

MoGreen

Technological Feasibility

Version 2

November 7, 2018

Project Sponsor:

Ellen Vaughan and Brock Brothers

Team Mentor:

Ana Paula Chaves Steinmacher

Team Members:

Cassie Graham, Jennie Ryckman, Chase Mosteller, and Justin

Shaner

Page 1

Table of Contents

1. Introduction​​ ·· 1
2. Technological Challenges​​ ·································· 2
3. Potential Expansions​​ ······································ 3
4. Technology Analysis​​ ······································· 4

 ​4.1 Application Development Environment​ ​························ 4
 ​4.1.1 Solutions​ ​·· 5
 ​4.1.2 Chosen Approach​ ​····································· 6
 ​4.1.3 Proving Feasibility​ ​·································· 6
 ​4.2 Database Management System​ ································ 6
 ​4.2.1 Solutions​ ​·· 7
 ​4.2.2 Chosen Approach​ ​····································· 8
 ​4.2.3 Proving Feasibility​ ​·································· 8
 ​4.3 Mapping API​ ​··· 9
 ​4.3.1 Solutions​ ​·· 9
 ​4.3.2 Chosen Approach​ ​···································· 10
 ​4.3.3 Proving Feasibility​ ​································· 10

 ​4.4 Web Hosting Services​ ​···································· 11
 ​4.4.1 Solutions​ ​··· 11
 ​4.4.2 Chosen Approach​ ​···································· 12
 ​4.4.3 Proving Feasibility​ ​································· 12

5. Technology Integration​​ ​··································· 13
6. Conclusion​​ ​··· 14

Page 2

1. Introduction

Surrounded by a ponderosa pine forest, the NAU campus strives to be as green and

sustainable as possible. NAU has glass, paper, plastic, and battery recycling located

throughout the campus. As NAU continues to grow its student population, instances of

overflowing trash bins, full dumpsters, and campus litter rises as well. Basic

maintenance needs occur more often as sprinkler heads are accidently broken by

passersby and other minor issues.

This has been identified by Ellen Vaughan and Brock Brothers who lead the efforts for

sustainability on the NAU campus. Ms. Vaughan was the manager of the Office of

Sustainability here at NAU. Mr. Brothers is a supervisor and coordinator for NAU’s

Moving and Recycling. Everyday there are issues Mr. Brothers and his team deal with.

Currently, there are three main types of trash containers around NAU. There are the

standard concrete types and the large dumpsters. The third type is the “Big Belly” trash

bins and there are over 300 of those across our campus. These trash bins are very useful

since they are connected to a network and can send out notifications when full. They are

also solar powered and can compact the garbage they collect. However, there are

situations where the bin entrance can be blocked. The system is limited and cannot

report such obstructions. Mr. Brothers and his team will not know if there is an issue

unless they come across it and visually see the blockage or someone reports it. NAU’s

Office of Sustainability also works with repairing building fixtures, general building

maintenance, landscaping, and creating work orders if issues are found when general

inspections are made.

The current way for a student to report minor issues is to call NAU Facilities or report it

using their website. Nearly everything done in the effort to keep the campus clean and

maintained is completed manually. There is not a system in place to accurately track

when areas around NAU have been cleaned. There are not many tools for the NAU

community to get involved in helping. They are limited to calling or reporting via a work

request made online. Either way, the reporting method is a little outdated and most

students will not make the time to report minor issues.

The name of our project is “Clean My Campus” and it will be a mobile application. This

application will be developed by our four-person team. Team MoGreen looks forward to

working on this application and embraces all challenges that may emerge during its

development. The mobile application proposed will make reporting minor issues easier

Page 3

and allow NAU facilities to receive and track these reports faster. This application will

help NAU’s sustainability and keep our campus clean and green.

The solution we are designing is a mobile application that will be able to designate

sectors throughout the campus. We can use these sectors to show visually when an area

has been cleaned. We can create a reporting method to streamline reports of minor

issues. We can use the reports to generate data which can track high volume areas. We

could also use this data to help NAU green groups get organized quickly and clean the

campus more efficiently. Ideally, this application will make it easier for the NAU

community to get more involved. Minor issues like overflowing trash cans or full

dumpsters should not require more than opening the application and sending out a

report.

Ms. Vaughan is interested in having a mobile application developed which can help

sustainability, and not just for NAU. She envisions that NAU will be the pilot campus

where the initial application is developed. If successful, she will bring it to other

campuses in California. Mr. Brothers is interested in the application for its use in

helping he and his team maintain the campus in general. He also would like to have the

application help identify trends and areas of high trash volume. Creating a sustainable

campus is everyone’s responsibility and this application will contribute to that effort.

This document covers the technologies involved in creating our application. We will be

looking at multiple software that will implement what is needed for development. The

software selected will be performing the tasks we believe are feasible for our project’s

scope and timeframe. The topics we will cover in this document are the mobile

application language, database solution, web hosting service, and the mapping

application program interface (API). These topics are the main components which make

up the minimum product for our clients. The software chosen to solve the problem for

each topic will be shown why it is the best choice for our development. The outcome of

this document is to have a thorough record of our team’s reasoned explanation on why

we selected the specific software for this application’s development.

2. Technological Challenges

Our minimum viable product (MVP) has four main elements that we will need to

consider. For our MVP, we will need to implement the following:

● Mobile application development environment.

● Database Management System (DBMS).

Page 4

● Mapping API.

● Web Hosting Services.

The language or environment we choose to write the application in will inform the

platform of the application, and the potential for cross-compatibility. We also need to

consider what languages our team members have familiarity with or provide ease of use

as this will be the crux of the project. Our main consideration here will be platform and

language compatibility with whichever API we choose for our graphical user interface

(GUI) elements.

Choosing a database system is likely one of the more significant of the technological

challenges. Our main consideration will be familiarity and ease of use. We will need to

designate an administrator account, which will have permissions for handling reports

and viewing statistics on the website.

The mapping API we choose is integral to our project. We need to choose an API that

allows us to divide the map into sections and color code the sections in a variety of ways.

It is preferable that these functions are built in to whichever API we select.

Choosing website technologies is perhaps the easiest component for our MVP. We are all

familiar enough with website implementations that any we choose will suit our purposes

well enough, especially given that the website is meant to serve as a backend that stores

data and provides statistics.

The main interface of this project is the application itself. The website will see limited

use as it is meant to be mainly for campus administrators. Our main concerns regarding

the website are the interactions between the application, database, and website itself.

Our website will provide statistics in possibly different formats that are collected

through the application. We will need to figure out a way to collect and store that data

and have it accessible from the website.

3. Potential Expansions

Features for our “comfortably equipped” solution or stretch goals do not necessarily

require additional technologies. Our primary stretch goals are:

● New campus creation and administration.

● Gamification.

Page 5

● Map icons and interfacing.

● Geolocation features.

Allowing the creation of new campuses would require us to have multiple

administrators and handle permissions for each. This way each administrator would

only have the appropriate permissions for the campus they handle. This would affect our

database management.

Implementing gamification features would allow users to form groups and earn points

individually or in their groups. This would affect our databasing and the type of data and

statistics the application will collect. We would need to extend it to attributing reports to

users and assigning some point values. We may also need to create a competitive

element such as a ‘high score’ system to stimulate participation. Users should also be

able to view their team on the application.

Our application could potentially show icons to the user that tell them where trash and

recycling resources on campus are located and what type of waste they process. It

should not be too difficult to implement this but still falls under potential expansion as

it was not deemed necessary. Implementation would interact with the mapping API we

choose. We may want to have this be an optional filter on the map GUI, so users can

choose to view it or not.

Geolocation is the most complex potential expansion. Geolocation within this

application would allow the map on the application to open directly to where the user is

at that time. It would also allow problems reported to be tagged with an exact location

instead of the predetermined zone. Implementing this may require use of a separate API

in conjunction with our mapping API.

4. Technology Analysis

This section will analyze different software solutions that the components of our

minimal viable product will be implemented with. For each of the MVP components, we

will give a brief introduction of what the component is trying to address for

development. We will then discuss different software solutions, compare them based on

appropriate criteria, and name our decision. Each section has a table that shows how

each solution compares to another and a summary of how we will test the solutions

feasibility.

Page 6

4.1 Mobile Application Development Environment

The development environment and languages we choose will determine how our

application works and what platforms it is available on. Our team decided that we prefer

our application to be cross-compatible if possible, otherwise be for Android alone. IOS

functionality is not a priority for our application at this time since Android development

tends to be more intuitive and practical for the programmer. Price is not particularly a

factor here, as most environments and frameworks tend to be free.

Our priorities for choosing an environment are:

● What languages are compatible and our familiarity with those languages.

● The learning curve involved with the environment and those languages.

● Integration with our selected maps API.

● Cross-platform implementation.

The development environments under consideration are Android Studio, React

Native, and Ionic.

4.1.1 Solutions

1. Android Studio:

Android Studio is a development environment solely for implementing Android

applications. Android Studio does not provide any support for iOS. The primary

languages used to develop in Android Studio are Java and XML. Android Studio

has built-in integration with the Google Maps API and lots of tools for testing and

debugging as a fully-fleshed IDE.

2. React Native:

React Native is a command-line based framework where users create applications

typically using JavaScript and React. Applications can have cross-platform

implementation. There is some support for the Google Maps API, but it is lighter

than for Android Studio. Applications built in JavaScript or another compatible

language can still be opened and emulated using Android Studio or another

development environment.

3. Ionic:

Page 7

Ionic is a framework that uses Angular, CSS, and HTML. Ionic does support

cross-compatibility and is less intuitive than React Native. Ionic does not have

much support for Google Maps, which will add some overhead when we are

creating this map-based application.

4.1.2 Chosen Approach

Currently our team plans to use React Native to develop our application. Using the

React Native framework will allow cross-platform deployment regardless of what

environment we use to do the programming, although we will make use of the tools that

Android Studio offers as an IDE for testing purposes. Even if we do not deploy our

application for both iOS and Android, it will still be possible using the React framework

for future expansions of this application or with implementation of our stretch goals.

Mobile Application Development Environment Comparison Table

Scale 1-5

(5 is best)

Maps

Integration

Language Compatibility

(how many languages,

how familiar)

Learning

Curve

Cross

-Platform

Compatibilit

y Total

Android Studio 5 4 4 1 14

React Native 4 3 3 4 14

Ionic 2 2 3 3 10

4.1.3 Proving Feasibility

Proving feasibility for a development environment should be straightforward. We

should develop a simple application and show that it is usable on an actual cellular

device. Since integration with a mapping API is a priority here, we should implement

some sort of map GUI within our simple application that can assess the level of support

and compare it to our other potential solutions.

Page 8

4.2 Database Management System

Our team will need a database management system that can receive data from the

mobile application. The DBMS we select will need to store string characters, numeric

values, and images. The database will hold information for map data points, user data,

and images for reporting purposes. Storing images is the largest challenge for our DBMS

but each proposed solution can handle the storage and retrieval of them. There are

many database systems we can choose from and most of them fall under the two most

popular types of databases, SQL and NoSQL. We will be hosting the database locally and

will not need to use cloud-based capabilities. We will be looking at each database

solution for its data-type storage, ease of use, documentation, and price.

4.2.1 Solutions

1. Microsoft Access:

Microsoft Access is seen by many as outdated but newer versions of Access can

implement a database for our needs. Microsoft is still supporting it and will

continue to do so for the foreseeable future. It supports both the creation of

databases on a local machine or on Microsoft Azure, a cloud-based solution.

Storing floating point values and text is a basic feature but storing images is

limited. Access has visual tools for easily viewing database information and it is

ready to use out of the box. Documentation for using Access is very detailed since

it has been in use for quite some time now. This software has a monthly price

plan or can be paid yearly but either way is affordable.

2. MongoDB:

MongoDB is a database solution that uses NoSQL. It is a free and open-source

database software. It is well documented and can host a database on a local

machine. They also have cloud-based storage possible as well, but this comes

with a price. This product is updated regularly and supported by a dedicated

company. This database can store floating points and text as well since that is

very basic. Storing images is supported by the software but can cause

performance loss.

3. MySQL:

MySQL has different versions ranging from expensive commercial product to the

free, but still highly capable, open-source community version. It can host a

Page 9

database locally or use cloud-based storage for a price. It is versatile and can be

used on nearly every operating system. This software is updated frequently and is

supported by Oracle and they will be supporting it for the foreseeable future.

Storing floating point values and text is a basic feature. Storing images can be

done by storing the images in the database but this will cause performance loss.

An alternate way is to store the images in our web server and then make

references to the images.

Database Management System Comparison Table

Scale 1-5

(5 is best)

Data-Type

Storage Ease of use Documentation Price Total

Microsoft Access 2 2 5 3 16

MongoDB 4 3 5 5 22

MySQL 4 4 5 5 23

4.2.2 Chosen Approach

Our team will be using MySQL for our database needs. It is one of the most used

database software world-wide and has been proven time and again for performance and

stability. Our needs are simple and the other two options provide a little too much

overhead. While MongoDB and MySQL are both free, our team has had more experience

using MySQL. Our experience with MySQL and image handling options are what made

us choose it over MongoDB. The price for Microsoft Access is unnecessary for our needs.

Documentation for each option is abundant as all of them are very popular database

software used all around the world. Scalability is not a concern since we will be storing

small amounts of data which we can easily be stored on a local machine. This data does

not need to be kept forever, a few years at a time at most. The data should be small

enough that exporting or copying the data is a non-issue. The database we need to

implement is simple and we are confident that a MySQL database is the right solution

for this project.

4.2.3 Proving Feasibility

Page 10

Our primary concern when proving the feasibility of MySQL for our DBMS is the ability

to store and retrieve images. This can be shown by taking a picture from our skeleton

mobile application and storing the image into our web server. We can then store a

reference to the location of the image and show it on our website. We will also need to be

able to store map locations and then input them into our map API. The map API uses

float values for coordinates. We can store the coordinate values then pull the data from

the database whenever we need to display points or outline the regions. The final proof

of its feasibility is to create a user registration by applying usernames and a password.

We can create a test username and password and verify it.

4.3 Mapping API

Choosing a map API is a critical technological feature of this project, as this application’s

main features are very dependent on what our map API makes possible for us to do. Our

main priorities for choosing a mapping API are functionalities such as:

● Allowing us to define areas and display them accordingly.

● Allowing it to default to an area upon opening.

● Recording a user’s location.

The map must allow input for any data that needs to be received while also being able to

display information as requested. Three options have been selected and compared, they

are Google Maps, Apple Maps, and TomTom Maps API. From these we must determine

which map API will allow us to implement the above requirements.

4.3.1 Solutions

1. Google API:

Starting with Google API, this option allows us to select a static or dynamic

section of the map, proving useful if this application were to be used for multiple

campuses. The Google API for marking zones has OnClick options which are

helpful for creating zones without location features. The API also has options for

creating heatmaps which is one of the ideal ways we can express the data we

Page 11

collect. Along with these, this API can work with any platform we decide to use.

The only potential downside here is the cost of using this approach, however with

implementing only one campus, as required by our MVP, this may be negligible.

2. Apple Maps API:

Apple Maps is the map application used on most iPhones in place of Google

Maps. While this choice may be somewhat flexible to use on multiple devices, it

may not be possible to use depending on our platform choice. Apple Maps allows

us to dedicate sections, be they static or dynamic, allows us to dictate zones, and

show place markers. A downside of this choice is how new this API is and its

limited features. There is limited data logging with Apple Maps which is a

considerably large feature of our product. This API has a cost however it can be

ignored if the usage is low.

3. TomTom Maps API:

TomTom Maps API includes many features of Apple Maps but would be

compatible with any device we choose to implement compatibility for. Though

TomTom Maps is malleable, we still run into some of the same issues with Apple

Maps. Features included are generally aimed towards an application for

directions. The price is also low as the software is uncommon and has restricted

features. TomTom Maps includes necessary features of a map application but

does not include a lot of the built-in functionality of the features we will

implement in our MVP, nor any for our stretch goals. Having to implement those

features manually will add a lot of overhead.

4.3.2 Chosen Approach

Our final decision for this application is Google Maps because if its flexibility and the

features included. This solution has built-in functionality for all the features required in

our MVP and would allow additional features from our “comfortable solution” to be

easily added. Google Maps has an extensive library which would allow more diverse

features to be added in the future.

Page 12

Mapping API Comparison Table

Scale 1-5

(5 is best)

Pricin

g

Feature

Diversity Flexibility Management Total

Google Maps API 4 5 5 5 19

Apple Maps API 4 3 3 3 13

TomTom Maps API 5 2 3 1 11

4.3.3 Proving feasibility

Google Maps already includes many features that we will need to utilize. The basic

functions of this API will allow us to select an area on the map and display this zone

statically or dynamically, allowing us to either include the whole map or decide to use

only the areas we need in the static approach. To prove feasibility, we should implement

a map in a simple application and show that we can partition it, color-code it, and collect

location data.

4.4 Web Hosting Services

Another main challenge is to find a suitable web hosting service for our application’s

website. The service should be able to support and store our entire website front-end. It

should also be able to link to both our chosen database and our application. It must be

reliable enough to support these requirements as needed without interruptions to

service in the future. Some services we are considering are freehosting.com, NAU’s own

server hosting, and Heroku. The main issues we are concerned about are storage

capacity, database support, availability of features, and price.

4.4.1 Solutions

1. Freehosting.com:

Freehosting.com is a free web hosting service where you can pay for additional

features. Without paying, Freehosting offers 10GB of storage, one MySQL

database, and unmetered bandwidth. The unmetered bandwidth should prevent

interruptions in service for our website. Databases on Freehosting are limited to

MySQL. Even if you pay a subscription you will only get more MySQL databases

Page 13

as opposed to different SQL databases. The learning curve is not too difficult

since it is mostly just uploading our site files onto the hosting website.

2. NAU’s own server hosting:

NAU has its own server hosting that it is paying for. Since one of our clients

works at NAU, we may be able to request access from IT to some server space for

our client’s website and database. These server and database spaces would likely

be free. There also wouldn’t be many blocks to resources such as multiple

databases, bandwidth, and storage. The database types would be limited to

Oracle and Microsoft Access. The need to be link which requires using Cold

Fusion. Framework development is also restricted to ASP.Net. All these features

would require significant learning efforts from our team.

3. Heroku:

Heroku is a cloud platform hosting service. Most of its services are paid for but it

allows the creation of a small sandbox for web and application development.

Heroku has a lot of database support for multiple versions of MySQL but the site

RAM is limited to 512MB. Storage would need to be mostly done in a database

since Heroku doesn’t support much permanent storage. Bandwidth and

performance metrics are managed by Heroku. While the site is most compatible

with Ruby, it does support other languages such as Python and Java. The

learning curve should not be difficult since it allows Git integration to upload files

onto the website.

4.4.2 Chosen Approach

Our chosen approach for website hosting is Heroku. The table below outlines some of

the reasons why we think Heroku is better than the other options. Freehosting.com

seems to provide simple front-end hosting and features but is limited in mostly all other

features. NAU’s server hosting seems like the intuitive option, but would have a high

learning curve due to us needing to learn how to use new frameworks and databases that

our team is not experienced in. We would also need to manage connecting our pages to

our database by learning how to use Cold Fusion. Heroku appears to be the best option

because it has language support for languages our team is experienced in. It has enough

features in the limited free version that would be enough to host and test a small

website. Heroku allows integration and deployment from Git It has support for multiple

types of databases as well.

Page 14

Web Hosting Services Comparison Table

Scale 1-5

(5 is best) Pricing

Resource

Availability

Learning Curve/

Familiarity

Database

Support

Tota

l

Freehosting 3 3 4 4 14

NAU server hosting 5 5 1 3 14

Heroku 3 4 3 5 15

4.4.3 Proving Feasibility

Since the main issue of this challenge is website hosting with database support, our best

way to prove the feasibility of our solution is to test a small website that we have created

and then upload it to Heroku. Once we have set up our database, we can try to link it to

the test website that we have uploaded. We can test this by adding basic database

management functions and checking to see if these functions are actually interacting

with our chosen database. It should be straightforward enough to create accounts on

Heroku since it offers a free plan with basic features.

5. Technology Integration

Figure 1 is a basic representation of how we want to integrate our technologies. The

website and application are front-end methods that users will use to interact with the

database. The website will be implemented in standard HTML, CSS, JavaScript, PHP,

etc., as there are not many alternatives to create a website. Our application will be

programmed using the React Native framework and the database will be running on

MySQL. The application will have to be able to upload statistics and data to the database

as it is being used. It must also be able to read database data in real time as other users

update it. The website will also update the database by registering users to the system.

However, the website will mostly be reading map and user data to display statistics.

Finally, both the website and application must be able to work with and display Google

Maps. The website must be able to use Google Maps to display map statistics and data,

while the application should be able to use the map to display live issues and problem

areas that users can track around a college campus.

Page 15

 ​ (​Figure 1​​. Image representation of how our technologies will interact with each other.)

1. Data will be sent from the database to Google Maps (App). Number 4 nearly identical

2. Google Maps will use the data received to define regions and place markers.

3. Input from the application will be sent to the database and disseminated from there.

4. Google Maps (back-end) will be doing identical tasks as in the mobile application.

5. The website will be updated with the data received.

6. Website will send data to database to update regions and markers as needed.

7. The database should be able to send any other stored data to the website as needed.

6. Conclusion

We are developing a mobile application that will help encourage NAU students, staff,

and faculty to actively engage in maintaining the campus. Cleaning litter in the campus,

fixing broken fixtures, and clearing trash bins all help contribute to NAU’s sustainability

efforts. The features we are including will assist NAU staff by sending reports and

tracking statistics based on user feedback.

In order to complete this task, we had to determine the best tools we could utilize when

creating this application. This document has shown each of our solutions to meet the

requirements for a minimum viable product. Our selected DBMS, MySQL, will be able

to hold all the data-types needed and has proven itself reliable as seen by its immense

popularity. MySQL can store and receive data to all the other software we have chosen.

Our Mapping API, Google Maps, is well documented and has many functionalities which

Page 16

will enable us to mark regions upon static maps, use on click functions, generate

heatmaps from user data, and much more. With all the features included, the mass

usage of Google Maps, and cross-platform ability, using it as our Mapping API is

absolutely the right choice for our application. Building our application in React Native

will have its challenges as we learn but we believe that developing in an environment

that has cross-platform compatibility is worth the effort. Currently, our goal is to create

our MVP for Android use only but since we are using this development platform, we

leave open the possibility of pushing to iOS devices. Our web hosting service, Heroku,

has all the features we could need for developing the back-end and front-end of this

application.

Challenge Proposed Solution Confidence Level (out of 5)

Web Hosting Heroku 4

Language React Native 4

Database MySQL 4

Map API Google Maps 5

We believe that we can successfully create this mobile application with our chosen

technologies. Each tool presented meets or exceeds our minimum requirements and

allows for future development beyond our MVP.

Page 17

