

Technological Feasibility
November 7, 2017

Sponsor:

Dr. Benjamin L. Ruddell

Team Mentor:
Dr. Eck Doerry

Team Members:

Luis Arroyo
Logan Brewer
Ryan Ladwig
Kelli Ruddy

1. Introduction 2

2. Technological Challenges 4

3. Technical Analysis 5
3.1 Application Development Framework 5
3.2 Database Management and Design 8
3.3 Computer Vision Framework 11
3.4 Data Visualization 13

4. Technology Integration 17

5. Conclusion 18

1

1. Introduction

Our waterways and wetlands have an important role in our everyday lives and the more
knowledge we have about them, the better. Hydrological data is important when it
comes to flood prediction and prevention, water quality, and public education and
knowledge. If we have more data, we can more fully understand how rainfall fluctuation
affects a specific area. Flooding is one of the most destructive aspects of increased
amounts of rainfall and can result in loss of homes and even death. Although we can
never fully predict how severe a flood will be, we can better understand how increased
rainfall will affect that area if we have the data. Right now the United States Geological
Survey (USGS) collects most of the hydrological data in the U.S. and the problem with
this is that they only collect data from large waterways and reservoirs. This is because
the gauges they set up to collect this data are extremely expensive so they usually do
not collect data on smaller waterways or ephemeral rivers, which are rivers without
flowing water all the time. We need to understand how rainfall fluctuation affects certain
areas not gauged by USGS. Without this knowledge, certain areas could be negatively
affected by increased amounts of rainfall. Having more data is also important because
then we can more fully educate the public on hydrological information and its
importance. Having the public understand why we need to continue collecting this type
of data is important, especially when it comes to our solution.

Our solution to this lack of data is to develop a mobile
application that allows users to take pictures of a gauge
which unlike USGS’s expensive equipment will be a
wooden post in the ground and a PVC pipe with red and
white stripes as seen in Figure 1.1. The wooden post will
have a QR code attached that can be used to uniquely
identify the site and to provide more information to
passersby.

Once the user has taken a photo of the wooden stake
with the PVC pipe in the background, our image
processing algorithm will add a horizontal line to where it
believes the water height is in the photo. The user may
adjust this line to get a more accurate water level.

2

We will use the user’s phone’s geolocation in order to plot exactly where the photo has
been taken and this​ ​location will be stored with the photo upon submission. From there
we will store the image, location, and water height data in our local database. We will
then take the water height data and send this to our local HydroServer and then it will
be joined with the main national HydroServer which is where a lot of national
hydrological data is stored. Once the user has uploaded their information, we will give
them feedback on their submission, which may include previous data points collected at
that location or a graph showing how their contribution helps this data crisis. One key
feature that separates our application from anything else will be the offline capabilities.
Some of these gauges and waterways will be in areas without cell service or internet
and this is where our application comes in. The user will be able to take a photo and
store the information that goes along with the photo on our application and will be ready
for submission when they are back in an area with coverage. The user should still be
able to receive some confirmation that would have been stored on the application just
for this.

As we proceed with the requirements development, we will now begin exploring the
implementation options to ensure a feasible solution. This document will outline all of
the major technological challenges that we will be facing while developing our project. In
the Technology Analysis section, we will analyze methods for resolving these
challenges, decide on a solution to each of our challenges, and explain our rationale for
choosing our solutions. Finally, in our Technology Integration section, we will describe
how all of our technologies work together and how they will resolve our technological
challenges and needs.

3

2. Technological Challenges

The purpose of this section is to list and describe the technological challenges that we
expect to encounter during this project. After analyzing the requirements of our project,
we decided that we would need a platform that we could use to develop our mobile
application, access and management of a database in order to store pictures and
hydrological data, a manner in which to run image processing on images taken by the
user, and we would need a way to present data to the user in a way that was easy to
understand. From these needs we developed our expected technological challenges:

● Application Development Framework - We will need a platform that allows us to
create this application.

● Database Management and Design - We will need a way to store large quantities
of data and be able to access this data quickly.

● Computer Vision Framework - We will need to be able to use an image
processing tool that connects with our application and allows us to plot a line
indicating the water level.

● Data Visualization - We will need to be able to use a data visualization tool in
order to present our collected data as well as other data in a more visually
pleasing manner than simple text data.

In the following pages of this document we will be analyzing and describing these
different challenges and finding the best possible solutions to each of them.

4

3. Technical Analysis

The purpose of this section is to fully describe and analyze each technological
challenge for our project. We will then present alternatives and determine a solution that
will work best in the context of our project.

3.1 Application Development Framework
The application framework is a software library that provides a structure to support the
development of applications for a specific environment such as Android and iOS. Some
features that app frameworks allows us to design GUIs for mobile applications and web
application. Finding the best mobile app development framework to suit our needs is
pivotal to our success when developing this project. In considering suitable app
framework for this project, we will need the following features:

● Stable connection to the database - Allow access the database add a picture and
hydrological data.

● Efficient image processing - Allow the user to take a picture of the PVC pipe and
adjust the water level in the image.

● Implement data visualization - Allow the user should see a graph of the
hydrological data that has been collected from a particular body of water.

The application should allow the user take a picture of a water gage and adjust a line of
the water level. The user will be given the option, and encouraged, to write about their
observations at each site such as the weather condition or extreme water levels. Once
they have completed their submission, the application will send the image and the
information they wrote to a local database. The picture and any special observations will
stay in the local database, but the water level data will be transferred to the
Hydroserver. If the user does not have internet connection, the information the user
collected should be stored on the device until they gain access to a stable internet
connection. The user is also able to see where they are located on the map and if there
are any gages close by.

5

3.1.1 Alternatives:
After researching on Google the several app frameworks and talking to other
classmates that had experience with mobile apps, the possible mobile application
development framework options that will help us integrate a database, image
processing, and data visualization features are Android Studio, Meteor, Visual Studio.
When analyzing each alternative, we looked at which applications could help us
implement the features easily, which ones would allow for the potential of cross platform
development, and what languages each alternative uses. We will compare each of the
following alternatives and determine which one we will use for our project based on their
capabilities and known compatibility.

3.1.1.1 Android Studio
Android Studio is an IDE platform that provides tools for building apps on any type of
Android device. The mobile applications are developed in Java and XML programming
languages. Android Studio also allows the inclusion of APIs which allows us to
implement the features needed for this capstone. With these APIs, we are able to
connect to a database, integrate image processing using OpenCV, and data
visualization. However, the problem with these APIs are that they only target a certain
Android version, which can lead to conflicts using the APIs. Another problem is that if
we want to work with iOS, then this would require rewriting the code using the Swift
programming language. The last issue is that Android Studio mostly supports the local
databases. If multiple users want to access the same database, it can lead to conflicts
such as the database being corrupted.

3.1.1.2 Meteor
Meteor is a JavaScript web framework that is used to work with web and cross-platform
mobile applications. Meteor integrates APIs from Angular, React Native, MongoDB,
npm, and Cordova. With the APIs that it provides, we can manage to integrate most of
features we are required to implement. With these APIs, we can connect to a database
using MongoDB, integrate image processing using OpenCV, and data visualization
using D3.js. However, the disadvantages of this framework is that if the local database
continues to expand, the application will start to become slow when writing and
accessing a table. The phone itself will also have a high CPU usage, high memory
usage, and a slow performance.

6

3.1.1.3 Visual Studio
Visual Studio is a cross-platform IDE that is used to develop web, mobile, and desktop
applications. The mobile applications are developed in C# and F# languages. Visual
studio integrates APIs from Xamarin and React Native. With these APIs, we can
connect to the database using SQLite and SQL Server database management systems.
We can also integrate image processing and data visualization from Xamarin. However,
the disadvantages of using Visual Studio is that we are very limited in how much coding
we are allowed outside of this framework. When developing a new application, it would
take 2GB of space without implementing anything on the app. If we use the API’s, they
would take more space into the application. Visual Studio is considered a
cross-platform, however some of the code would be required to be rewritten from the
front-end and back-end of the application, leading to time consuming.

3.1.2 Chosen Approach:
When choosing an application framework, we tried to keep in mind the features that
need to be implemented for this capstone project. We have outlined the key features in
Figure 3.1 seen below.

 Android Studio Meteor Visual Studio

Image Processing 4 4 2

Database 4 4 3

Data Visualization 5 4 3

Cross-Platform 1 4 4

Total 14 16 12
Figure 3.1 - Based on a 1-5 scale, 5 being a built-in feature and 1 not being feasible with the
framework.

The table demonstrates each application framework (top of table) and the features that
would fulfill our requirements (left-most column). For each requirement, we use a scale
from 1 to 5, 5 being a built-in function and 1 not being possible to implement in the
framework. The ratings were assigned based on the documentation for each alternative,
as well as information found on blogs and example projects. The best framework option
is Meteor because it will allow us to implement most of the features required for this
capstone project in an easy and efficient way by using existing packages. Meteor score
a 4 in image processing, database integration, data visualization, and cross-platform

7

compatibility, because there are existing packages that are compatible with the
framework.

Based on the research and looking at the challenges that we will be facing with each
app framework, the best option is to use Meteor. Meteor is the best option because it
will allow us to implement most of the features required for this capstone project in an
easy and efficient way.

3.1.3 Proving Feasibility:
Meteor offers tutorials on YouTube on how to implement some of the features that
would be necessary for this capstone project. If we want to know more about a method
and how it is used, Meteor also offers an API Documentation Guide that states about
how to use a package and what functions it includes. We can use APIs that the platform
offers in order to implement the requirements. For our demonstration we will be
installing the Meteor Development Framework and implement basic features that are
required for this capstone. We plan on improving the application next semester by
implementing a better user interface app and improve the existing required features.

3.2 Database Management and Design
This is important for our application because we need to be able to store a large amount
of images and data points that are collected by our user. We may also need to store
information from the National Weather Service to provide to the users as feedback. Our
database needs to be scalable to account for user submissions of information and
photos. We also need connection reliability in order to be able to access a user's
submitted data whenever requested. Our database needs to access this submitted data
in a timely and efficient manner.

3.2.1 Alternatives
Options to solve our database problem are MySQL, MongoDB and Apache Cassandra.
We chose these three options after looking into many other database options that did
not fit specific criteria.
 When considering a suitable database tool for this project, we will need it to be:

● Scalable
● Reliable in terms of the connection
● Fast when accessing data
● Accessible for many devices

These options were the closest to what was needed for this project and in this
document we will more fully investigate which is the best option and why.

8

3.2.1.1 MySQL
MySQL is an open source relational database management system so data is not just
stored in one big table. It is also advertised as fast, reliable and scalable, which tackle
each of our main concerns with a database. MySQL has a PHPMyAdmin built in
support API which would be helpful for our project, it works well with geographical
information systems and has great data security. It is also a good database if creating a
web application. Some cons of using MySQL are you need multiple add one, it is not
good with storing qualitative data such as images which is a key part of our project and
frequent updates are required for large amounts of data. One of the biggest drawbacks
to MySQL for this specific project is the storing of images. MySQL does not handle the
storing of images very well.

3.2.1.2 MongoDB
MongoDB is an open source and NoSQL database. MongoDB uses collections and
documents rather than rows and tables. It is a fairly new solution to the database
problem emerging in the early to mid 2000’s. It utilizes something called BSON which is
a binary representation of JSON documents. MongoDB offers dynamic schemas, is
accessible from many devices, works very well with large amounts of data and has
in-memory speed. To store images, MongoDB utilizes GridFS which will allow for the
storage of user submitted images. Since this is a newer product, there is less
information and support. It also scales horizontally, however our team had initially
discussed a need for vertical scaling.

3.2.1.3 Apache Cassandra
Apache Cassandra is an open source NoSQL database and functions best with
unstructured data. Similar to MongoDB, it has dynamic schemas and can handle large
amounts of data.Given the large amounts of data, Apache Cassandra is very reliable.
It also offers something called CQL which is similar to SQL. It can have some
unpredictable performance.

9

3.2.2 Chosen Approach
When choosing a database we tried to keep in mind our most important features for the
application. We have outlines these key features in Figure 3.2 seen below. Scalability
referred to if the database would be able to scale easily given large amounts of data
which is something our application could face due to large amounts of possible user
submissions. All three of our options scored a 5 for this category on the 1-5 scaling,
where 5 is the best and 1 is the worst. MySQL scored a 3 for connection reliability while
the other two received a 5 after we did some research. MongoDB and Apache
Cassandra were good at handling large amounts of data and for this reason they were
also efficient when it came to data lookups. All three options were accessible from most
devices.

 MySQL MongoDB Apache
Cassandra

Scalability 5 5 5

Connection
Reliability

3 5 5

Data Lookup
Efficiency

3 4 4

Device
Accessibility

5 5 5

Handles large
data amount

3 5 5

Total 19 24 24
Figure 3.2 - Based on a 1-5 scale, 5 being the best and 1 being the worst.

After some discussion, we realized we decided a NoSQL option would be the best
because of how NoSQL supports more dynamic data. Our final decision was between
MongoDB and Apache Cassandra. Based off of the research done and looking at the
challenges we will face, we have chosen to work with MongoDB. Both MongoDB and
Apache Cassandra were good for storing large amounts of data. Although MongoDB
and Apache Cassandra scored the same in Figure 3.2, MongoDB is great for real-time
analytics and image storing which are important factors in our project. MongoDB also
offers GridFS which is a big plus when it comes to the storing of images. We feel as
though we have fully explored each of the three options and have come to this decision
fully informed.

10

3.2.3 Proving Feasibility
Based on the pros and cons of each of the researched database frameworks, MongoDB
is the best solution. Our main concerns with a database are that it can store images,
that it is scalable, and that it has connection reliability. We will further develop this by
testing many images and data points to analyze how it works under these conditions.
We will also test by continuing to add and delete data.

3.3 Computer Vision Framework
A computer vision framework (CV framework) is a system that allows for image processing,
image analysis, and object tracking. The framework takes an image as input and analyzes the
image, returning the desired output as defined by a set of algorithms. CV frameworks are
typically used for facial recognition, but we will be using a CV framework in order to determine
the water level of a body of water from a picture of a pole that is secured into the bed of that
body of water.

3.3.1 Alternatives
Possible alternatives for our Computer Vision Framework include Tracking JS, which is
a relatively new system that runs with JavaScript and is primarily used for facial tracking
and recognition, OpenCV, which is a complete computer vision framework that is written
in C/C++ and has wrappers for Python and Java, and finally JS Feat which is another
CV framework written in Javascript.
The computer vision framework that we will use will need to:

● Distinguish red stripes from white stripes on a PVC pole
● Determine the height of the water that is covering the pole
● Use minimal resources on a user’s device - RAM, CPU, local storage
● Run natively on Android and iOS
● Run the image processing algorithms offline

Tracking JS, OpenCV, and JSFeat were the three most common CV frameworks that
we discovered when researching potential CV frameworks for our project.

3.3.1.1 Tracking JS
Tracking JS is a Javascript package for computer vision that would allow us to run our
algorithm(s) in Javascript, which would aid in the cross-platform compatibility of our
project. The focus of Tracking.js is in facial recognition, something that we would not
require. There are a few tutorials on how to use Tracking JS, but we would need to
spend a reasonable amount of time determining how we can learn Tracking JS from
existing projects and examples. Tutorials for Tracking JS include color recognition and
feature recognition.

11

3.3.1.2 OpenCV
OpenCV is a very popular computer vision framework with many examples and
projects, that can be used as a reference, readily available on the internet. This would
allow us to jump into programming with OpenCV without already having extensive
knowledge about Computer Vision. There are a few projects, that use OpenCV, on the
web that bear strong similarities to the computer vision framework requirements that we
have to fulfill (that we will need for our project).

3.3.1.3 JSFeat
JSFeat was recommended by several resources that dealt with image processing and
computer vision. We were unable to find an extensive collection of examples or tutorials
for JSFeat, meaning that we would likely need to have a deep understanding of
computer vision if we were to use this framework. Because there are not very many
tutorials for using JSFeat, we would need to extensively research all facets of computer
vision in order to understand the capabilities of JSFeat.

3.3.2 Chosen Approach
For this project, we will be moving forward with using OpenCV as our computer vision
framework.

 Tracking JS OpenCV Feat JS

Offline ✔ ✔ ✔

JS ✔ ✔
(With reduced
functionality)

✔

Python ✔

Android ✔ ✔ ✔

iOS ✔ ✔ ✔

Full Computer
Vision Support
(1-5)

4 5 5

Support / Tutorials 3 5 1

Totals 7 10 6
Table 3.3 - Check marks indicate that a feature is present, and numbered cells are scaled from
1 to 5, with 5 being the most desirable.

12

All of the aforementioned frameworks would be suitable for our project. In Table 3.3,
you can see that each computer vision framework (top of table) would fulfill our
requirements (left-most column) of a CV framework. OpenCV does have the added
flexibility of allowing us to use a Python wrapper for the existing C/C++ source files, but
we don’t know yet if this will be helpful or not. Also in Table 3.3, you can see that both
OpenCV and FeatJS have full CV Framework support, however FeatJS only scores a 1
out of 5 for “Support / Tutorials” due to a lack of existing example projects and tutorials
currently available.

In summary, the flexibility of OpenCV (JS, Java, C++/C, Python), along with its
widespread-use and available examples/tutorials, is what drove us to choose it as our
computer vision framework. Once we gained access to the client’s existing project, we
realized that it also uses OpenCV as its Computer Vision Framework, so we feel
comfortable with our choice.

3.3.3 Proving Feasibility
Stanford university offers a course on Computer Vision Frameworks / Image Processing
and has posted all of their tutorials and projects online. The assignments in the course
use OpenCV and one of the chapters deals with using OpenCV with Android. The
projects that would be of most help to us deal with shape and color recognition, but we
can also use these tutorials when we try to run OpenCV on Android, as the course
website includes instructions on how to eliminate the need to have the device connect
to a server. For our demonstration, we will be installing OpenCV on an Android device
and implementing the existing algorithms on that device. We plan on improving the
algorithm in the coming semester, but we will be using the existing algorithm for our
demonstrations this semester.

3.4 Data Visualization
Data Visualization is a way to display data through graphs and charts. This is important
because we need to present the data we are collecting in a way that is visually pleasing
and easier to digest than simple text data. When considering suitable data visualization
tools for this project, we will need them to be:

● Highly customizable
● Able to handle massive quantities of data
● Useable by us

13

3.4.1 Alternatives
We are going to be taking hydrologic data and displaying it in different ways that are
easier for the user to see and understand, such as interactive scatter plots. Because of
this reason, data visualization is very necessary for our final product. This is going to be
used to display the information in a way that isn’t simple text. We need to take all of the
data we will be using and collecting and display it in a more visually pleasing manner.
After searching through many websites and forums, we have found some of the best
possible alternatives to be:

● D3.js
● Google Charts
● Chart.js

These three visualization options were the most commonly used when we researched
these tools. In the following sections will look deeper into all three tools and explain
which we found to be the best for project.

3.4.1.1 D3.js
D3.js is a JavaScript library that allows the creator to make dynamic, interactive data
visualizations in web browsers. It is commonly used when you want to display data in a
way that allows the user to interact with it. One specific way that we may be able to use
this is by displaying the depth data that is collected by the user and allow them to see
how it compares to the national water model in an interactive bar graph.

3.4.1.2 Google Charts
Google charts is an API that lets you make charts from data and display this in a web
page. This is most commonly used when you have a lot of data collected from online
sources that may change often. This also brings with it a package called GeoChart that
allows the usage of maps. This would allow us to plot the locations of the hydrology
stations easily. However, Google Charts requires a direct connection to the internet in
order to load the visualizations which is a serious downside.

3.4.1.3 Chart.js
Chart.js is the most simple visualization tool that is used when trying to plot and
compare data in a very simple manner. It has eight very easy to use and implement
charts. However, this simplicity comes at the cost of customizability. Also Chart.js
creates canvas images which are static and non-interactable. The simplicity and ease of
implementation aren’t worth the loss in customizability for this project since we may be
needing to display large amounts of data in very different ways.

14

 D3.js Google Charts Chart.js

Charts rendered in SVG HTML5 using SVG
and VML

canvas

Input data format JSON and XML JavaScript API JavaScript API

Browsers
supported

All modern web and
mobile browsers

All modern web and
mobile browsers

All modern web and
mobile browsers

Chart and map
types

No pre built charts 13 2D charts, maps
available

6 chart types

Licensing BSD-3 Free for all usage Free under MIT
license

Figure 3.4

 D3.js Google Charts Chart.js

Customizability 5 3 1

Scalability 5 3 1

Ease of use 1 4 5

Total 11 10 7

Figure 3.5 - Based on a 1-5 scale, 5 being the best and 1 being the worst.

When looking at table 3.5 above, you can see our rankings for each visualization tool.
D3 is by far the best choice for customizability. Google Charts and Chart.js both have
limited amounts of prebuilt charts that you can choose from, while D3 allows you to
create hundreds of different kinds of charts with as much customization as you need.
When looking at the scalability, D3 again wins. It is able to handle very large amounts of
data with fast creation times. Google Charts was close in this category but the
requirement to be online means we would only be able to create charts with a network
connection which is very limiting. Charts.js comes in last because it is unable to handle
very large amounts of data without resulting in slow load times. The final category was
ease of use. Charts.js was the best choice for this category, with Google Charts being a
close second.The reason for this is the simplicity of Charts.js, but Google Charts
impressive documentation is what brings it close. D3 gets the lowest possible score due
to its lack of prebuilt charts and complex code.

15

3.4.2 Chosen Approach
Our final choice weighed customizability and scalability much higher than ease of use.
Due to this, D3.js was the clear choice. It has significantly more customizability than
Google Charts and Chart.js. It doesn’t come with any pre-built charts which attributes to
the very low ease of use but this difficulty is overshadowed by all the interactive charts
and graphs that we will be able to create with it. We will be able to take D3.js and
implement it along with our collected water depth data and other data from the National
Weather Service and the National Water Model in order to display this data to the users
in a visual representation that is pleasing to the view and easier to digest in comparison
to plain text data.

3.4.3 Proving Feasibility
For proving feasibility, we will be taking different chunks of data and creating a wide
range of charts that will show our ability to use D3 anyway that we want to. We will also
be directly testing the charting of example data that would be gathered from our app in
order to show possible direct applications. Finally we will be implementing this in our
app development tool and see how that interaction works within the app that we are
creating for our demo.

16

4. Technology Integration

Figure 4.1 System Diagram

Now that we have seen all of our solutions, we will be doing our best to combine them
as seen in the above figure 4.1. The Meteor development tool will be our base for our
app. We will have users that are connected to our app and have different privileges
based on if their role is admin or if they are a normal user. In connection with our app,
we will be attaching a MongoDB database to the app in order to solve our storage issue.
We will also be creating a local HydroServer database that will connect to our MongoDB
and store the relevant hydrologic data. From our local HydroServer this data will be
federated to the main HydroServer. We will be using D3.js in order to display the data
we store in our database in a more meaningful manner than plain text. We will also be
using OpenCV in connection to Meteor for our computer vision framework. Part of our
testing for each individual part will be to see how they will come together and interact.
Above you can see our system diagram, showing D3 and OpenCV running within our
Meteor application, and MongoDB connecting to our Meteor application from the
outside.

17

5. Conclusion

The collection of hydrological data is important when it comes to flood prevention, water
quality and public education and knowledge. In order to have more accurate data, we
must collect more. Through our application we hope to get the public more involved with
this data collection and by doing so, they will understand this data's importance. This
document has thoroughly discussed every technological issue we will face and what
technologies will best help our team to produce a the best solution.

We plan on testing these more fully as noted in the proving feasibility section of each
technological issue analysis. After much discussion and analysis, as a team we have
decided these four technologies will best support our problems we will face with our
project this year.

18

