Robot Assisted Tours

Design Review II Keystone Robotics

Introduction

- Computer Science Team
 - Hailey Ginther Team Lead, Customer Communicator
 - Shannon Washburn Architect
- Electrical Engineering Team
 - Gabrielle Halopka Recorder
 - Falon Ortega Hardware Design Manager
- Mentor Austin Sanders
- Client: **Dr. Michael Leverington**, Faculty member and Lecturer in NAU's School of Informatics, Computing, and Cyber Systems

Problem Statement

- Primary Problem: Building a robotics project foundation for future students
- Driving Idea: Build a robot that can give automated tours of the engineering building
- Typically ~\$4,000-\$80,000

Solution Overview

- Construct a robot that can move around the building with user input
- Documentation of the process
 - \circ $\,$ Paper trail for other students to follow
- Integratable parts
 - \circ $\,$ Other projects can be derived from ours
- Cost effective parts

Key Requirements Summary

- Will be capable of basic mobility
- Will be expandable to future projects
- Will operate safely
- Will be modifiable for a technical end user

Architecture Overview

Implementation - Movement Module

Implementation - Movement Module

Implementation - Power Module (Circuit)

- Specific Client Requirements:
 - Off switch that cuts motors from batteries
 - Plug one wall plug in to charge batteries
 - $\circ \quad \ \ {\rm Doesn't\ melt\ the\ physical\ components}$

- On/Charge Circuit
 - \circ Knife Switch, 3 in 1
 - SPDT Relays
 - Motor Drivers/H-bridges
 - $\circ \quad \text{Heat Sinks} \quad$

Circuit Schematic

Implementation - Logic Module

- ROS (Robot Operating System)
 - \circ Framework for robotics applications
 - \circ Provides tools to interface with sensor
- Arduino Interfaces with motor drivers and wheel encoders
- Two Modes of Operation:
 - Manual Control via Joystick
 - $\circ \quad \text{Autonomous Navigation} \\$

Implementation - Logic Module

Manual Control Flow

Implementation - Logic Module

Autonomous Navigation Flow

Challenges and Resolutions

- Issue with possible corrosive liquid in barrel
- Precision needed in encoder installation underestimated
- Needed solution for battery charger to meet intelligent charger requirements
- Unexpected readings from sensor data in software

Schedule

GANTT -			2018				Planning Phase Complete e Complete			AssemblyIntegration Phase Complete			
	Desin data	End date	September	l October	 November	December	January	 February	March	 April	Мау	June	
Tame	Begin date	End date	-										
• Team Startup	9/18/18	10/23/18											
Tech Feasibility Document	10/24/18	11/9/18											
Requirements Document	10/24/18	12/10/18				\							
Planning Phase Complete	12/11/18	12/11/18											
Parts Order P1	10/5/18	10/23/18											
Hardware/Software Testing P1	10/24/18	11/15/18											
Parts Order P2	11/16/18	12/1/18				ļ							
Hardware/Software Testing P2	12/2/18	12/16/18	4			_							
Assembly Design	12/17/18	12/31/18					_						
Testing Phase Complete	1/1/19	1/1/19					.						
Mount/Base Assembly	1/1/19	1/25/19					ļ						
On/Charge Circuit Assembly	1/26/19	2/10/19											
Shelf/Final Physical Assembly	1/26/19	2/27/19						*	_				
Microncontroller Circuit Assembl	2/11/19	2/27/19											
Assembly Phase Complete	2/28/19	2/28/19							<u>+</u>				
Arduino/Encoder	2/28/19	3/6/19											
Kinect/Pi	2/28/19	3/14/19	<u></u>						լ				
Integration Phase Complete	3/15/19	3/15/19							<u> </u>				
Stretch Goal Navigation	3/15/19	5/2/19									_		
Stretch Goal Time-Up	5/3/19	5/3/19									•		

Conclusions

- Problem
 - $\circ \quad \ \ {\rm Need \ expandable, \ robotics \ platform}$
 - \circ ~ Idea stems from time-consuming tours at NAU Engineering Building
- Solution
 - \circ Physical: dolly, motor mount, shelving
 - \circ Electrical: on/charge circuit, heat sinks
 - Software: ROS, Microcontrollers
- End product is far cheaper than alternatives by thousands of dollars