

Final Report V. 1.0

May 4, 2018

Team Name:

Gnosis Solutions

Team Members:
Kalen Wood-Wardlow, Christopher Simcox, Thomas Back,

Kristoffer Schindele

Project Sponsor:
Dr. Leverington

Faculty Mentor:
Dr. Leverington

1

Table of Contents:
1. Introduction…….……………………………………………………….…………………2
2. Process Overview….…...……………….…………………………………………….....2
3. Requirements……..…..…………………………………………………………….…….3
4. Architecture and Implementation………………………………………....…………….8

4.1 Backend
4.2 Services
4.3 Frontend

5. Testing………………………………………………….……………………...……….…11
6. Project Timeline..……………………………………………….…………………….….13
7. Future Work...…………………………..……....…………………………………..…....14
8. Conclusion..…………………………………..…………………………………………...14
9. Glossary...………………………………..…………………………………………..…....15
10. Appendix A: Development Environment and Toolchain………………………….....15

2

1. Introduction
Grocery shopping chains in the past few decades have offered rewards

programs that allow customers to follow daily deals and shop wisely, while the store
collects data about customer shopping habits. Unfortunately, there are rarely any
special programs that allow the customer to benefit from collected data such as: what
certain items are in stock and helpful details about those items like seasonal availability.
With the exception of curbside pickup or delivery programs, there are rarely any tools
for the customer that will allow them to plan and shop more effectively. For this reason,
customers develop an affinity for a “familiar” store that they visit exclusively to cut down
on time spent looking for items or sales. This is done without any consideration that
there may be stores available in closer proximity to their location or needs.

The purpose of this document is to explain in great detail the final product that
was built in response to the client’s needs and problems needing to be solved and how
this product solves them effectively. This document will have multiple sections going
over items such as process overview, requirements, architecture and implementation
and so on to go into specific detail about how this solution solves the problems given,
what were the requirements or goals of this project and how our specific solution
addresses these. Finally finishing off the document with how this application was tested
and the schedule that was followed to give an idea of how this project progressed over
the lifespan of development. So to start things off let’s take a look at the process
overview.

2. Process Overview

The process we chose to create our project uses a dynamic approach where
things changed in our project as needed based on requirements or changes based on
necessity. Our choice for using version control was the software git used with github for
remote storage of our software and its different versions, along with branches for
working on different aspects of the project. In order to organize our work we used
created a google drive for our team that each member had access to where they could
create, edit, or download the various documents needed for our project, this serves as a
remote storage for our documents.

The team roles were split as follows:
- Christopher Simcox: Databases and Connections Lead
- Kristoffer Schindele: Front End Developer
- Thomas Back: Front End Lead
- Kalen Wood-Wardlow: Team Leader, Backend Developer

3

3. Requirements
Our requirements for our project are as follows:

UR1: Must be able to use the system like a grocery list.
For this requirement this system needs to offer users a way to input shopping list
items into a grocery list. This means adding, deleting and modifying information
about the products in the list such as quantity, name, store name and price. With
store name and price being optional until they get to the store and check off the
item on the list.

UR2: Data must be secure and reliable in transfer.
This requirement offers security to all users so that no person can view any other
person's cart or data. The data on items and store’s should only be used for easy
entry and price suggestions.

UR3: Notify users on lower price depending on store proximity for those who opt
in.
This requirement gives users a notification on lowest prices depending on stores
they are close to. This is to afford users the opportunity to get the lowest price on
items in their cart and also the option to not have this done to not annoy any
user.

UR4: Store user data in a cloud sourced environment.
This requirement covers the client’s request to have data be updated in real time
and crowdsourced. The data that the user’s provide must be stored in an
accessible place for other user’s to take advantage of.

Our Use cases are as follows​:

Considering the previous user requirements at this point it is important to
highlight different use cases that users of the system will encounter before we get into
the functional description of our system. The selected use cases are the most significant
ones considering user interaction one being entering in items before going to the store
and then while at the store checking off found items.

4

At the most basic function this is what the proposed application should do for the user. It
should allow them to enter in as many items as they would like into their shopping list.
This interaction happens while the user is making their shopping list.

5

This use case is when the user is at the store and will enter in more data about the item
when they check it off their shopping list. This shows the circular effect that allows the
user to easily provide substantial data about products and their location in very few
steps.

Considering the use cases it is important to now describe how we are going to provide
these use cases and all of the work going on behind the scene to make this all possible.

Our functional requirements are as follows:
The following functional requirements are attached to a specific User Level
Requirement where “UR_” corresponds to the appropriately labeled User Level
Requirement as defined previously. Using “FRQ_” as a label for the following functional
requirements we will define as such. These requirements describe how the system will
accomplish certain user requirements as stated above.

6

UR1-FRQ1: Must be able to enter product data into the application.
● Must be able to add, delete and edit the following information about

products:
○ Price of the product, geolocation information such as store address,

store name and number of items bought. These data inputs will be
collect from easy to use text input fields, a map to which the user
can point out a location to, auto collection of geolocation data from
the user’s phone upon approval of access, checkboxes and submit
buttons to store and process the data.

● User must be able to add, delete and edit the location of a store and the
name of that store in order to contribute to identifying stores.

○ This will be accomplished by allowing the user to interact with text
field inputs and buttons to submit data to the system.

UR1-FRQ2: This system will provide easy to use check boxes so that the Users must
be able to check and uncheck items to perform action on.
The checking and unchecking should be easy as a press of a button on the screen with
touch. This will allow the user to edit, delete or signify they have picked up the items in
their list.

UR2-FRQ1: This system will provide that grocery list items will not store information
about whom gave information on them in database.
By not attaching metadata to items in the crowdsourced database even on a data
breach information about what the contributors have bought will be given.

UR2-FRQ2: The system will provide a way to store data locally if no internet connection
is available by the means of Firebase and the asynchronous API used to synchronize
data between the server and all devices using the service.
If there isn’t any internet connectivity on the phone then the application must recognize
that and try to sync data at the next available time.

UR2-FRQ3: Data transfer will adhere to Firebase/React Native communication API.
By following the Firebase and React Native tutorials on data transfer and adhering to all
notices and warnings it will be sure that the app is communicating in an encrypted and
safe manner for all types of data to be passed.

UR2-FRQ4: Geolocation data from the user will not be attached in any way to any
specific user instead will be stored as part of items themselves.

7

This requirement makes it so that we are not holding geolocation information about the
user but rather about products within stores and the stores themselves. Geolocation
data will be gathered in the following ways:

● Gathered when taking items off the grocery list.
● Gathered when near a common store and to check if the user is near a known

store.

UR3-FRQ1: The system will notify users that our app would like to use notifications.
Mention where this setting can be found if they deny to allow us access. Do not
automatically assume they are ok with this because it could lead to frustrated users.
Application should function otherwise independent of this feature even though this
feature would depend on the other parts of the application.

UR3-FRQ2: Proximity calculation should be done on the user’s phone and in the
background.
Because data about store locations will be transferred but not user locations the
calculations to determine nearby stores should be done on the user’s phone in the
background so it doesn’t interfere with the operation of the device.

UR4-FRQ1: Setup a database in the Firebase platform to save data about products and
stores.
This is done so that it can be cloud sourced and can be scaled if necessary. Per our
client's request of attaining a crowdsourced grocery list application this is the easiest
and safest route.

UR4-FRQ2: Use Firebase API for React-Native in order to establish database
connection.
By using this we can ensure reliable transmission of data for future versions of
React-Native with Firebase support.

UR4-FRQ3: Firebase API must allow users to login and maintain connection to the
Firebase database for every user copy of the application by utilizing the API effectively.
This requirement is so that every user will be able to contribute to the crowdsourced
database and make sure that connection will be valid.

UR4-FRQ4: Universal database access must be available for all copies of software.
This means that all copies of our application must use the save universal database
access account to add to the database. This account must still work and be valid even if

8

a credential change is necessary in the future without any update to the application after
publishing.

4. Architecture and Implementation

With the requirements in mind it’s time to go over what the, requirements, goals
of our project are it now here is the information regarding how the project was designed
in the form of architecture and implementation to create a solution that solves all of the
problems. The figure 1 will serve as a talking point that can be referenced throughout
this section. Let's step into the first module which is where all functionality comes from

which is the backend.

Figure 1: Architecture Diagram

9

4.1 Backend
There are three main modules on how this application is structured. The first is

the Backend which is comprised of internal and external code and smaller modules. The
external services are connected to by using the relevant API, Application Programming
Interface, for each service. These are the following external services that were
implemented in this project:

● Facebook login.
● Google plus login.
● Remote Realtime Firebase Database.
● React Native cross platform deployability.

 With these the application is going to use Facebook and Google plus login to
authenticate the user so this project doesn’t have to keep sensitive data about the user.
Using the Firebase Realtime database the app can store data remotely and on the
device itself. Finally, the cross platform deployability is since this application uses
crowdsourcing, which is a way of collecting data from all users to use it in a way to
enhance the experience of everyone using the application, it is important to get the
application in the hands of as many people as possible. Therefore, this application is
developed with React Native that allows us to get as many users as possible no matter
their platform, iOS or Android, choice. Next in the internal code logic we have the
services controller which deals with the calculations and all necessary implementations
for services offered to the user. Finally, in this module we have the database controller
which allows the application to communicate between the remote Firebase database
among these other features:

● Firebase data storage and communication with secure transmission.
● Offline datastore copy to operate offline.
● Offline and online syncing capabilities to ensure data is never lost.
● Ability to use application with saved data on any device as long as the same

login is used.
With this logic it is possible to deliver not only a great working shopping list application
but also one with services to make the shoppers experience better than ever before.
Next it is important to go into the next module which is the services module that has the
details on what services we provide to the user to ensure their shopping experience is
easier.

10

4.2 Services
Given that the backend provides the raw logic for each of the supporting external

libraries this project uses as well as the logic for providing services let’s go into what
services offered in this application:

● Price comparison
● Store recommendation
● Social media login
● Crowdsourcing

First, looking at the social media login, which is the first action users must take to
login to our application, the application was designed to make logging in as easy as
possible and since most people have either a Google plus or Facebook account a new
account creation may not be required which will get the user into using the application
faster than other options. Now since the easy service is out of the way let's go into the
more integral services that give life to this application.

Secondly, after logging in, looking at price comparison this may sound simple at
first but is far from it. In this the application will offer price comparison information about
the users shopping list items at different stores to give the user an idea of which store
they should shop at for the best deal. This is really important because there currently is
no other service that will give information about competing prices in one easy to access
location. This service is not standalone however because the application does rely on
store information to categorize and to be able to calculate prices per store closest to the
user. Which leads into the next service which is store recommendation.

With the Store recommendation service the application can get the users current
location, upon permission, and be able to lookup known stores near the user and select
the two closest stores to give information about the user's current shopping list before
they go out shopping so they can get a good idea of where they should go. Which does
tie back into the Price recommendation service as mentioned before. With all of these
two services the user can get a good idea of where the user should try to shop to get
the best price no matter if they have been to the store or not. Now since these services
are covered there is one last service that powers all of these and really lends a hand to
providing the data for use in the application to make it really useful.

Finally, crowdsourcing is the act of taking data that users enter, while not
attributing data to individual users when using data for other services, and recording it
for future reference. Such times are when the user is near another store previously
entered and the application can give a recommendation because another user has
found a cheaper price so the new user with the recommendation can utilize this
information and use it to their advantage with the previous two services mentioned. This
again is the driving force of our data pool that we use to offer all services and
functionality in the application.

11

Now that a clearer picture has been painted about what services this application
provides there is still some speculation about how the users will use this functionality.
Because there is not way to have normal everyday busy people look at coding or
complex user interfaces so there needs to be a easy to use and beautiful front end.
Which leads into the final section of the architecture and implementation which is the
front end design.

4.3 Frontend

The application is designed to extend and enhance the simple and accessible
qualities of a written list through a mobile touch screen interface. This means that users
should be able access the base functionalities of creating lists, entering items, and
checking them off just as easily as they would with a written list in hand. As such, the
application’s frontend interface is designed to be clean and include intuitive visual cues
to guide the user through the interface. This was accomplished by breaking each screen
within the application into two major components: a header including navigation and
option buttons relevant to the current screen and a scrollable list below the header that
includes either list or item information.

The header is darkly colored to make it stand out from the rest of the features on
the screen, and its functionality is accessed through well known icons, such as a ‘plus’
for adding a new list or ‘gear’ for user options. These buttons either produce dropdown
lists of selectable options or modal windows that contain relevant data entry elements.

The lists of lists and items are colored lightly and clearly separated by borders;
lists can be accessed through a touch (bringing the user to the next screen) and the list
item details can be revealed by sliding the item title from right to left. The edit interface
for each item detail, such as price and aisle number, can then be accessed with another
touch. The application was designed this way to ensure that navigation was smooth and
requires a minimal number of actions from the user. That way, they can quickly navigate
between lists and update information while in the store.

The final design of the interface is significantly different from the original design
and these changes were driven by extensive user testing. Feedback from beta testers in
each of the testing stages revealed design decisions that prevented users from easily
accessing the application’s features as well as changes that increased the aesthetic
appeal of the interface.

12

5.Testing
The testing for this project was always going to be focused on usability testing in

an effort to create an application that was ‘so easy to use, they wouldn’t want to put it
down’. To achieve this, most of the unit testing for functionality and integration was
performed early in the development process to make way for the bulk of usability testing
that was conducted during the second semester of development.

Unit testing was focused around major functionalities such as communication
with the database, and updating the interface in response to new user input. In its early
stages, the application was simply a single shopping list that could have new items
added to it and subsequently checked off. Once testing proved this basic feature to
work, new elements were integrated until the app could provide all the functionality
agreed upon in the requirements document. The app was then linked to the database to
allow saving list data to the cloud. This feature, as well as Facebook and Google sign-in
options, were tested by logging into different devices to prove that cloud data was still
accessible based on the same authentication information. Finally, the geolocational
logic and dependent services were implemented and tested via live usage by team
members. These functionalities proved to be the most tricky to get working consistently,
and the team struggled with passing geolocational data from the module that collected it
to the module that actually uses for calculations. Despite these difficulties, thorough
testing revealed the source of the problem and the feature was in working order just
before the acceptance demo.

Usability testing began much later in the process and was originally going to be
divided into four stages to target specific aspects of the user interface: blind user
interaction tests, collaboration testing, expectation tests, and user interface survey
testing.

Blind user interaction tests involved sitting a beta tester down with the application
and asking them to navigate its features without any prior instruction; this was done in
an effort to reveal aspects of the interface that were difficult for users to learn. These
tests were performed with ten beta testers both at the beginning and end of the testing
process. These tests turned out to be the most telling, as many users in the first round
of tests completely missed certain functionalities, such as accessing list item details. As
a result, access to list item details was moved to an intuitive slide-out panel to provide
easy cursory access to the user. These changes were received with positive feedback
by the beta testers who had missed the feature during our first round of tests.

Collaboration testing was designed to field-test the crowdsourcing aspect of the
application. This was to be done by following the usage of groups of beta testers that
would share data and use it for no less than a week. Unfortunately, collaboration testing
proved to be infeasible for two main reasons: first, most of the beta-test group were
iPhone users, and second, that Apple maintains strict requirements on what software

13

can be added to their app store. As a result, it was impossible to get the application onto
the devices of enough beta testers to make collaboration testing feasible, and the idea
was dropped.

Expectation testing was performed in parallel with the blind user interaction tests
and was conducted by providing a scripted demo of the app and then collecting
opinions from beta testers about which features they thought to be slow or
unresponsive. Surprisingly, these tests were not as informative as we expected and
most users claimed that the app fell within a reasonable range of speed and
responsiveness expected from mobile applications.

Finally, the user interface survey testing involved providing beta testers with
questionnaires accompanied by similarly sized and styled sets of interface elements,
such as button icons. Beta testers would indicate which elements they found most
appealing and the aggregation of the results would drive our final design of the app’s
aesthetic design. Unfortunately, this type of testing also proved to be ineffective in
practice. While React-Native allowed the app to be developed for both Apple and
Android platforms, the minor aesthetic differences between the way they displayed the
interface made it impossible to make the app look the same on both platforms. Rather
than collect unhelpful data and waste the beta testers’ time, Google’s material design
principles were used as a guide for the interface. The elements most heavily influenced
by this decision were the button sizes, fonts, and the symbols used for each button.

6. Project Timeline

Most of the first semester of development was spent gathering requirements,
setting up environments and making major design decisions. However, it’s important to
note that prototype implementation began in November, when the expectation was to
begin in January of the subsequent semester. The backend team was the primary
driving factor in this early development, and the database was passing data from the

14

app to the cloud before the end of the semester. Additionally a bare-bones frontend
implementation was completed before the second semester as well.

The second semester was focused on implementing the features required by the
client, and improving the look and feel of the front-end of the application. Each team
member not already familiar with the existing code were also brought up to speed to
ensure everyone had something to work on. Authentication services and a user
interface with access to all relevant features were implemented during the beginning of
the second semester. The rest of the semester was spent on usability testing and the
logic behind the geolocation-based services, such as price comparisons.

As a whole, development went relatively smoothly throughout the process, and
major milestones were met will minimal difficulty. This was in part caused by the
allotment of additional buffer zones, such as spring break in the middle of march, that
could be used to resolve any unexpected complications. In its current state, the project
and last few pieces of documentation are ready to be delivered in early May right on
schedule.

7. Future Work

While trying to accomplish all goals of this project there were some that were not
feasible to be completed in the amount of time given. So there are some extra cool
goals that, given enough time, would add more market value to this application. These
ideas and goals include developing an algorithm that can create a shortest path through
a store to more effectively lead you through the store in finding your items even if you
have never been there before. Another future goal would be to have would be
navigation capability of the application upon selecting a store to travel to given our store
recommendation service as mentioned earlier. This would further ease the user’s effort
in their shopping experience. Now let’s step into these goals with more detail. First up is
the shortest path algorithm for store traversal.

7.1. Shortest Path Shopping

While having the isle numbers ordered in the user’s list is handy and can save
some time what would be really cool is having a way to visually draw a path through the
store so the user can just follow a virtual path to obtaining the required items in the
respective shopping list at a specific store. At this point it may be good to explain that
store frequently change the location of items as well as if the user has never been to a
store it is considerably harder to find the items needed quickly. Because of this creating
an algorithm and ultimately a service that can provide this path could potentially save
shoppers a great amount of time. Now while this is useful once at the store there is one
other goal that would have been nice to have before even getting to the store and that is

15

how to get to a store the application might recommend or the user might want to visit.
Which leads into the final future work goal.

7.2. Navigation to Store

Getting to a new store sometimes might be a task in itself because of
construction or other obstacles. Since the application relies on user input heavily we
could also crowdsource this information as well to provide the most up to date
information possible about how to get to stores. This could eventually be expanded to
show road closures and other hazards or even traffic flow during different times of the
day to reduce travel time to and from any given store.

8. Conclusion

In conclusion current mobile shopping list applications fail to benefit the user’s
shopping experience because they do not take advantage of sharing information
between users. Gnosis Solutions plans to solve this problem with a mobile application
that makes use of crowdsourcing that feeds a shared database that is functional with
and without an internet connection. This application will also include a streamlined and
intuitive user interface that will propel it above competing software on the market.The
lack of change in the project design since its inception is indicative of the accuracy with
which Gnosis Solutions has pursued the best tools and technologies suited to create
our application, which is a good proof of concept for this new type of mobile shopping
application.

9. Glossary
API​ - a set of clearly defined methods of communication between various software
components.

Crowdsourcing​ - the practice of obtaining information or input into a task or project by
enlisting the services of a large number of people, either paid or unpaid, typically via the
Internet.

Geolocation​ - the process or technique of identifying the geographical location of a
person or device by means of digital information processed via the Internet.

16

10. Appendix A: Development Environment and Toolchain
The following sections give an overview of the hardware, software, and logistical

requirements of developing the project.

10.1 Hardware

Among the developers, Mac, Linux, and Windows operating systems were used
to develop the projects. Both Mac machines were Macbook Pro laptop no older than
2010 model. The Linux and Windows machines were a gaming laptop and gaming
desktop, respectively. All development machines required at least 8GB of RAM memory
and modern graphics hardware in order to effectively run emulation software required to
work on the application. It is also important to note that these machines require an Intel
processor to run Android Studio’s emulation software.

10.2 Toolchain

Android Studio - allows access to required android software packages for android
development, as well as an emulator for live testing. Also includes a code editor.

Atom IDE - used by some members as a relatively light code editor when Android
Studio’s editor was not used.

Node.js - lightweight cross-platform runtime engine that runs javascript-based
applications.

Node Package Manager (NPM) - package manager for Javascript that is used to
track and manage React-Native and its relevant base software. Also used to incorporate
Facebook and Google authentication tools.

React-Native - primary framework for application development, includes base
components for creating user interface elements as well as the ability to define custom
elements. React-Native was used to build the front end of the application.

Facebook Authentication - a package provided by NPM that allows database
authentication through an existing Facebook account.

Google Authentication - a package provided by NPM that allows database
authentication through an existing Google account.

Git - All work was tracked and recorded in a private Github repository to ensure
access to all team members and rollback in the case of non-functional builds.

Firebase Cloud Storage - free cloud storage platform that was used to backup all
user data and store price and location data for registered grocery stores.

17

10.3 Setup
1. Install Node.js
2. Install Node Package Manager
3. Clone a copy of the project repository using Git
4. Run “npm install” to install all required software packages
5. Run emulator (differs for iOS and Android emulators, as well as the specific

emulator)
6. Run “react-native run-android” (running android platform as example) inside the

project directory. This will install the application the indicated emulator/device.
7. Open the application on the emulator/device
8. Project is now ready for development, and can be hot-refreshed within the

emulator as changes are made.

10.4 Production Cycle
Example: Changing Button Text

1. Look in the source code for the relevant React-Native component.
2. Once the component is identified, change the text it uses as its label and save

the file.
3. Rebuild the project using the command from step 6 of Setup ​or ​hot refresh the

project during emulation (depends on emulation device, which provides the
command)

4. Verify that the correct element of the interface was changed.
5. Add and commit the changes using git.
6. Push the changes to the repository to ensure each member has access to them.

