
Software Testing Plan
LabRats
Project Sponsors: Dr. Terry E. Baxter & Michael Kelly
Team Mentor: Ana Steinmacher
Julian Bell
Remy Brandriff
Blake Lawton
02 April 2019

[image:]

Version: 1

[bookmark: _azvhrndxoy]Table of contents

Introduction	3
Unit Testing	4
Integration Testing	5
Introduction	5
Login	6
Contact	6
Request	6
Inventory	6
Conclusion 	7
Usability Testing	7
Introduction	7
Testing Plan	8
Schedule	9
Conclusion	10

[bookmark: _2ddtkjxjv33o]Introduction
	Research in the field of environmental engineering is an area of study that helps scientists gain a better understanding of the world around them, allowing for more informed decisions about protection of the Earth’s environment through waste management, pollution control, and other such topics. The Environmental Engineering Lab (ENE Lab), an NAU-based lab that facilitates and hosts research in environmental engineering, handles topics in climate change, water safety, and sustainability, among many others, which contribute to global efforts in preserving the environment. This includes coursework, independent student research, and research performed by faculty and industry professionals using university resources. When there are failures or issues with said research or data, however, which can occur in a number of ways, that calls into question the validity of the results, and by extension, this could endanger the field of environmental engineering. Consequently, this may affect life on Earth as a whole.

	Thus, our project, ELIMS, seeks to solve these issues by creating a centralized system in the form of a web application, where users can submit lab requests, check inventory, confirm safety information, and more. As our project is nearing its completion point, however, we are going to need to truly begin our phase of software testing to ensure that the final product will behave as expected in a satisfactory manner. Software testing refers to the practice of checking each component of a particular piece of software in order to ensure that each component is functioning as it should, and that the actual results from testing the software match what is expected from it.

	In the case of ELIMS, our brand of software testing will be relatively simple; as a web application with just a few crucial functionalities, we do not intend to rely on any packages or tools for results as far as unit testing is concerned; instead, we will be going through each small component of our main functionalities, one-by-one, testing as a group, and ensuring that each function or section of code is operating as it should (i.e. “can we search for chemicals based on this criteria that we have specified in previous documentation?” and so forth). Integration testing will be largely similar; we will look for satisfactory, concrete results in the interaction between these modules and functionalities to ensure things are working in tandem correctly. If more formal testing methods become apparently required, we will consider other avenues, but we anticipate no problems going forward as intended with our current plan.

	We will need a proper user base with which to test our software as well, in order to get valuable feedback from a wide range of user types. This means that although we will consult opinions of those skilled in software and the project (such as other CS students, our sponsors and associated faculty, etc.), we will be tapping into feedback and results from those less skilled or familiar with our project; this includes ENE students who may not have deep firsthand experience with our brand of computing, lab managers whose opinions are vital (as they are a key component of our user base), and family members and friends who are more removed from the project to give us a valuable third-party perspective.

	Overall, we are confident that our plan for software testing, as briefly explained above and elaborated over the course of the document, will be an effective and valuable way to gain insight into what we need to iron out in the last phase of development, and ensure that our product is satisfactory for those who will be using it when deployment time arrives.
[bookmark: _qxis4lvfx5vy]Unit Testing
	In software engineering, unit testing refers to the process by which each individual component, or unit, of the software, is tested one-by-one, to determine if each component is performing as intended. This ensures that each subsection of the project in question is functioning properly, and that each part of the overall system is adequate enough for effective and proper use by the target user base. With respect to ELIMS, unit testing will concern a few major areas, but remain largely simple throughout, as at its core, it is a basic web application that relies on a compact number of crucial subcomponents to operate effectively.

Given the simplicity of our project with respect to the amount of subcomponents it has, our brand of unit testing will not rely so much on formal testing tools as much as more of a “manual” approach to the process. This means that we will not be using any formal libraries or tools to conduct the unit tests, although if this appears to become an apparent issue, we will look into other avenues for evaluating results. We are confident as a team that we can test each part of the website (and its subsequent code blocks) through our general debugging process that we have used throughout. A careful approach of collaborative, team-based debugging will be taken to ensure that each feature and function of every subcomponent in the system is up to standards and satisfies requirements as specified in previous documentation.

For ELIMS, there are four components of the system where we will conduct unit tests: the inventory system, the request system, safety modules and training, and the contact system. In later sections, we continue by detailing methods in which we will test how these four components interact with each other, and integrate into the system as a whole website. For now, as for these four sections, there will be necessary areas we will test, as well as equivalence partitioning and boundary values (where appropriate) that we will use as metrics for whether each one passes the unit test process:

Inventory
· New data for chemical inventory can be submitted to website’s database. For certain fields, data must abide by the following restrictions:
· Diamond health code entries can be from 0 to 4 (health, flammability, reactivity, other hazard fields)
· Date received must be a prior date to date checked out
· The chemical inventory can be viewed as a full list by any user of the ELIMS site
· Chemical data details can be viewed by any user as well
· Data may be edited or deleted by managers and administrators
· Chemicals may be searched for and filtered based on user input

Requests
· Lab usage requests can be submitted by any registered user
· Requests can be approved by managers and administration
· Request page can filter and display results based on user input
· Correct status of request (pending, accepted, denied) is shown for each respective request
· Users can delete, edit, or view details of requests based on roles

Safety
· Training modules can be created and a date set for completion
· Expiration date is accurate (one year beyond completion date)
· Appropriate users can delete safety modules

Contact
· Contact form submissions can be created and viewed at any time afterward
· Contact page can search and filter based on user input, with option to display details
· Appropriate users can delete their respective contact form submissions
[bookmark: _yx3kf8yrhst8]Integration Testing
[bookmark: _x9qru6y9qq45]Introduction

The way we are conducting our integration tests can be separated into a couple sections as our product has only a few major modules that are interacting with each other. This testing sequence we will be affirming is that each module is able to send and receive the correct data between each other based on a role system. These goals will be tested through a multitude of data submissions and data checks in our system. The testing will be split into four sections; contact form, lab request, inventory, and login.
[bookmark: _ge4v03cnej47]Login

We will start with the login section as it has the most interaction between all the major modules. The role based system behind logging into the website splits users into three different roles. These roles consist of a normal user with no extra permissions, a manager that has almost all permissions except the ability to assign other managers, and lastly the admin that has permissions to all the functionality of the website. This background information is important to understand as these roles define the data interactions in each module. The testing for this module includes having users create an account and then checking if the account is able to be re logged into and is fully stored in the database. We are able to look into our database to find the login information from the user to confirm integration into the role based system and also the database.
[bookmark: _j18ymz86fvh3]Contact

The contact form module will be tested so that the users forms are being stored into the database with the correct information and are able to be accessed by the user after being created. The user should be able to look at their contact request form and access the information from the database on a readable interface. We will test this module by creating a user and sending in a contact form and checking if the user can look at their own contact form request. This contact form should be able to be seen by a lab manager or admin to be addressed and send any critical information back to the owner of the contact form request. This test will conclude by checking if the correct roles are able to access the contact forms appropriately on the website.
[bookmark: _otdzi6rphi28]Request

The lab request module is very similar to the contact form page as the way that the data is accessed and interacts with each other is the same just with different information. The normal user should be able to create a lab request and access its contents after creating it. The appropriate roles should be able to look at the request and approve or deny the request based on the information provided. The original user should then be able to look up if their request has been approved or denied. All this information should be correctly stored into the database.
[bookmark: _60lhnltnqc6]Inventory

The inventory module will be tested only using admin and manager roles as they are the only roles able to access this information and edit any of its contents. These users should be able to add, edit, or delete any information that is stored into the inventory database through an interface. We will test this using users that have lab manager and admin permissions. These users will be inputting inventory items, editing any information on these items such as amount or date most recently used, and also deleting any misplaced inventory items that do not need to be in the database. We will closely monitor the database system as these actions take place to make sure that the data is correctly being modified.
[bookmark: _w55e7q1w8v80]Conclusion

The main purpose of our integration testing will be to make sure that the roles are interacting correctly with each major module and that all information is being sorted and modified correctly in the database system. We will create temporary dummy users for each role to make sure our product is performing the correct actions with each role. The database will be a main checkpoint to see if data is correctly being interpreted by each module.

[bookmark: _vm2f4t69b07f]Usability Testing
[bookmark: _e5wt3r2plg2v]Introduction

The final type of testing we will be performing is usability testing, which focuses on the interaction between the app and the user.

The big difference between traditional software testing and usability testing is that usability testing is with actual users or customers, focusing on the front end and the user experience, while traditional testing, such as unit or integration testing, is performed by the developers on the back-end. With usability testing, we’re able to see how easy the website is to use by testing it with real users who have never seen this project before.

Through the usability testing phase, we will be testing the ease of use, evaluating how easy and intuitive ELIMS is to use, and how easy it is for the user to achieve their goals, such as creating an account, submitting a lab usage request form, or editing an inventory entry. We will also be using the usability tests to evaluate ELIMS’ UI and UX from the point of view of real end users, as opposed to the development team or the client, who has witnessed the evolution of ELIMS and may be biased based on the changes.
[bookmark: _9ge19iepb7ao]Testing Plan

We will perform a series of user case studies with real users—including other CS students, the Lab Director and Lab Manager, ENE students, student managers, and some less technically-minded people—where we have them explore and use the ELIMS website as they would. These users will be asked to complete tasks based on what type of user they are—administrator, manager, or unprivileged user—and give us feedback about their experience. Most of these users have never seen ELIMS before; Dr. Terry Baxter, the Lab Director and our client, has obviously been involved in the development process and has been performing ongoing testing for us. But by ensuring the bulk of our testers haven’t used ELIMS before, we mitigate the bias of the developer by getting feedback from end users who otherwise don’t know anything about the ELIMS system, whereas we the developers are too familiar with it to be able to suitably evaluate the ease of use.

CS students – (2-4 people) These are the users we expect to find most of our technical problems, because they’ll likely have a better understanding than the standard user of what happens on the backend of a website and will have a better idea of how to find issues with functions such as data processing and client-server communication.

ENE students – (4-6 people) This is our targeted consumer base, and given that we don’t have the same understanding of the environmental engineering field as they do, they may be able to provide us with valuable insight into the average user’s user experience, and give us feedback into how ELIMS will be used practically in deployment.

Lab Director – (1 person) The Lab Director, Dr. Terry Baxter, is also our client, and is one of the primary users of ELIMS. He has been present throughout development and will continue to be involved through the end.

Lab Manager – (1 person) The Lab Manager, Adam Bringhurst, will be one of the people using ELIMS most often and hasn’t used it before, so it’s important that we get his feedback throughout the testing process.

Student managers – (2-5 people) This group of users is halfway between a standard user and an admin, and has largely the same permissions as an admin user. But this is an important demographic to keep in mind, and we will be interviewing a handful of the current student managers to get their feedback.

Other – (2-6 people) We know that not all users will have experience in website design and ELIMS may not be intuitive to people without technical experience; as the developers and computer scientists, we’re not the best people to evaluate that. It’s important we involve people without technical experience in the usability testing, so that we can better understand what may be a problem or confusing.

Some of these users will be observed by one or more of the development team, such as the ENE students; while we can’t interfere, for the sake of the testing, this does allow us to watch firsthand what they do. While we prioritize open-ended questions and getting their feedback without us guiding them, we may ask our testers several questions, which may include:

1. Did you find ELIMS easy to start using? Was it easy to use in general or were some things confusing or difficult to understand?
2. What was confusing?
3. What did you like? What did you not like?
4. Do you like how it looks? If not, what didn’t you like?
5. Did something “break” while you were using it?
6. Do you have any other suggestions for us?

If we cannot be there in person for the testing, these questions will be sent via email to get their feedback, which will help us pinpoint problem areas or places of confusion that may require further clarification or refactoring. Usability testing is largely qualitative, not quantitative, but if there are issues or problems that frequently come up in our testing, we know those are problems to focus on fixing, even if just limited to including more instructions on the website.
[bookmark: _n8agz9l5rkbt]Schedule
[image:]
We’re starting testing with other CS students and our non-technical group this week, as we reach out to some people we know. Dr. Baxter and Adam are also currently testing ELIMS and we expect to get feedback from them Thursday, and then as an ongoing process; we’ve already received some thoughts from Dr. Baxter and have integrated that in our development. Student managers will come in later, after we’ve gotten initial feedback from the other groups and have been able to make adjustments.

We will perform our acceptance tests near the end of the testing cycle, as we prepare for final refactoring and deployment. Our acceptance tests will be with two people, Dr. Terry Baxter and Lab Manager Adam Bringhurst, as our primary admin users.

Altogether, we’re expecting to get between 10-15 people outside our development group to test ELIMS and give us their feedback, so that we may improve the usability, ease of use, and overall user experience of the ELIMS system. While this is not a large group of users, nor is this plan foolproof or even a 100%-accurate representation of how ELIMS will be used in real life, we believe that given the demographics we’ve included—which encompass a range of users with different fields of experience and technical proficiencies—that we will be able to perform adequate usability testing.

[bookmark: _6vghdd51wq5u]Conclusion
	The testing we have planned out for our ELIMS website includes all the necessary steps in order to assure our product is in reasonably the best shape we can make it for actual deployment. Starting with our unit testing of four webpages—contact, inventory, request, and safety—we will be able to identify any outlying errors in the basic data returns of these pages. Second, we use a step-by-step process to test the integration of the separate modules with each other, to ensure that all parts of our system that need to communicate are doing so correctly. This is a crucial part of our testing plan, as most development issues stem from module interactions. Lastly, we will select five different types of users to conduct our user-based tests, including CS students, ENE students, lab director, lab manager, student manager, and a variation of people who have never interacted with the lab or are not very tech savvy, to ensure we get a wide range of feedback on ELIMS’ usability.
This is not a foolproof plan, but we believe this is a solid approach to optimizing ELIMS for deployment. We are confident that our testing strategies are going to net us a great product, and that ELIMS will end up with minimal errors and high functionality.
image2.png

image1.png

