects into the correct orbital positions and orientations for the given time
4. Perform ray tracing on the objects to generate a matrix of brightness for each tile

of the objects
5. Save what tiles are visible to the observer and their brightness for rendering
6. Sum up the total brightness of every tile and save it
7. Advance the time and repeat steps 3-7 for each time interval
8. Take all of the brightness values and graph with their corresponding time stamps
9. If a rendering is wanted, use the saved information from step 5 to

4. Project Requirements
The solution will be a modular C++ API with a variety functions designed to work together
optimally. This API will take in user input containing orbital parameters to generate a theoretical
light curve. Additionally the features of this API will need to be documented to be accessible by
other astronomers.

In developing this solution, the clients have granted significant freedom in most of the design
decisions for the project. However, there are a few core requirements established by the clients
to structure the project. These requirements can be broken down into 3 subcategories:
Functional, Performance and Environmental. The following sections will outline how each
requirement impacts the project and how the solution will have to consider each requirement.

5

4.1 Functional Requirements

Figure 1: The Forward Model

For this project there is one major use case that must be satisfied, the Forward Model,
which is displayed in Figure 1 above.

Implementing the Forward Model involves 3 major steps: performing astronomical
calculations, ray tracing the scene, and producing an integrated brightness value. This
set of functions will be called multiple times in succession from a minimization routine
with different or unchanging time values entered at each iteration. The final iteration of
this minimization routine will produce a final matrix of brightness values which represents
a light curve.

The user must also have the option to request a rendered image of the binary system
modeled in the ray tracing step.

FR1. Accept User Input
The software must provide the capability to read in large input files with a
predefined format similar to the format of existing ephemeris tables. Although
currently the format in the clients’ solution is not strongly established, ephemeris
tables from the Jet Propulsion Laboratory (JPL) will be used as a base reference
in terms of complexity and types of data. These tables provide the majority of the
input data necessary to perform the astronomical calculations in the first step of
the Forward Model.

Input files will be located through strings passed into the API. Additional values
can be passed into the API to provide additional data not found in ephemeris
tables, such as the times to model, or to adjust the accuracy of the model. The
latter includes modifying the resolution of facets used to create the objects in the
ray tracing. All input data presently accepted in the clients’ existing solution must
be supported by the API, either through input files or function calls.

6

The API must accept input files providing the following parameters:

● Keplerian orbital elements​​ - a set of variables necessary to calculate
positional data for the binary system and observer.

○ Period
○ Semimajor axis
○ Eccentricity
○ Inclination relative to J2000 equator
○ Mean Longitude at epoch (epsilon)
○ Longitude of ascending node (Omega)
○ Longitude of periapsis (w~)
○ Reference date

● Time value(s)​​ - one or more times to be evaluated in other calculations.
○ Total number of time values
○ Times at observer's location
○ Times at the target location (accounting for light travel time)

● Ephemeris table​​ - this table will provide locations of the observer, the
target binary system, and Sun at each time value

● Object shape parameters​​ - a data structure for each object that will
provide the necessary information to generate a shape.

○ Number of vertices
○ Number of facets
○ Array of vertices
○ Array of facets

There will also be optional prebuilt shapes for the user to select.
● Spin states​​ - a data structure for each object that will provide the

direction of the spin axis, the time of a rotational period and an epoch
when the rotation angle is zero.

○ Unit vector pointing to spin pole
○ Rotation period
○ Reference time

● Hapke parameters​​ - a set of parameters for each object that will
determine the reflectivity of light.

○ Single scattering albedo
○ Single scattering phase function
○ Type of Pg function to use
○ Opposition effect amplitude
○ Opposition effect width parameter
○ Macroscopic surface roughness

● Optional accuracy setting​​ - this parameter allows the user to adjust the
accuracy tolerance within the API to either produce slower, more detailed
computations or faster, less detailed computations.

7

FR2. Perform Astronomical Calculations
The first step of the Forward Model is to perform numerous astronomical
calculations to generate the data necessary to build a model in the ray tracing
step. While performing the ray tracing, all calculations and data can be computed
with different points as the origin, such as the Sun, the binary system, or the
observer to find the most accurate results. The math in this step can be broken
down into 3 major functions:

1. Work out the times at the binary system
One iteration of the calculations will revolve around a specific time and provide
essentially a snapshot of the object’s exact location in space. This time value will
serve as a key to find all relevant orbital data for the objects of the binary system
in the provided ​ephemeris table​. The specific time will be either entered directly
by the user inside an API call or calculated by the API itself. Calculating the
specific time for a binary system will be based on the light travel time reflected off
the objects towards the observer.

2. Calculate binary system location
The location of the objects in the binary system must be calculated using a
specific time determined from the previous step of the calculations. Keplerian
orbital elements must be used in conjunction with the specific time to determine
the exact location of the bodies in the system.

3. Calculate orientation of bodies in binary system
In binary systems, the two objects can be in a variety of orientations relative to
each other. Utilizing user input that provides the rotational axis, rotational velocity
and starting orientation of the binary system along with a specific time value, the
orientation of the two objects at an exact point in their rotation will be determined.

FR3. Ray Tracing
After the first step of the Forward Model has been completed, the data necessary
for the second step has been generated. The second step will use ray tracing to
construct and position a model of the binary system based on the calculated data
and user input. The ray tracing within this step of the Forward Model can be
broken down into five steps:

1. Generate objects composed of triangular facets
To start the ray tracing, two 3D objects composed of triangular facets will need to
be generated and these will be used in a simulation of the binary system. By

8

default, the two objects will be spheres, however there will be other options for
the user to generate custom shapes. Additional basic sphere-like shapes will be
offered as options through an API function call, and the API will also accept a list
of vertices that will represent a shape predetermined by the user.

2. Position the binary system and observer
The positioning of the items inside the model will occur with the following steps:

● The objects simulating the binary system must be placed inside the ray
tracing model relative to the light source, which corresponds to how the
actual binary system is positioned relative to the Sun.

● The observer will have to be defined and placed within the model as well.
When positioning the objects in the binary system and the observer inside
the ray tracing model, the Sun has to be used as the central point of the
coordinate system.

○ This central point will be critical in building an model with the
objects and observer properly aligned with the Sun and with each
other.

3. Trace rays from light source
A light source will be defined within the ray tracing model. This point will cast out
rays towards the binary system and these rays will be tracked individually to trace
their path and identify what the rays collide with.

4. Test if rays intersect a facet
Each facet of an object in the binary system will be evaluated to determine if a
ray intersected the surface of an object. This evaluation determines what parts of
the objects are lit up.

5. Check and record facets reflecting light towards observer
Light reflected off the binary system may not reflect towards the observer and
therefore the solution will have to distinguish which of the facets reflect light
towards the observer. These facets are relevant to calculating the integrated
brightness value and rendering an image.

FR4. Adjustable Accuracy

The client needs options that can adjust accuracy to have the ability to run quick
tests to determine if a model is a rough approximation of their observed system.
Then tests with higher accuracy can be run afterwards to find a higher resolution
model.

9

1. Object resolution
The largest impact on accuracy will be the resolution of the object models used
for the Forward Model. This parameter will be taken in when the Forward Model
is called. The resolution will determine how many facets are generated to define
the object. An increased resolution will cause the generated object to have more
facets. The increase in facets will allow the ray tracing to calculate reflection
angles with a higher level of precision.

2. Accuracy presets
The software will provide a number of preset accuracy settings. Different
accuracy settings will enable the clients to run various scenarios for testing
purposes. For this solution the accuracy settings will include 3 different options:

1. Best Performance
2. Best Quality
3. Balanced

The level of accuracy used to run the functions inside API will vary on the setting
selected by the user. These settings will adjust various internal parameters used
for both the astronomical calculations and ray tracing. Parameters to be adjusted
inside the calculations include the level of tolerance for Newton’s method and
using lookup tables over calculating values with trigonometric functions. The
following points will outline how each setting will impact the parameters and
result speed:

● Best Performance will adjust the parameters to produce the quickest

result at the cost of accuracy in the results.
● Best Quality will adjust the parameters to produce the highest resolution

result with no reduction of accuracy. This setting will be the most time
expensive of the 3 settings.

● Balanced will adjust the parameters to produce a result that minimizes
accuracy loss while trying to optimize runtime in the calculations. The ray
tracing will produce the best resolution possible with the optimized
calculation results.

The speed difference between these settings will not vary greatly when
compared in a single iteration. However, since the Forward Model will be called
numerous times and perform these calculations for each iteration, the difference
in runtimes will add up.

10

FR5. Implement Hapke Modeling
The solution will implement a function to perform Hapke modeling and calculate
the light-scattering properties of the surface of the objects in the binary system.
This function will help identify and determine the irregular surface of the objects.

FR6. Generate Integrated Brightness Values
The final step of the Forward Model will be to return a matrix of brightness values
to the user, corresponding to the input time values. This brightness values will be
calculated based off the results of the ray tracing steps. A matrix of these values
can be interpreted to generate a light curve graph.

FR7. Render an Image
The user will have the option to request additional output from the Forward Model
call in the form of a rendered picture. This output will be generated through the
use of ray tracing. Additionally, this output must be modifiable by input
parameters to adjust the resolution or pixel count of the image.

A single specific time or set of times will be passed in from the user and an
image, or set of images, of the binary system will be rendered based on the
entered time.

The image will display the two objects of the binary system with two key
characteristics in the following steps:

1. The shapes of the objects will be variable based on the shape the user
selected for each object.

2. The facets on the objects will display varying grayscale values based on
how much light the facet reflects.

○ Lighter colored facets represent parts of the asteroid that reflect
more light than the darker colored facets which represent parts
that do not reflect as much light.

4.2 Performance Requirements
Currently the clients’ solution is not complete and requires a substantial amount of
overhead time to set up the data to be parsed. A script is needed to produce a light
curve or to render an image. Each time the clients want to model a new binary system,
they have to recreate the necessary data and rewrite the script. The ray tracing in the

11

clients’ solution is written in an interpreted language which does not run efficiently
compared to using C++ libraries for ray tracing.

PR1. Calculate Low-Resolution Light Curve
The solution needs to generate the data required to determine a low-resolution
light curve. The clients gave a rough estimate of this task taking between 30 and
120 seconds on a workstation laptop. A workstation laptop will be defined for this
project as a laptop with both a stronger CPU and faster GPU than that of an
average notebook laptop. The steps to complete this task is composed mainly of
quick mathematical calculations, thus this requirement should be easy to
accomplish.

PR2. Render High-Resolution images
Generating a high-resolution image will involve ray tracing objects with a higher
count of facets which requires more processing to analyze each facet to render
the image. To render a high-resolution image of a calculated binary system, this
should take the solution 3-5 minutes to accomplish on a workstation laptop.

PR3. General Usability
The API in our solution will be built with additional documentation. This
documentation will provide explanations of the functions in the API and
necessary parameters each function will require. With the documentation, the
API will be more accessible by other users besides the clients.

The clients’ focus is on a complete solution to save them time and money as the current
solution has recurring overhead costs. The solution simply being complete will be a
significant performance improvement over the clients’ current implementation. However,
this solution has to satisfy these performance requirements as well as certain
environmental requirements covered in the following section.

4.3 Environmental Requirements

ER1. Linux Systems
The solution needs to be able to be compiled and run on Linux systems, specifically
Ubuntu and Red Hat. It does not need to be able to run on any other type of operating
system. Support for MacOS is a stretch goal.

12

ER2. Supports CPU and CPU-GPU Configurations
The solution must be able to run on computer that only has a CPU, but also make use of
a GPU if one is available. Any code or framework that the solution has needs to be
compatible with laptops and be able to run within the performance requirements without
access to more powerful hardware. The software needs to adapt to the hardware
available without any additional input from the user.

ER3. Callable From IDL
The solution needs to be callable from within an IDL environment. IDL is an older,
interpreted language, mostly used by astronomers, and does not provide support for
many modern languages. One language it does support, though, is C. Thus, a C
interface will need to be written for the C++ solution. The parameters passed through to
the code will be primitive or IDL types and need to be handled accordingly

4.4 Conclusion
The client needs to generate a model of a light curve based on binary asteroid system
parameters. They need a documented API that has all of the functions necessary to generate a
Forward Model. The API needs to have functions that are modular and a function that
incorporates all of the work involved with creating a Forward Model.

The Forward Model generation is the major function that needs to be implemented by the API
solution. This major function will call upon many other functions inside the API to complete
astronomical calculations, ray tracing, and calculating a final brightness matrix.

The solution must be able to calculate a low-resolution light curve in between 30 and 120
seconds on a workstation laptop. It must also be able to generate a high-resolution image in 3-5
minutes. Environmentally, the solution has to run on Linux systems, support CPU and
CPU-GPU configurations, and must be callable from IDL.

5. Potential Risks
These requirements naturally introduce certain challenges that need to be accounted for.
Overall the requirements are relatively low-risk, since they only require refactorization and
optimization. The project would be higher risk if the calculations and equations were not already
established. However, there is still a reason why the software needs to be rewritten and there is
potential to refactor in a way that does not support future requirements.

13

5.1 Scope Expansion
The first major risk is that the scope expands significantly to the point that it breaks the
solution. It is also highly likely to happen. The solution that is being built is not a one-off
solution, this is software that will be modified in the future. The clients have many ideas
about future improvements and features, some of which rely heavily on utilizing existing
code.

If the API was solely designed for the capstone requirements, it could need to be
significantly refactored to add some of the new functionality that the clients may want.
This is a normal risk for every software project that is not a one-off solution, but there is
some insight that makes this a more specific risk. Specifically, the requirement is to
implement a Forward Model. Eventually the clients will implement, on their own, an
inverse model. The details are unknown, though it will need to iteratively call the Forward
Model and constrain the parameters. Concepts like this should be accounted for ahead
of time.

5.1.1 Mitigation
A modular design can be used to account for a feature without knowing the
implementation details. The currently translated code already partially does this. For
example, there is a module for handling the orbits and a module for the ray tracing.

To incorporate a feature without knowing the implementation details, a black-box module
can be utilized. This means that the solution will not need to know the implementation
details of this module, just how it will interact with the other modules. By doing this the
solution can prepare the existing modules to account for this new inverse model feature.
This may mean breaking up the Forward Model into more functions than currently
necessary, since the inverse model may need only specific functionality from the
Forward Model.

5.2 Varying Ray Tracing Results
Another risk that has been identified is that when the ray tracing module is implemented,
there is a high probably that the results will differ from the existing solution. This is
important because the entire model’s accuracy is affected by the ray tracing.

The ray tracing code that the clients are using is handwritten and specific to the purpose,
whereas a framework is generalized (the low-level details are often hidden to the user).
A reference needs to be established that shows how accurate or inaccurate the results
are. It is unsafe to assume that they will be similar to the current solution.

14

5.2.1 Mitigation
To mitigate these risks, one needs to first establish references. There are two
sources of references: the handwritten code and existing observations.

The easiest reference to establish is to run a data set through the existing
handwritten code, then run the same dataset through the new module. Then one
must identify if the results are even in a ballpark range. It may be challenging to
debug the two solutions and see where specifically the calculations differ. The
most realistic approach is to identify probable areas of code that could differ in
results, such as one big function call to a framework versus dozens of lines of
handwritten code.

A reference can also be established against known observations, though that is a
larger task, since it would involve running through the entire Forward Model and
not just the ray tracing. This reference is more so a backup in case the more
accurate solution -- handwritten versus framework -- cannot be determined.

Once the references are established, unit tests should be written for the ray
tracing module. Unit tests will constantly verify the results. This will occur after
having already written an initial ray tracing implementation. Many iterations of
refactoring and optimizing the ray tracing module will likely follow, since it is the
bottleneck and meat of the code. During this phase, the unit tests will indicate
when modifying the code has changed the accuracy.

In summary, establishing references along with writing unit tests will significantly
mitigate the risk of the ray tracing module producing inaccurate or unexpected
results.

6. Project Plan
This project started by first establishing how the team would work together and then moved
immediately into assessing the project and gathering requirements. This can be seen in Figure
2, which is appended to the end of this document for readability purposes.

6.1 Current Work
One of the current tasks is translating the code. This means writing all of the core logic of
the fragmented, IDL solution into the language of choice, C++. In reality this task is a
second semester requirement. It does, however, provide a significant head-start and can
be used as a technical demonstration to show that the code can in fact be translated

15

without many roadblocks. There already exists verified functionality, a deeply featured
build system, a unit testing framework, and even continuous integration. The goal here is
to be able to immediately go into the design phase next semester and work directly with
C++ code.

Before a solution can be designed, there also needs to be demonstrations for the
technologies that were chosen. There are four demonstrations:

1. Demonstrating Vulkan, which performs ray tracing and rendering
2. Demonstrating vector arithmetic in the language of choice
3. Demonstrating compatibility with IDL
4. Demonstrating a section of translated code

6.2 Future Work
The design phase begins in the second semester and consists of first conceptualizing a
modular solution and then implementing it using the translated code. The language of
choice, C++, is object-oriented, which allows the architectural solution to be designed
modularly. From a user perspective, the API will just be a variety of functions, but
internally it will be implemented in a modular manner. The implementation will involve
direct refactoring of the already translated code, though the core logic will remain the
same.

There is a big window of time for optimization, which was strategically planned for.
Overall, a significant section of the programming work is already done. A complete
solution will be delivered on time. The goal of this capstone is to deliver the best solution
possible to the clients and meet their stretch goals, which in this case is optimization.
This is simply because Paired Planet Technologies is passionate about the domain of
space.

7. Conclusion
Space exploration has always enthralled humanity. Every year, billions of dollars are spent
trying to understand what is in the Solar system. Binary asteroid systems have always been
challenging to understand due to their small size. The clients, Dr. Audrey Thirouin and Dr. Will
Grundy, work at Lowell Observatory on understanding binary systems in the Kuiper Belt. They
accomplish this by using software that models binary systems.

One challenge is that these systems are so far away that only a single point source can be
observed. The required calculations to account for this are relatively complex and the clients
have only had time to develop a partial solution for the modelling. This partial solution is slow
and fragmented, meaning the functionality is spread apart and scripts have to be written to
utilize the code. The clients would like an API that is significantly faster and integrated, meaning

16

they can receive the model in a single function call in a code base that follows consistent coding
and naming practices. The plan is to create a modular C++ API that uses Vulkan for ray tracing
and rendering and Eigen for vector and matrix arithmetic.

Extensive requirements acquisition has been done for this document. This provides a contract
with the clients stating the definition of a final solution. The solution plans to address the clients’
problems through a modular design that utilizes efficient libraries for increased performance,
particularly Vulkan and Eigen. The modular design will provide greater support for upcoming
features and will also expose many internal functions while providing an integrated function that
returns a model in a single call. The API will be callable by IDL and will be well documented to
allow usage by other astronomers.

Containing the likely risks, such as scope creep and varying ray tracing results, is easily
achievable because of the mitigations strategies discussed. The performance requirements will
also be achieved almost trivially, because the current solution is unoptimized and written in an
interpreted language. The environmental requirements do not impose many challenges either.
With a solid solution outline and a significant head-start for the second semester tasks, Paired
Planet Technologies is confident that a top-quality solution will be delivered to the clients at the
end of the second semester.

17

 1

1 ​Figure 2: Gantt chart showing previous, current, and future tasks

18

