
Team FitByte
Software Design Document

(Version 2)

2/19/19
Jake Farrar

Jacob Lemon
Austin Pederson

Ana Paula Chaves Steinmacher
Dr. Eck Doerry

Dr. Kyle N. Winfree
Dr. Gregory Dominick

Table of Contents

1. Introduction

2. Implementation Overview

3. Architectural Overview

4. Module and Interface Descriptions

5. Implementation Plan

6. Conclusion

1. Introduction

In 2016, the number one cause of death worldwide was ischemic heart

disease (Fig. 1). In fact, ischemic heart disease claimed over four times as many

lives as road injuries (Fig. 1). This statistic is shocking due to the fact that heart

disease is preventable. The easiest way to help prevent ischemic heart disease

is by completing at least 30 minutes of aerobic exercise five times per week. In

order to help facilitate with reaching this goal, there are wearable technologies

available to help motivate people to exercise, such as Fitbit.

 Fig. 1: Graph detailing top 10 causes of death across the globe in 2016

Fitbit was established in 2007. Since then, Fitbit has enjoyed an enormous

amount of success. In 2017 alone, Fitbit sold 15.3 million devices. This is very

interesting to both of our sponsors as they are both in fields of study relating to

human interaction with technology and its potential effects on fitness. Our

sponsors are Dr. Kyle Winfree and Dr. Gregory Dominick. Dr. Winfree conducts

his research at Northern Arizona University and focuses on the use of devices

engineered for therapies and assessment of health. Dr. Gregory Dominick is a

researcher at the University of Delaware whose research focuses on health-

related topics. For example, Modeling Clinically Validated Physical Activity using

Commodity Hardware is the title of a paper recently published by Dr. Dominick.

This study details how Dr. Dominick and Dr. Winfree worked together to create a

model that reduced Fitbit inaccuracies and made the results be closer to what

would be seen if a research-grade device had been worn instead of a Fitbit.

They have been conducting research by giving their study participants

Fitbits to wear for a month. This allows them to track all of the data that the

wearable technology offers. Currently, they have a piece of software called

WearWare to help facilitate with their research. WearWare consists of two major

parts. A front end application that takes the form of a website and a back end

application that deals with all of the data collection. The back end is the piece

that grabs the data and exports it to a CSV. The front end is the piece that allows

researchers to interface with the program conveniently, easily, and quickly.

However, they are running into issues getting participant data, analyzing data for

periods of inactivity, tracking progress towards goals, and returning the results to

their researchers in a reasonable amount of time.

One of the glaring issues that our sponsors are facing is the sheer amount

of time that it currently takes to process the participants' data in order to supply

feedback. Researchers do not currently have an easy solution for dynamically

analyzing the data in a reasonable amount of time in order to provide useful

feedback to all of the participants in the study. Another issue is that researchers

do not have an easy way to monitor their studies, the participants that are

involved, or a quick way to apply Octave scripts to monitor data to find significant

events. There is also currently not an easy way for new researchers to sign up to

use WearWare. As a team, we are looking to enhance WearWare so that all of

these issues will be resolved.

Team FitByte consists of Jake Farrar as Team Lead, Jacob Lemon as

Quality Assurance (QA) and Enforcer, and Austin Pederson as Web Designer

and Code Base Manager. We have been tasked with helping Dr. Kyle Winfree

and Dr. Gregory Dominick create a solution that will allow them to automatically

and dynamically assess their research participants' data in real time. We will be

enhancing the capabilities of WearWare, implementing new features into

WearWare, and creating a web Application Protocol Interface (API) that allows

the team in Delaware (led by Dr. Dominick) to request and receive data in real

time that is stored in WearWare’s back end. The API will ideally let the Delaware

team receive data from WearWare without having to go through the web

application and wait for the large CSV to download. The API acts as a gateway

that can get data from the database and send it via JSON to whoever requested

it. The new features that our team will be implementing are a proper participant

management interface, a way for researchers to manage their studies, and a way

for data analysis scripts to be run on selected data on our server.

2. Implementation Overview

FitByte’s vision for a solution is simple. Our goal is to use WearWare’s

functionality and data collection as a base for our web application. The main

skeleton of WearWare will remain intact. We will then rebuild the UI and enhance

its functionality using the same technologies already employed by WearWare.

WearWare, like most websites and web applications, consists of a

frontend and a backend. The frontend is the piece that we are planning on

stripping away and rebuilding from scratch. This piece contains all the parts that

the user interacts with. This includes the UI, any animations, drop-down menus,

etc. The backend is the part of the website that handles all of the interactions

with any databases, other servers, and basically anything that the user does not

directly interact with. This is the portion of the website that will remain mostly

intact.

The single most important piece of technology that we will be using is

Django Web framework. Django is an open source framework developed for the

programming language Python. We will be using Django version 2.1.5 as it was

the latest available release at the time we started development. This technology

will be used by us for multiple reasons. First and foremost, we will be using

Django because WearWare is currently written using Django. This will increase

the extensibility of our software after we are no longer working on it. It will also

enhance the interoperability of our improvements with the existing codebase.

This will reduce the amount of time that we spend getting these two different

pieces of software to work together. Consequently, this will increase the amount

of time that we can spend working on new features for WearWare.

Another piece of technology that we will be using is PostgreSQL. We will

be using version 10. The main reason that we will be using PostgreSQL is

because it is the currently being used to store all of the data for WearWare. By

using the same technology, we reduce the amount of time that we have to deal

with the backend. This, in turn, increases the amount of effort we can put forth in

areas that are significantly less functional.

For any tasks that need to be run on a specific schedule, we will be using

Celery. We will be using Celery for the functionality of scheduling tasks to be run

at specific times. Version 4.2.1 of Celery will be used as it is currently the latest

version.

For web hosting, the piece of technology that we plan on using is Amazon

Web Services (AWS). Specifically, we will be using an AWS Elastic Cloud

Compute (EC2) instance. This is essentially a server on which our enhanced

version of WearWare will run. This will make WearWare easily scalable. If the

website is sluggish, the EC2 instance and be upgraded to a more powerful

version easily. This will handle any issues that could occur with multiple

researchers using WearWare at any given time.

On the server, we will be using two additional pieces of technology in

order to assist with hosting our website. These two pieces of technology are

uWSGI and NGINX. UWSGI is the piece of software that will, essentially, host

WearWare locally. UWSGI will create a socket that NGINX can hook into. NGINX

will be the piece of technology that will let people access our locally hosted

content from the Internet. Essentially, uWSGI will run WearWare, and NGINX will

make WearWare available via the Internet.

3. Architectural Overview

This section gives an overview of the proposed architecture of our

software. Fig. 2 represents our envisioned software solution. This diagram will

then briefly be explained in order to give a bird’s eye view of our website. The

more specific details will be explained in section 4 of this document.

Each component of Fig. 2 has a certain set of responsibilities. We can lay

these responsibilities out for each specific component. We will start in the upper

left corner of Fig. 2 and then work our way down and to the right in order to

discuss all the responsibilities.

Amazon Web Services is the first component of which we will discuss the

responsibilities. Amazon Web Services will be responsible for two crucial pieces

of our software. First, it will host the data collection side of WearWare. Second,

Amazon Web Services will host the website with which researchers can interact.

WearWare is the next component. The key responsibilities of WearWare

are twofold and each responsibility is addressed by each part. The back end

must collect data from Fitbit for users in a study and store that data in such a way

that it can be retrieved later. The front end will receive data from the back end

and present it to any user logged into WearWare’s website.

Fig. 2: Architectural overview of our software

The database is also a component in this system. Its responsibilities are to

store and serve data. These responsibilities are pretty standard for a database.

These responsibilities should be relatively easy to enforce.

Fitbit is the next component of our architecture. It only has one

responsibility, which is is to serve data based on requests from WearWare. This

component is not controlled by us, so we will assume that it is always working.

The final component in our architecture is a person/device. This is any

research study participant or their wearable fitness tracking device. The

responsibility of the person/device is to ensure that their data is sent to Fitbit

regularly. This can be attempted to be controlled as we will discuss later.

The communication methods/information control among components will

be carried out in the following ways. The person/device will send their data to

Fitbit via some method that we are not sure of as the software is closed source.

The basic flow of data is that WearWare will request data from Fitbit using an API

call, Fitbit will send a response to WearWare, and that data will be analyzed and

any SMS messages will be sent to the required people. All of these

communications and the flow of information is represented as arrows in Fig. 2.

4. Module and Interface Descriptions

The architecture and interface of our website starts with the Login Page

(see Fig. 3 below). Starting with the Login Page shown by Fig. 4, a user is able

to login to the application as an administrator or a user (depending on their

account type), sign up, or reset their password. Anyone is allowed to sign up, but

there is an administrator option to require approval before gaining access to

WearWare. If the administrator approval option is enabled, anyone who signs up

will be put in a queue to be approved by an administrator. As seen by the arrows

in Fig. 3, a user can travel to the Forgot Password Page and back to the Login

Page, to the Sign up Page and back to the Login Page, or to the Administrator

Dashboard or User Dashboard, based upon their account type.

Fig. 3: Diagram showing the architecture of our website

Fig 4. Login Page

Fig 5. UML of Login Page

The Forgot Password Page as shown by Fig 6, allows users a way to

reset their password if it is ever forgotten. The page has a form that asks for the

email that is associated with the account and a submission button. The user can

then travel back to the Login Page as shown by Fig 7. The Sign Up Page allows

users to create an account so they can participate in research studies. The page

has a form that asks for first name, last name, email, cell phone number, and a

submission button. The user can travel back to the login page after they have

followed the sign up flow as seen in Fig. 8.

Fig. 6 Sign Up and Forgot Password

Fig. 7 Forgot Password UML

Fig. 8 Sign Up UML

Two different dashboard pages can be loaded depending on the type of

account that is logging in (see Fig. 9 and Fig. 10). The administrator accounts

have access to everything while the user (researcher) accounts can see a limited

version of the administrator account. The admins have access to the Users

Page, Account Page, and Study Page. The researchers have access to all but

the Users Page. This can be seen in Fig. 3. The dashboard offers a view of the

users account and some basic info, a message of the day, the different studies

that they are involved in, and links to other pages. Each page that can be

accessed from the dashboard has a way to return to the dashboard via the

navigation bar at the side of the webpage. This is shown in Fig. 3 with the double

arrows. Fig. 11 and Fig. 12 show the flow of both dashboards.

Fig. 9 User Dashboard

Fig 10. Admin Dashboard

Fig 11. UML of User Dashboard

Fig 12. UML of Admin Dashboard

The Account Page shown by Fig. 13 can be accessed from the edit

account link from the dashboard. This gives the users the ability to change basic

information about their Account such as first name, last name, and password. To

change their information, they will need to be able to verify their existing

password. This is done when the user clicks the “save” button. The dashboard

can be accessed again using the navigation bar at the side of the screen. The

flow of the page is shown by Fig. 14.

The nav bar at the side of the screen will be in a box that contains buttons

that link to other pages within the web application and will be on most pages of

the web application. The message of the day will also be in a box that contains a

logo which is determined by Dr. Winfree or the current admin. It will be constantly

changing but the box will stay the same. If the message is too long then the box

will be able to scroll. The user profile info will also be in a box. It will contain a

photo chosen by the user within the about page. There will also be a edit button

which links to the edit information page. The studies will be in a table that will

grow depending on the number of studies that are able to be view. It will contain

multiple columns that will be centered on the page. The admin dashboard will

have an extra box that contains a few buttons that update certain parts of

WearWare.

Fig. 13 Account Page

Fig 14. UML of Account Page

The Participant Page shown by Fig. 15 can be accessed from the edit

participant link from the dashboard as well as the option to return to the

dashboard. It creates a table that shows the user or admin all of the participants

they have access to for their studies. It allows for new participants to be added

via CSV. It also allows for the current list to be exported to the user via CSV. The

flow of the page is shown by Fig. 16.

Fig. 15 Participants Page

Fig 16. UML of Participants Page

The User Page shown by Fig. 17 can be accessed from the edit

participant link from the dashboard as well as the option to return to the

dashboard. It creates a table that shows the admin all of the users they have in

the system. It allows for new users to be added via CSV. It also allows for the

current list to be exported to the admin via CSV. The flow of the page is shown

by Fig. 18.

Fig. 17 Account Page

Fig 18. UML of Users Page

The Scripts Page shown by Fig. 19 can be accessed from the edit

participant link from the dashboard as well as the option to return to the

dashboard. It creates a table that shows all the scripts. Scripts must be imported

in to be added. Each script will have a popup that shows information about each

one. The flow of the page is shown by Fig. 20.

Fig. 19 Scripts Page

Fig 20. UML of Scripts Page

The Actions Page shown by Fig. 21 can be accessed from the edit

participant link from the dashboard as well as the option to return to the

dashboard. It creates a table that shows all the action. Actions will be add via

popup after clicking an add button. Each action will have a popup that shows

information about each one. The flow of the page is shown by Fig. 22.

Fig. 21 Actions Page

Fig 22. UML of Actions Page

The Study Page shown by Fig. 23 can be accessed from the edit

participant link from the dashboard as well as the option to return to the

dashboard. It creates a page that will show information about the study. The

participants in the study will be shown on the left. Actions can be done with the

participants list which will be determined at a later time. The relevant data will be

shown on the right. This also will be determined later. A button for viewing

triggers which perform actions on the data. This will bring the user to a different

page. The flow of the page is shown by Fig. 24.

Fig. 23 Study Page

Fig 24. UML of Study Page

The Triggers Page shown by Fig. 25 can be accessed the study page

from the dashboard as well as the option to return to the study. It creates a page

that will show information about the study’s triggers. Buttons will be added to

activate or deactivate the triggers and an option to add a new action. The flow of

the page is shown by Fig. 26.

Fig. 25 Triggers Page

Fig 26. UML of Triggers Page

5. Implementation Plan

Team FitByte plans to use the above Gantt chart, Fig. 27 as a tracker for

milestones completed by the project. Our first goal as a team is to have the

current version of WearWare up and running on an AWS server. This part of the

project will be headed by Austin since he has the most experience with AWS

while the others will be assisting as he assigns. We plan to have it up by Mid-

February as most of the web app will be adapted from the current version. Once

the server is hosting WearWare, the team will shift focus towards designing and

creating web pages. This includes a standardized look in the theme as well as

the functionality of the pages. This will be headed by Jake while the other

members of the team will be helping as assigned by him. The team will have a

week to prepare for a Beta Launch by Spring Break. After the break, the team will

begin to look into bug fixes and improving the software as the client needs. The

team will then launch the final product by the end of April.

Fig. 27: Gantt Chart Detailing Project Timeline

6. Conclusion

Team FitByte plans to remedy Dr. Kyle Winfree and Dr. Gregory

Dominick’s issues by extending the capabilities of WearWare. This will include

moving WearWare to a more accessible location as well as developing

WearWare into a more robust piece of software. We will achieve the accessibility

by migrating WearWare to an AWS EC2 instance. The biggest portion of our

plans will be updating and upgrading WearWare. This will include a complete

redesign of the website user interface. We will also be heavily focusing on the

integration of new features to WearWare. The overall goal of the web application

will be to speed up and simplify the process of creating and monitoring a study

for researchers using our software. Our all-inclusive website will allow them the

ability to easily manage their users, studies, and analyze their data.

