

Software Testing Plan

4/5/2019
Version 1.0

Keystone Robotics
Robot Assisted Tours

Project Sponsor:
Michael Leverington

Faculty Mentor:
Austin Sanders

Team Members:
Hailey Ginther, Shannon Washburn, Gabrielle Halopka, Falon Ortega

1

Table of Contents

1.0 - Introduction 2

2.0 - Unit Testing 3

3.0 - Integration Testing

4.0 - Useability Testing

5.0 - Conclusion

2

1.0 - Introduction

Northern Arizona University’s Engineering building is the most important stop of
campus tours for future engineering and computer science students. The labs, project
rooms, and lecture halls of the building are where they will be studying for the next 4 or
more years. This means the impression groups get of the facilities during their time on a
tour of the building is an essential contributing factor to attracting and retaining new
students. Attracting the attention of these students with physical evidence of the work
accomplished by seniors in the department will help persuade these new individuals to
enroll.

Our client, Dr. Michael Leverington, is a professor at Northern Arizona University’s
School of Informatics and Computing. The professor has a Ph.D. in Education, Masters
of Computer Science and Psychology, and a Bachelors in Physics. Additionally, he is an
avid follower of developments in robotics and is eager to bring the multidisciplinary topic
to his department. He has tasked our team with the initial planning, assembly, and
programming of a robot potentially capable of giving tours of NAU’s engineering.

The ultimate purpose of this project is to create a robot capable of autonomously giving
tours of the engineering building, fulfilling the need for a captivating introduction to the
projects NAU students can accomplish thanks to or in conjunction with their coursework.
Our goal as the starting force behind this project is to put what we have identified as the
basic level of hardware and software this robot needs into practice. For the scope of this
capstone project, the client’s goal is to have a fully assembled robot that can be moved
with user inputs. Other major goals during this project for this team are to perform tests
that ensure the safety and stability of hardware and to leave behind detailed
documentation for future students’ use during follow-up projects.

Testing of this project begins on the smallest scale with the unit tests described in the
next section, followed by a section on the integration tests between our units and other
project components. This is followed by a section on verifying the useability of our
project. See our conclusion following the section on useability testing for a summary of
our methods and results.

3

2.0 - Unit Testing

Unit tests help ensure that the base components of our project function as intended,
especially for edge case and unexpected input. The goal of these tests is to ensure that
methods written by our team for the Arduino and Robot Operating System will operate as
expected. Output from these methods being expected values is essential to ensure
integration testing and other tests further into development are not working from
inherently flawed base code, which in the case of our project could result in improper
robot functions or hardware misuse.

For our project, the software units being tested are sorted into two categories: Arduino
code and ROS package code.

2.1 - Arduino Code
The Arduino code of this project is a short but essential program that receives directional
input from a ROS package that it uses to control the robot’s two motors.
In order to test the code within an Arduino efficiently we have recreated the program in
the closely-related language C and run tests on this analogous code. This method of
testing ensures any potential errors are from the code rather than the hardware it is to run
on. There is a single method, the test of which is described below:

Methods set_right_motor() and set_left_motor() are essentially the same methods using
different pinouts. The equivalence partitions are negative integer values from -255 to -1,
positive integer values from 1 to 255, and 0. The boundary values are -255, -1, 0, 1, and
255. Currently, we have incorrect values of -256, 256, 100.1, ‘d’, and “string” to ensure
robustness of the method.

2.2 - ROS Packages
A small ROS package written for this project controls the speed for our robot given a
velocity vector input from a USB joystick. The speed of our robot must be moderated
carefully to avoid physical damage to components and surroundings, so the testing of this
unit is especially essential. There is just one method within the C++ code of this program,
the test of which is described below:

Method speedCallback(). The equivalence partitions are float values between -.5 and .5
and the boundary values are -.5 and .5. These values are being passed via a ROS message

4

from the teleop_twist_joy node which is part of a built-in ROS package, therefore we feel
confident that the message will contain only valid values.

5

3.0 - Integration Testing

Once our software is tested and our hardware components are connected and ready,
integration testing possible. Some of our electronic components rely on the presence of
other components to allow for any useful tests to be performed. Therefore, we must
assemble these main components circuit together completely to enact an initial
integration test. Then we split further integration tests down into a set of steps where
integration between all current parts are confirmed to behave as expected before addition
of more parts, essentially proceeding through integration testing in a bottom-up approach.

For each module listed, assume the parts and steps of testing listed in any previous
models are applied in addition to the parts introduced for that module.

3.1 - Module 1: Base Circuit
Tests the basic circuit needed to power all additions to integration testing process.

Components tested: Batteries, Motor Drivers, Wiring, Power Switch
Method(s) of Integration Verification:

1. No unwanted feedback occurs when the circuit is powered on.
2. All components remain within a temperature that is safe for direct human contact.

3.2 - Module 2: Wheel & Motors, Base
Tests the integration of the basic power circuit with the wheels and motors, plus the
stability of the motors once they are attached to the base.

Components tested: Wheels, Motors
Method(s) of Integration Verification:

1. The motors & wheels spin when the circuit is powered on.
2. The motors exhibit no visible shaking loose or wobbling in the base frame when

bolted fully onto mount.

3.3 - Module 3: Arduino
Tests the integration of the Arduino & its respective code with the hardware of the
previous module.

Components tested: Arduino Uno
Method(s) of Integration Verification:

6

1. A basic shell code uploaded to the Arduino causes the motors to start spinning
once powered.

2. Powering off the Arduino or overwriting its current file halts all motor movement.

3.4 - Module 4: Raspberry Pi & USB Controller
The Raspberry Pi is added to the circuit and is tested for integration with the previous
parts, then the integration between the ROS code and the circuit is tested.

Components tested: Raspberry Pi 3, USB controller, Laptop interface
Method(s) of Integration Verification:

1. Raspberry Pi connects to Arduino and powers Arduino.
2. Laptop successfully creates SSH connection to Raspberry Pi via Ethernet cable.
3. Relevant ROS packages successfully loaded and launched from laptop.
4. USB controller input successful transmission exhibited by wheel movement

corresponding to direction and speed of joystick press.

3.5 - Module 5: Full Hardware Integration
The circuit and software of previous module is installed inside the barrel housing, secured
and insulated as needed.

Components tested: Barrel & mount (overall stability), insulation
Method(s) of Integration Verification:

1. All previous integration steps confirmed to remain successful after installation.
2. Wiring does not shake loose during robot movement.
3. Components do not fall from their respective shelves during robot movement.
4. Ending movement input from USB controller halts all robot movement.

7

4.0 - Useability Testing

Testing the useability of our project with a group of users is important to make sure our
end product will be useful to our client after our team has completed it. The end users
identified during the planning of this project are students and faculty of NAU’s
engineering building. This userbase is expected to possess a level of understanding of
basic programming and computer skills needed to power on electronics and perform
command line processes with minimal instruction. Any level of familiarity with the
particulars of the robot’s inner mechanisms is not expected of most of our users. Because
our users are expected to be somewhat knowledgeable already, we are holding tests that
demand a certain level of experience.

The tests identified in the following subsections are to be performed by a group of NAU
engineering students and faculty asked to participate randomly from around the
Engineering building (After confirmation and recording of their age, year in school, and
major. Non-engineering majors and faculty will not be included in testing for safety
purposes).

4.1 - Setup Test
Purpose: To confirm that our client and future students using our project components can
adhere to team safety guidelines given a manual of basic instructions and warnings.

Setup:
User is shown where the power switch is located and provided a brief manual listing
(a) Components that need to be plugged in before operations can be started
(b) Wiring and hardware that should be inspected before each power-on
(c) Commands that must be passed at command line to begin operations

The test is considered successful if the user:

● Connects the laptop and game controller to the Raspberry Pi via Ethernet and
USB respectively

● Checks that all 4 fuses are present and undamaged in circuit
● Confirms that the Raspberry Pi and Arduino are receiving power from respective

battery pack, and the battery packs for the relays are switched on
● Turns on power switch only after all previous tasks have been completed for this

test
● Correctly passes given command line instructions to start robot operation

8

After the test is completed the user will be asked to rate on a scale of 1-10, 1 being simple
and 10 being impossible, the difficulty of:
(a) Checking the hardware for faults
(b) Connecting the components
(c) Powering the robot on

4.2 - Operation Test
Purpose: To confirm our client and future users of our project understand how to
manually control the robot and read our user manual.

Setup:
User completes test described in 4.1, and is directed to section 2 of user manual
containing:
(a) Warning on the speed and danger presented by misuse of user handling of robot
(b) Instruction on how to move robot with joystick and button input

The test is considered successful if the user:

● Reads the section of the manual provided
● Is able to control and move the robot without striking nearby people or obstacles

with robot

After the test is completed the user will be asked to rate on a scale of 1-10, 1 being simple
and 10 being impossible, the difficulty of:
(a) Reading and understanding the manual explanation
(b) Controlling the robot manually with a USB controller

4.3 - Power-off and charge test
Purpose: To make sure clients and other future users understand the power-down
procedure and how to charge the robot.

Setup:
User completes previous tests and is directed to charging information portion of manual
which contains:
(a) Warning about improper handling of charging circuit
(b) Instructions on switching circuit to charging from power

The test is considered successful if the user:

● Successfully switches robot to charging mode

9

● Connects charger to robot and outlet, with charger displaying correctly colored
“charging” LED indicator

After the test is completed the user will be asked to rate on a scale of 1-10, 1 being simple
and 10 being impossible, the difficulty of:
(a) Switching the circuit from power to charging

10

5.0 - Conclusion

Tours of the Engineering building are time-consuming and largely uninformative.
Professors must take time out of their day to assist with these tours, and the students who
give them are often not engineering students. Our client, a computer science professor
with a physics and engineering background, wants a device that can take over this role.
By automating this process with a robot-assisted tour, faculty can save time, and visitors
to the building can be shown the capability of NAU’s engineering and computer science
students.

Testing is essential at all levels of our robotics project to make sure components work
safety and correctly. Unit tests of our programs are simple but important - the testing of
the Arduino code significantly lessens the chance of bad input from ROS making the
motors to spin uncontrollably and cause accidental collisions or other issues. Similarly,
the unit test for the ROS package will help avoid speeds outside of our controlled range
that could cause the robot to move much faster than intended. Integration testing at each
level of our project helps keep our project modular and lets us identify any problems
found through testing by narrowing down potential errors to one or two parts at a time.
Finally, our user testing is formatted in a way that resembles actual use of the robot as
closely as possible to ensure the results are accurate as possible.

Overall, our team is extremely confident in our work and we believe it will hold up to
each of these tests with minimal error. The dozens of hours of work assembling this
project and the research that prefaced it have given us the experience we need to develop
the set of comprehensive tests presented in this document.

