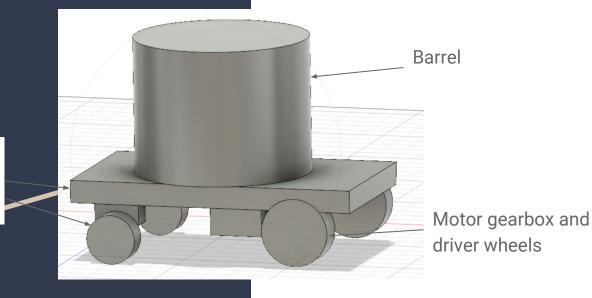

Robot Assisted Tours -Design Review I

Keystone Robotics

Introduction

- Computer Science Team
 - Hailey Ginther Team Lead, Customer Communicator
 - Shannon Washburn Architect
- Electrical Engineering Team
 - Gabrielle Halopka Recorder
 - Falon Ortega Hardware Design Manager
- Mentors Austin Sanders & Jun Rao
- Client: Dr. Michael Leverington, Faculty member and Lecturer in NAU's School of Informatics, Computing, and Cyber Systems


Problem Statement

- Overarching goal:
 - \circ a robot that is able to give tours
- Building a robotics project foundation for future students
- Currently lack a robot that can give tours

Solution Overview – Hardware

- Hardware
 - Building a physical robot
 - Robot should be able to move

Rectangular Dolly with front caster wheels

Solution Overview – Software

- Software
 - A robot that can navigate the engineering building

Solution Overview – cont.

- Documentation of the process
 - Paper trail for other students to follow
- Integratable parts
 - Other projects can be derived from ours
- Cost effective parts

Key Requirements

Requirements Acquisition:

- 1. Meetings with our client.
 - a. Understand client vision/expectations
- 2. Technical research
 - a. What is feasible for a two semester project?

Top Level Requirements:

- 1. Will be capable of basic navigation
- 2. Will be expandable to future projects
- 3. Will operate safely
- 4. Will be usable for a technical end user

Functional Requirements:

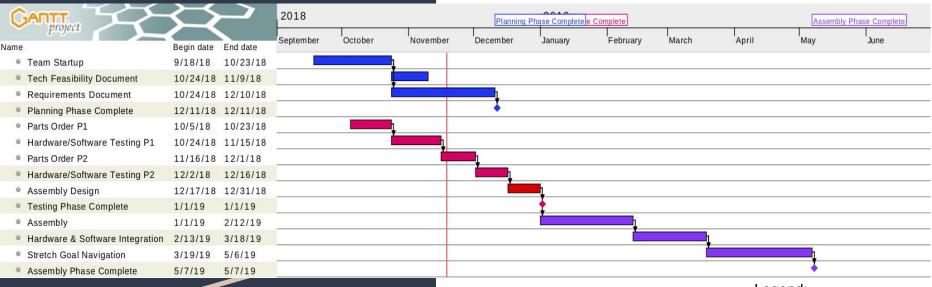
- 1. Robot will be able to calculate and navigate a path between two points on a single floor
- 2. Robot will be able to create a 2D map of its environment
- 3. Robot will be able to reroute around moving and non-moving obstacles
- 4. Robot will be able to reroute to avoid drop-offs
- 5. Robot will be manually controllable

Non-functional Requirements:

- 1. Robot will be able to move at least 100 lbs
- Robot's maximum velocity will be at least 1.5 m/s
- 3. Robot will be able to run continuously for at least 2 hours
- 4. Robot will not pose a risk to its environment or itself
- 5. Robot will be expandable to future projects
- 6. Robot will be usable to a technical end user

Environmental constraints:

- 1. Parts must be cost effective (~\$500 total)
- 2. Client envisions large, robust robot
- 3. Must use 30-gallon barrel to house components.
- 4. Only needs to navigate within one building


Requirement breakdown:

- 1. Robot will be able to calculate and navigate a path between two points on a single floor
 - a. Robot will be able accurately calculate odometry data
 - i. Robot will be able to acquire and use wheel encoder data
 - ii. Robot will be able to acquire and use inertial measurement unit data
 - b. Robot will be able to localize itself within a 2D map
 - i. User will be able to send robot approximate location and heading
 - ii. Robot will be able to match laser scan data with map data
 - c. Robot will be able to send velocity data to control two motors independently

Risks			Likelihood: 1 - Unlikely → 5 - Likely		
Risk:	Overheating	Combustion	Loosening/ Detaching Components	Battery Leakage	
Likelihood	3	1	1	1	
Concern Level	Mid	High	Low	Low	
Mitigation Strategy	 1) Install heat-resistant shelving in interior 2) Cut holes to facilitate airflow for cooling 3) Heat sinks 	 Use rechargeable batteries Heat Sinks & Good Ventilation 	 1) Order custom mount for motors 2) Perform exhaustive stress tests on assembled product 	 Proper heat dissipation Purchase Lithium-ion Keep records of last charge, replacements 	

Risks cont.				$ Likelihood: 1 - Unlikely \rightarrow 5 - Likely $		
Risk:	Localization Errors during Navigation	Speed Calculation error	Loss of control (manual or automatic)	Collision with Passerby or Obstacles	Falls/ Failure to Avoid Drop-offs	
Likelihood	3	2	2	4	2	
Concern Level	Low	Low	High	Mid	High	
Mitigation Strategy	 User ability to correct robot location in map Ability to halt self & emit light or sound warning 	1) Controlled - environment testing of robot movement at variable speeds before deployment in public space	1) Physical emergency stop button (cuts power supply) - Large and easily reachable	 Sensors placed to minimize blind spots Proximity warning lights & sounds Physically stable system 	 Test to ensure sensors notice drop-offs in manageable amount of time Program stop points / warnings into map data 	

Project Schedule

Legend: Blue - Planning Phase Red - Testing Phase Purple - Assembly Phase

Conclusion

- Why:
 - Tours take up faculty time
 - Process can be automated to save time and impress visitors
- Who:
 - Client is a CS Professor with Physics and Engineering Background
- What:
 - Goal is to design robot that can navigate the Engineering building with ease
 - Design has to be safe, autonomous, expandable, and usable
- How:
 - Discuss system requirements with client
 - 30 Gallon Robot:
 - Microcontrollers for processing
 - Motors and Wheels For Movement
 - Design must mitigate multiple risks (Environment, System, etc.)
 - Next: Technical Prototype Demo