

FitByte

Technological Feasibility

October 17, 2018
Jake Farrar

Jacob Lemon
Austin Pederson

Ana Paula Chaves Steinmacher (Mentor)
Dr. Kyle Winfree (Sponsor)

Dr. Gregory Dominick (Sponsor)

1) Introduction

In 2016, the number one cause of death was ischaemic heart disease (Fig. 1). In

fact, ischaemic heart disease claimed over four times as many lives as road injuries

(Fig. 1). The fact that heart disease is such a big killer should motivate people to try and

prevent it. The easiest way to help prevent ischaemic heart disease is by completing at

least 30 minutes of aerobic exercise five times per week. There are technologies that

help motivate people to exercise. These technologies are usually in the form of a

wearable. The most prominent example of this, is the Fitbit.

 Fig. 1: Graph detailing top 10 causes of death across the globe in 2016.

Fitbit was established in 2007. Since then, Fitbit has enjoyed an enormous

amount of success. In 2017 alone, Fitbit sold 15.3 million devices. The success of Fitbit

is in part due to its social features. These social features are what help drive users to

exercise. For example, users can challenge each other to competitions to see who can

get more steps in a day.

This is very interesting to both our sponsors as they are both in the field of study

having to do with human interaction with technology and its potential effects on fitness.

Our sponsors are Dr. Kyle Winfree and Dr. Gregory Dominick. Dr. Winfree is a

researcher at Northern Arizona University. His research centers on the use of devices

engineered for therapies and assessment. Dr. Gregory Dominick is a researcher at

University of Delaware. Dr. Dominick’s research centers on health-related topics.

They have been conducting research by giving their users Fitbits to wear for a

month. This allows them to track all of the data that the wearable technology offers.

Currently, they have a software called WearWare that grabs the data, and dumps it to a

CSV. They are running into issues sifting through the data, sharing it, analyzing it, and

giving their users feedback in a reasonable amount of time.

One of the glaring issues that our sponsors are facing is sharing the data with

each other. They currently have no easy solution for sharing data. Another large issue is

that the data that is acquired from the Fitbit devices can be somewhat unreliable. This

means more processing is necessary on the data to ensure correctness. The last big

problem Dr. Winfree and Dr. Dominick have is that it is difficult to assess the data in real

time in order to determine who needs to be contacted in order get them back on track.

Team Fitbyte consists of Jake Farrar as Team Lead, Jacob Lemon as QA and

Enforcer, and Austin Pederson as Web Designer and Code Base Manager. We have

been tasked with helping Dr. Kyle Winfree and Dr. Gregory Dominick with their research

about the functionality and accuracy of Fitbit data as they are having some troubles

sharing data, analyzing data in realtime, and keeping users motivated without having to

manually check up on their participants. Their research has proven that Fitbits data has

some flaws that need to fixed. They have asked us, Team Fitbyte, to solve their problem

by creating a web API that allows the team in Delaware (led by Dr Dominick) to request

data that is produced by WearWare. If our team has time, Dr. Winfree would like us

implement our own way to dynamically analyze the WearWare data and send users

motivational SMS text messages.

Dr. Kyle Winfree did an excellent job outlining the problem and his ideas for a

potential solution. He wants us to create a web API that allows the team in Delaware to

securely fetch data that has been produced by WearWare. This is the MVP for the

project and should be the most important aspect in our research. As soon as we are

able to complete the web API, we can move on to implementing a way to analyze the

JSON file provided by WearWare. This would include the use of Octave, and if all else

fails, Matlab. Octave would allow us to read in a JSON file, analyze the data, and spit

out an output. Based on the output that was generated, we would send the user an

SMS update if they are making poor progress to a goal, or have been sitting for long

period of time.

In this document, we will explore the various technologies that can be used in

order to solve the problems that Dr. Kyle Winfree and Dr. Gregory Dominick are having.

We will first address the technological challenges. We will then analyze the solutions

that we have found. After the analysis, we will outline the technology integrations. We

will then conclude the document and outline which technologies would work best for our

sponsors in order to best meet their needs.

2) Technological Challenges

 In order to address the problems outlined in the introduction, this section is split

into five sub problems: creating a way for servers to make calls to our data server and

receive a response, creating a program that will analyze the data collected from

WearWare, creating a program that will take the analyzed data and send out SMS text

messages when needed, creating a program that will have a UI that researchers can

get data from easily, and understanding and interpreting the existing code for

WearWare.

Problems we need to solve:

2.1. Create a way for servers to make calls to our data server and receive data.

This is a problem because this currently does not exist. Dr. Dominick would like

our team to create a way for his team to be able to request data from the servers

here at NAU without having to get into contact with Dr. Winfree or anyone on Dr.

Winfree’s team.

2.2. Create a program that will analyze data. This is an issue because currently

there is no program that analyzes the data from WearWare. The data must all be

analyzed manually currently and that takes up a lot of time.

2.3. Create a program that will take the analyzed data and create a notification

for the end user. This is an issue because it is possible that participants in a

study could not be using their FitBit and this would create large inconsistencies in

the data. The current solution is to have someone manually check up on any

participants that would be participating in a study and then checking on the last

time that the FitBit was synced and then manually getting into contact with the

participant to try and get them to put the FitBit back on.

2.4. Create a program that will have a UI that researchers can pull their own data

from. This is a problem because it is currently a very barebones project and the

interface is not super pretty. With a more stylistic, attractive, and intuitive UI, it

could become much easier for researchers to pull data from WearWare and for

users to see their data that they have contributed to a study.

2.5. Understand a interpret the existing code for the project. This is a minor issue

as we need to understand the output of the code so we know what inputs we will

be obtaining.

3) Technology Analysis

3.1) Potential Solutions for Problem 2.1:

Creating a solution for servers to talk to each other in order to exchange data

requires that we create a REST API. Three possible solutions to this problem that we

have identified are Django, Express.js and Laravel. They all could be viable in solving

the problem. Below is the analysis between them.

Fig. 2: Requests per second for various web frameworks when asking for a simple json.

a. Django

Django is a Python framework for backend web development. The pros

and cons for this framework are shown below.

One of the most important features here is inherent security. As we are

dealing with data related to people's’ health, the data is potentially quite

sensitive. Another huge advantage for Django is that WearWare is already

written in Django, so if the project needs to be altered at a later date, that

can easily be done in-house. The lack of performance isn’t a huge deal

here as requests per second will likely not reach astronomically high

numbers.

b. Express.js

Express.js is a JavaScript framework for backend web development. It is

used in tandem with Node.js. The pros and cons for this framework are

shown on the next page.

Pros Cons

Python Less frequent updates

Rapid development possible Performance lacking (Fig. 2)

Easy database management Low flexibility within the framework

Good documentation Synchronous

Scalable Not great for small projects

Secure Large size

Pros Cons

JavaScript Bound to single CPU

Excellent performance (Fig. 2) Community examples can be poor

The main advantages of Express.js are its performance and

documentation. Express was the best performer as showcased in (Fig. 2).

This makes it a strong candidate if this project needs to be grown to a very

large user base. The biggest cons against Express.js are that there is

always a new version just around the corner that can potentially make

your project nearly deprecated and that asynchronous programming can

be quite difficult.

c. Laravel

Laravel is a PHP framework for backend web development. The pros and

cons for this framework are shown below:

The biggest advantage afforded by Laravel is the sheer amount of support

for PHP. PHP has been around for so long that you can find almost

anything online with one search for any problem you could ever run into.

However, that is a double-edged sword as PHP was first designed so long

ago and was never planned to become as large as it did. This means that

PHP has almost no conventions and a lot of hacky solutions online. PHP

is also the worst performer by far, making it very difficult to recommend if

the project needs to scale at any point in time.

Good documentation Extremely frequent releases

Asynchronous Async programming is harder

Extremely extensible

Pros Cons

PHP support is easy to find PHP is old

Good for creating an API Very poor performance (Fig. 2)

Good documentation Bloated

Very flexible Steep learning curve

Easy database management

After analyzing our choices carefully, we have decided upon using Django. This

decision was made based on a multitude of different reasons. Since we will not be

developing an entire web application, just an API, Django provides us with many

important advantages over the competition. Firstly, since this API will be dealing with

potentially sensitive data, security is tantamount. Django provides excellent protection

without too much effort put in on our part. This makes development timelines more

rapid. Another huge advantage of using Django is that WearWare is already written

using Django and if the API needs to be updated after this project is completed, it can

be done quite easily. Given that this API does not need to serve thousands upon

thousands of requests per second, the somewhat lacking performance provided by

Django is not a major issue.

3.2) Potential Solutions for Problem 2.2:

Dr. Winfree specified the use of Octave or Matlab when analyzing the data

provided by Wearware. Octave is a programming language that is compatible with

MATLAB but with a little bit easier syntax. MATLAB also requires a license to use the

software which is one of the reasons the Dr. Winfree would prefer to use Octave

because it largely has the same functionality as MATLAB. Another possible option

would be to R studio to analyze the data. R studio allows data to be loaded in various

formats and perform many different statistical functions on the data. From our research,

Octave should be able to analyze the data properly and follow the trends of the data to

relay the results to the users while satisfying the wishes of our client.

3.3) Potential Solutions for Problem 2.3:

The application needs to send a notification to the user. Our client specifically

asked for text messages. The team needed to find a simple solution that the web

application would be able to send these texts. The team research and discovered four

possible solutions to solve this problem. The solutions include: Twilio,Bandwidth,Nexmo

and Sinch. They all could be viable in solving the problem. Below is the analysis

between the four.

a. Twilio

Twilio is cloud server application. It allows for developers to make/

recieve texts and calls from users and to user. Some of the features

that will help solve our problem of user notification via text include:

picture messages, reoccuring number, simple concatenation and

many more. The pros and cons are as listed.

b. Bandwidth

Bandwidth is communication application that can be used for many

things such as voice communication and more. Bandwidth differs

from Twilio in a few ways. First since Bandwidth is its own network

it allows for potentially quicker sending/receiving. Bandwidth also

has a better support portal than Twilio if it is needed. Below is the

pros and cons of Bandwidth

c. Nexmo

Pros Cons

Reliable for sending/receiving Most expensive option

Easy to set up and use UI isn’t the greatest

Expansive when it comes to phone
services

Supports a large number of APIs
so potentially overwhelming

Large database of documentation

Pros Cons

Great Support for users Lots of logging in

Powerful API for users Website Portal has many bugs

Own network so quite fast in
comparison to other options

Hard to search through the
available DID (Direct Inward

Dialing)

Nexmo is a service that is the Voyage API platform. Nexmo is a

large competitor to twilio. Nexmo differs from Twilio in a few ways.

Nexmo focuses on overseas communication. They have a larger

global reach than Twilio. Nexmo also costs less than Twilio. Below

are the pros and cons of Nexmo.

d. Sinch

Sinch is cloud based communication platform that can be used to

send and receive messages. It differs from Twilio by adding some

new features which include free incoming text messages.Sinch also

has an analysis board that can be used. The pros and cons of sinch

are listed below.

After analyzing the options presented above, the team decided to go with Twilio.

While it is the most expensive option, the sponsor is willing to fund the solution and the

other features seemed more beneficial to us. No one on the team has any experience in

regards to sending notifications through a backend. The simple setup was the biggest

Pros Cons

Full Time Support Difficult to use dashboard

Very Inexpensive GUI doesn’t look good

Direct to many large carriers Some countries have problems

Simple REST API

Pros Cons

Good integration between front
and backend

Less online documentation

Supports over twenty thousand
users

Notification Bugs are common

Cheap with free incoming options

factor for the team. We also liked the reliability factor that was included with Twilio. We

strongly believe that this backend API will be beneficial with the current standing

WearWare since the preexisting code will be simple to integrate with Twilio. The team

plans to take simple courses and watch youtube videos to help increase our knowledge

on the program before the initial setup process.

3.4) Potential Solutions for Problem 2.4:

 The next major problem that the team needs to solve was a way to create a user

interface that could be used by the researchers. Dr. Winfree was open to really anything

since the current software does not have a UI so we decided to look into web

applications that could connect to a database that would hold the analysis performed by

the other solution. Jake had some experience with Ionic and the team decided to start

there. The team did some research and found a few web frameworks that could be

viable. These solutions include AngularJS, Meteor, and Django. Below are the

comparison between them as viable solutions.

a. AngularJS

AngularJS is an open source website development framework that

focuses on one page application. Angular is maintained by Google and

has many features such as unit testing, HTML user interface and more.

Below are the pros and cons of AngularJS.

b. Meteor

Pros Cons

Uses JavaScript One paged applications

Document Object Model easy to
adjust

Difficult to learn about the many
features and how they work

Excellent server performance Uses a Modal Visual Controller
which can cause problems

HTML templates that can be used

Meteor is another open source website software framework. Meteor can

also be used for mobile development on iOS and Android. Meteor can be

used with its own engine called Blaze or the React framework. Below are

the pros and cons of Meteor.

c. Django

As stated above, Django is a Python framework for backend web

development which can also be used to create an intuitive website. This

solution would limit our different code as it is being used for API calls.

Below are the pros and cons of using Django for a UI.

 After reviewing the potential solutions to the UI problem, the team decided to go

with Django as it is already being used for another part of the solution. The team

believed that less technologies could be beneficial in regards to documentation. The

team also like the prebuilt features and the security would be beneficial as the data for

the UI would be sensitive. A security error would not be good for the project. The team

doesn’t think speed is the issue and is willing to potentially sacrifice it to us Django. We

Pros Cons

Uses Javascript Not enough of network flexibility

Large number of packages
available

No Widget library

Good communication between
client and backend

Database selection is limited to
MongoDB

Pros Cons

Uses Python Slow so potentially slow websites

Lots of prebuilt in features that
make set up easy

Lots of explicit declaration in the
code

Security is quite good

believe that the project will have a comprehensive website that can be accessed quite

easily with Django.

3.5) Potential Solutions for Problem 2.5

The team already mostly solved the last problem. The team met up with Mike

Fell. Mike is a employee of NAU and he was assigned to develop and edit WearWare.

Mike was responsible for a large majority of the pre-existing code. As a team, we met up

one afternoon and he explained the currently existing code. He explained that code

already. The program already uses the Django framework and a SQL database to

house the data that is mined from the Fitbit api. He also explained that WearWare is

hosted on a local machine that we will eventually receive access to. Celery and

RabbitMQ are also used for the pre-existing project but we will not be using these for

our portion of the project. Mike’s valuable insight helped us improve our decisions for

the technologies that we plan to integrate into the project as well as figure out solutions

to problems we didn’t know we had which was the location of where to host the

program.

4) Technology Integration

 The above solutions are the teams tentative plan to tackle all the problems that

the sponsor has. The team plans to house all the code that is needed for Django,

Octave, and Twilio within a private BitBucket. This repository will also contain the code

for the already existing work of WearWare. This centralized location will allow the team

to keep tract and properly link all the files to produce the desired result. The pre-

existing code will also provide a database that Octave can use to correctly complete the

analysis. Django will also need to communicate with this database so that it can

properly make the APIs that can be called from the server. This combination of

database calls will be paramount in the project as without this being correct the

program will have many problems. The team plans to attack this by focusing on the API

calls before the analysis so that we can properly call the data. We also need to create a

plan that creates the reports for the researchers and sends it to the UI. The UI also

needs to be user friendly and that will be refined through the use of user testing which

will include surveys as well as hands on usage. Our desired project relationships are

shown in a diagram below (Fig. 3).

!

Fig. 3: The diagram displays the intended relationships by the end of the project. The

black is representing outside work while the red will be done by the team.

5) Conclusion

Dr. Winfree wants us to create an API that allows Delaware to send a request to

our API which will retrieve data from Wearware and send it to them, safely and securely.

We plan on using Django because it is a framework that leverages Python and would

line up nicely with wearware. Django will give us all of the functionality we need without

being too complicated. We will then use Octave to analyze the data to satisfy the

request of Dr. Winfree and we feel confident this is our best option. All of our research

on the technologies seems to line up very nicely with what Dr. Winfree is expecting.

Each of the technologies seem fairly straightforward and easy to use while also being

powerful enough to complete our task. Below is a chart that outline all of the

technologies we will be using along with a short description and our level of confidence

with each one.

Technology Description Confidence

Our team feels fairly confident with all of the technologies that we have

researched. Each one that we have found fits nicely into place without us having to try

and stretch and accommodate something that will not likely work. Our next steps are to

attempt to mock up simple examples that relate to our problem to verify that all of our

technologies are the right fit. Our team is very optimistic with the outcome of this project

after all of the research we did on all of the various technologies.

Bitbucket Very similar to Github
and will allow us to
easily manage code

9/10, we are all familiar
with Github.

Django Python framework to
create our web API.

7/10 fairly unfamiliar
with creating a Web API
but confident working
with Python.

Octave Alternative to MATLAB
that is free and will allow
us to analyze data.

7/10, We have never
used Octave but the
syntax seems fairly
straightforward.

Twilio Backend API to send
messages via text

5/10, the team has no
experience with
programs like this but
the large supply of
documentation is very
helpful to the team.

