Ecolocation

Technological Feasibility
November 13, 2017

Client/Mentor:
Dr. Chris Doughty

Team Members:
Brenden Bernal
Chandler Hayes
Michael Hartzell
Anthony De La Torre

Table of Contents

Technological Feasibility
Table of Contents

1. Introduction

2. Technological Challenges

3. Technological Analysis
3.1 Mobile Environments
3.2 Storage and Data Hosting
3.3 Data Visualization
3.4 Image Storage and Access

4. Technological Integration
5. Conclusion

6. References

1. Introduction

Animals play an indispensable role in providing for the overall health of our ecosystems. Of all
the animals that play a role in this, megafauna (large mammals) play a disproportionately larger
role due to their size, range of travel, and longer food passage times [1]. Due to the greater
impact of megafauna, our project places its focus on these large mammals and seeks to provide
information on the impact they have in a specified area. Our client and mentor Dr. Chris
Doughty has been doing research in this area and we are working with him to make this
information more accessible and understandable.

Although this information is accessible for existing megafauna, it is not readily available or
formatted in a way that is easy to interpret. We are creating a unique mobile application that
seeks to bring this information together and explain the data in ways that allow the user to
understand the results. Furthermore, we will be providing information on megafauna going back
thousands of years; mammals that are long extinct. This is a unique aspect of our application as
range maps and nutrient distribution information on extinct megafauna is not publically
available. We will be combining information on current and historic megafauna to provide unique
data such as the effect that an extinct mammal could have on our ecosystems should it return.

In this paper, we will be exploring the significant technological challenges that will be
encountered during this project and seek to find a solution. For our project, we will need to store
and access large amounts of data and then use that data to run calculations and generate
charts and graphs to represent the results. In order to accomplish these tasks we have chosen
to develop an Android mobile application using Android Studio. For data storage we will be
using Amazon Web Services (AWS) to host the data and Google Drive to store the photos we
will be using. Finally we have decided to use MPAnNndroidChart for displaying the data. The
following sections will address our chose solutions and how and why we decided on these
specific technologies.

2. Technological Challenges

The creation of an application that will give users information about nutrient distribution
contributed by megafauna in their local ecosystem leads to several technological challenges.
The following are the technological challenges identified for the application:

Easy to navigate design.

Receive the user's location to give the user information on their local ecosystem.

Given a location specified by the user, provide information on the ecosystem in that area
Take large amounts of information about megafauna off of Wikipedia, like images and
short descriptions, and put it in a database.

e Access to a database that will give it information on megafauna in various ecosystems.
o The information includes:
m A picture of the megafauna
m A summary of the megafauna
m The endangered level of the megafauna
m The location of the megafauna
m The weight of the megafauna
e The ability to calculate the nutrient distribution of megafauna in an ecosystem using the
data given by the database.
Display the data about an ecosystem to the user visually.
Give the users an interactive way to manipulate variables in their ecosystem.

3. Technological Analysis

In the following sections, we will discuss the four main technological challenges. We will explore
different solutions for each challenge by analyzing its features and comparing it with the needed
features and functionally. Each section will explain its selected solution. Following this, a table
with the alternatives is presented to compare them with the required features. Each section will
conclude with its feasibility. The succeeding sections will cover mobile environments, storage
and data hosting options, data visualization, and image storage and access.

3.1 Mobile Environments

Introduction

The mobile environment is the core piece of a mobile app and affects the available technologies
that can be integrated with it. Ultimately, we selected Android as the mobile environment
because it fulfills most of our needs. The first requirement is collaboration with our chosen
graphing library, MP Android Chart. Additionally, the environment needs to have an adequate
documentation and an active community. A decent documentation is beneficial for reducing the
learning curve, effective use, following standards, and solving bugs more quickly. An active
community will ensure that the libraries and other features will stay up to date as time
progresses. A final component that would be beneficial is if the environment is able to
collaborate with MATLAB. Our client uses it for computations and plotting graphs. We would like
to leverage some of the MATLAB code for our application. In the following sections, three
mobile environments will be explored: Android, Kivy, and Apache Cordova.

Options
Android

E.

The Android software development kit (SDK) is one of the leading platforms for
Android mobile development. It is usually paired with Android Studio which is the most
prominent integrated development environment (IDE) for Android. The IDE has some
valuable features such as debugging and instant feedback on layouts and user
interfaces (Ul). Android has a very active community. This means that provided libraries
and frameworks for Android are more robust and the documentation will be detailed.

Pros:

Strong and active community

Android Studio improves the development process

Native to Android phones will result in faster processing

Can use our chosen graphing library: MP Android Chart

Uses Java which is compatible with the other selected technologies
Compatible with AWS (Amazon Web Services),our selected data storage

Cons:

Incompatible with MATLAB

Working with the interface can be tedious

The IDE requires a lot of processing power
Working with Ul components can require more work

Kivy is an open source framework that creates applications for multiple platforms such
as mobile and web applications. The primary language that Kivy uses is Python which
would allow collaboration with MATLAB through the use of pyzo [2]. Additionally, Python
is an excellent resource for scientific use because it has packages aimed towards that
domain [3]. Unlike Android, Kivy does not have a specific IDE. This means that
development would be in a text editor and runs through a command line [4].

Pros:
e Compatible with the selected storage and data hosting of AWS

e Plotly could be used for graphing

e Compatible with MATLAB

e Many options for developing the Ul

e Working with widgets is simplistic and is easy to learn
Cons:

e |Installation is extremely difficult
e Building for Android APK is complex

[]
[]
Cordova

m Virtualbox has to be installed to support the Android environment on
Windows
Documentation is not detailed
Is not native to Android, which will result in slower performance

Cordova is another framework that provides cross-platform support for mobile and web
apps. It uses CSS, HTML, and JavaScript to develop applications. With the use of
JavaScript, Cordova can leverage the native devices application programming
interface (API) to use native features. One of the highlights of Cordova is that plugins
can be added to extend the code and use native device capabilities [2]. This can
improve performance over an app that is not native to the OS. Although, it will be slower
than an application that runs natively.

Pros:

Cons:

Builds applications for cross-platform use
Installation and usability is simple
Compatible with AWS (Amazon Web Services)
Plenty of plugins for different elements
o Such graphing or accessing the user’s location
Performs faster than entirely non-native mobile apps

Easy to produce a non-native experience
Plugins are not guaranteed to be fully functional
o Bugs would have to be manually fixed
If a needed feature is not available, we would have to create the plugin
Documentation can be poor and difficult to understand

Chosen Option:

0 = insufficient
5 = over qualified

Alternatives Community & | Graphing | Usability [Compatible Total
Documentation with
MATLAB
Java 5 3 3 No 1
Kivy 3 4 2 Yes 9
Apache 2 3 3 No 8
Cordova
Table 1

Android has an superior community and documentation
Cordova plugins are not robust

Android Studio has elements that make development easier
Kivy is complicated to set up and to build projects

For the mobile environment, we chose to develop with the Android SDK. It had the
highest rankings for nearly each category, which can be seen in Table 1. Its
documentation and community excelled. These attributes are essential for producing a
well rounded application. Due to having a more mature community, its libraries are going
to be more reliable and the number of examples and resources are abundant. The
communities and documentation for the other environments were weaker in comparison.
For example, Cordova uses plugins to extend the capabilities of its applications. These
plugins are vital in cross-platform development. However, a lot of the plugins can be
unreliable since the community is still new and growing. This means that developers
using Cordova will likely have to correct bugs in plugins or develop their own plugins.
This is time consuming and requires extensive testing to ensure the plugins are fully
functional.

The features of Android’s integrated development environment (IDE), Android Studio,
has various features that can make mobile development easier. For instance, the
graphical user interface (GUI) for designing the user interface(Ul) enables the
developer to see the layout as they generate the Ul. Another rare feature is that it
includes a debugger. This can reduce time spent on debugging which is not available
with Kivy and Cordova. Android Studio makes the development process smoother. On
the contrary, Kivy has components that make this process arduous. The installation is
complex and poorly documented. If the developer works in Windows, a virtual box must
be installed. This causes building the project to be complex. This is undesirable because
a project must be built every time the developer wants to test it. Ultimately, Android is the
best option for our needs. It is compatible with graphing libraries and AWS.

We will create sample data of a reasonable size since the actual dataset is considerably
large. With that dataset, we will demonstrate Android’s capability to communicate with
our databases: AWS and Google Drive. We will also experiment with different graphs on
MP Android Chart. We will first access the data and run computations on the dataset.
The results of the computations will produce graphs that reflect nutrient dispersal from all
of the animals in the ecosystem.

3.2 Storage and Data Hosting

Introduction
Storing and accessing data is a large part of our mobile application, and the speed and reliability
of our database will be a major factor in the efficiency and user experience of our product. To
select the best option we need to make sure that it has the following features:
e Support for Android Studio
o Ensure that Android Studio is supported because if we do not have the ability for
easy integration and connection, then the rest of the features do not matter.
e Database migration
o we have two databases, one for existing megafauna and one for the historic
megafauna, and we need to be able to quickly and successfully migrate them to
the hosting service.
e Backups
o If data gets corrupted, or any other unforeseeable circumstance occurs we want
to know that our data will be recoverable.
e Cost
o we want an excellent service at an affordable price, but we do not want to
sacrifice performance for the cheapest tool.
e Useful and thorough documentation
o Good documentation leads to easier troubleshooting and better experience.
e Large user base.
o Large user base is evidence of a good hosting service and with the large user
base there will be additional help online aside from the official documentation that
will prove useful.

Below we will examine three possible solutions to host our data: Amazon Web Services, Google
Cloud SQL, and Microsoft Azure.

Options

Amazon Web Services (AWS)
The AWS tool that we are interested in using is Relational Database Service (RDS)
which is a relational database management service that can work with MySQL for storing
and accessing data.[5]

Pros:
e Android Studio support through software development kit (SDK)
e Tools that include database migration and backups
e Generous free tier
o 5GB of storage
e Competitive pricing

e Thorough documentation and good tutorials
e Many users, a lot of good resources aside from AWS official documentation

Cons:
e Free tier lasts only one year
e Setting up seems more involved than Google or Azure
e Costs are complicated to understand
Google Cloud SQL (GCS)
Google Cloud SQL is a fully-managed relational database service that works with
MySQL.[6]

Pros:
e Very good integration with Android Studio
o Both Google Cloud SQL and Android Studio are google products so great
support
e Database migration tool
e Cheapest base cost
e Good Documentation

e Backups are an extra cost
e Free tier is not as competitive as AWS, does not provide functionality we need
e Smallest user base

o Newest hosting service

Microsoft Azure
Azure Database for MySQL is a data hosting service designed for integration with
applications.[7]

Pros:
e Support for Android Studio
e Quick and easy data migration
e Regular backups

e Smallest free tier
o 1GB
Most expensive
Documentation is not as easy to follow
User base
o Not as many users as AWS and slightly more than Google Cloud SQL

Chosen Option:

0 = insufficient

5 = over qualified

Hosting Android | Database | Backups Cost Documentation User Total
Service Studio Migration Base

Support
AWS 4 5 4 3 5 26
Google 5 5 1 3 5 23
Cloud
SQL
Windows | 4 5 4 2 3 22
Azure

Table 2

For the final product, we are going to be using Amazon Web Services RDS for the
following reasons:

Full support with Android Studio

Competitive price and usable free tier

e Overall ease of use
o Ability to set it up and leave it alone

e Great documentation

e Good user base
AWS will be a great hosting service for our mobile application that meets all of our needs
and does exactly what we need it to do. We will have to spend some time on the initial
setup but once we have the data stored then we should be able to leave it alone and
trust that it is safe and secure.

Feasibilit

We have tested AWS with MySQL workbench and in a test application, and it worked
well and was easy to connect to. The setup time was not very quick, but once we setup
the database, it seems like the upkeep will be minimal and any changes that need to be
made will be relatively straightforward. When accessing the data through the application
it was swift and responsive with no lag time for connecting and responding to a query
that we noticed. For further testing, we would like to move the databases to AWS and
run some test with queries on a small subset and larger subsets to ensure that speed is
still acceptable when accessing larger dataset. We also want to test it with multiple
connections and queries being run simultaneously to see how it handles the increased
traffic

3.3 Data Visualization

Introduction

In this section, we will look at our selected options for data visualization. In our application, we
will be displaying several graphs that will summarize the data for the nutrient movement in the
chosen locations ecosystem. We decided to look at MP Android Chart, Androidplot, and
GraphView which are all Java libraries. In this section, we will give a summary of each
alternative that will include our opinion on ease of use, functionality, documentation, and visual
appeal. After each summary, there will be a list of pros and cons for the library. At the end of the
section, there will be a table that will compare the three alternatives. Below we will analyze three
graphing libraries: MPANndroidChart, Androidplot, and GraphView.

Options

MP Android Chart
Mp Android chart is an open source Java library that works for Android 2.2 and up. It
supports several types of graphs such as line charts, bar charts, and candlestick charts
just to name a few. This library also has some impressive features such as dragging and
panning using touch gestures, the ability to combine different kinds of charts, a
customizable popup views, the ability to animate the charts, and many other features.
After viewing several tutorial videos for this library, we have determined that the library is
easy to pick up and use. We found a lot of documentation for this library that will allow us
to look up solutions if we run into problems while using the library. Here is an example of
a bar chart created using the MP Android Chart library:

10

This graph came from MP Android Chart’'s GitHub page and the design for this graph is
informative and easy to understand. [8]

Pros:

Great style options

Detailed documentation

Works with Android Studio

Many features to work with

Many types of graphs to work with
Regularly updated

Easy to use

Cons:
e Can be slow compared to other libraries

AndroidPlot
AndroidPlot is an open source Java library that can run on Android 1.6 and onwards. It
supports several charts like line charts, bar charts, pie charts, and candlestick charts to
name a few. This library has many features like dynamic modeling support, the ability to
mix types of charts, the ability to pan and zoom with the chart, and support for large
datasets. AndroidPlot is used by over 1000 apps on Google Play according to
appbrain.com [9]. The Androidplot library has detailed documentation making it easy to
look up how to use the library. There is also an active community behind this library that
makes many tutorial videos on how to use the library. The library is not as visually
appealing as other options for this problem. The following image is an example of a bar
graph using the AndroidPlot library to create it:

Growth
8.0

7L
6.2
5.3
44
3.6
2.7
1.8
0.9
0.0

»
&

Bys MThem

This graph was taken from AndroidPlot’s GitHub page [10]. It looks dated and
uninteresting but it is easy to get the needed information from it.

11

Pros:
e Detailed documintation

e FEasytouse

e Large array of charts

e Faster than other libraries

e Works with Android Studio
Cons:

e Charts don't come in many styles
e Not as many functionalities as other libraries

GraphView
GraphView is an open source Java library that is easy to understand and to integrate.

This library has several charts that can be used like a line chart, bar chart, point chart,
and it has the option of creating custom types of charts. This library comes with many
features but not as many as other options. One feature this library has is a tap listener
who can handle tap events on the charts which could allow the users to view more
information on the data the chart is representing. Graph View has detailed
documentation and tutorial videos on their website android-graphview.org that would
make the library easy to learn and work with. This library is compatible with Android
Studio and has XML integration. This is a Bar chart created using the GraphView library:

5 oo
4
2
| |
e
-2
0 1 2 3 4

This graph was taken from the official GraphView webpage [11]. It is hard to understand
because you can not add labels to the axis with this library for certain graphs.

12

Pros:

Cons:

Highly customisable
A large array of functions
Detailed documentation

Easy to use
Fast

Works with Android Studio

Not as Visually appealing as other options
Limited styling options
Not scalable or scrollable

Chosen Option:

0 = insufficient
5 = over qualified

MP Android Chart has more functions than the other options.

It has more documentation than the other option.
It has better visual appeal than the other choices.

Alternatives Ease of | Functionality | Documentati | Visual appeal | Total
use on
MPAndroidChart | 4 4 5 5 18
AndroidPlot 4 3 4 3 14
GraphView 4 2 4 4 14
Table 3

The library we decided to use was MP Android Chart. This library has detailed
documentation and an abundance of tutorial videos that can be used to learn how to use
this library and to use to find a solution to any problems we run into while using the
library. The two other options we looked at, AndroidPlot and GraphView, also had
substantial documentation and also had tutorial videos, but we did not find them to be as
extensive or regularly updated as the documentation for MP Android Chart. The tutorial
videos as well were not as detailed or numerous for the other two option as what we
found for MP Android Chart.

The Second reason we chose this library is for the visual appeal. We found that MP
Android Chart had the best visual appeal due to its many style options and fluid and
bright designs. This library does suffer from speed for this look, but we believe that it is
well worth it. The other two option’s designs were not as appealing visually and did not
have as many choices when it came to styles, but they are both faster. GraphView

13

design options seemed to basic and uninteresting to keep our user's attention, and the
AndroidPlot library’s design looks dated and dreary also has the least amount of
customization when it comes to styles out of the three.

The last reason we chose to use MP Android Chart is its functionality. This library has
functions like eight different chart types that will give us many options when it comes to
displaying the data. It can drag and pan with touch gestures which will provide our users
the ability to interact with the graph. The library has customizable popup-views which will
allow us to offer our user's more information when they touch the graph. The library can
combine chart types which will provide us with, even more, options for displaying data to
the user. The graphs can have an animation which can be used to make the graphs look
dynamic and more interesting to the users.

Feasibility
To test MPAndroidChart we made some simple graphs with data coming from a test
SQL database. we add some animation to see how easy the feature was to work with
which was fairly straight forward. The test was a success and we were able to implement
a graph using the MP Android Chart on Android Studio.

3.4 Image Storage and Access

Introduction

One key feature for our app is being able to view information about the animals that live in a
specified location. Such as their name, a brief description, and an image. For the initial phase of
our app, we are restricting the database to about 5000 mammal species, and by storing the
images for these species as jpeg files, they total a little over 1GB of data. As our app increases
in scope, this number will increase as well, and our solution must handle this. Because the
amount of data required vastly exceeds the average size for a mobile app, it must be stored
externally. After this data is stored, the app must be able to access specific images as the user
requests them, so access speed is a crucial factor. Other determining factors include Android
Studio compatibility and ease of use. To make the best choice, we will explore the pros and
cons of three different options: Google Drive, Amazon Simple Storage Service, and MediaWiki.

Options

Google Drive:
Google Drive is an online platform that allows for storage of up to 15 GB of data,
including jpeg images, free. These files are stored in the cloud, but allow access at
speeds similar to a local file system. You can use the Drive Android Application
Programming Interface (API) to query and access this data. This API is native to
Android Studio and is included when you download the Google Play Software

14

Development Kit (SDK) for Android Studio. To access the data your app must be
registered with the Google API Console, which is complicated to set up; however,
because this is a native app for Android Studio, there should be no problems after this
initial phase.[12]

Pros:
e Adding the API to Android Studio is simple
e Built in functions for finding and accessing data
e Allows for access similar to a local file system
e Code to search drive is simple
Cons:
e Getting access to the drive from an application is complicated
e Only available for Android

Amazon Simple Storage Service (S3):
Amazon S3 is an online storage service that allows for storage and access of large
quantities of data. The free tier puts restrictions on data size and is only available for a
limited time. S3 includes an API that can be used for Android Studio and other Android
development platforms. The installation of this API is simple, but apps require
authentication similar to the Drive API. Since the API is not native to Android Studio,
there might be some integration problems. Accessing the data through the APl is
straightforward, but connection speeds have been raised as an issue.[13]

Pros:
e APl available for Android Studio
e Allows access to large amounts of data
e FEasytouse

e Free tier limited in time and data
e Issues have been raised about transfer speed
e Integration might cause problems

MediaWiki:
MediaWiki is an API that allows you to query Wikipedia pages for different pieces of
information. There are several different options available, and Jwiki seemed like it suited
our needs the best. It is a Java library that allows access to the MediaWiki API uniformly.
Since it is querying a page directly, access to the information should be relatively fast.
Getting the information from Wikipedia means that we do not have to store this data
ourselves, eliminating any storage needs. Although there is some structure to the
searches, you may have to parse through results to get to the desired information, which
takes time. There is also no guarantee of the location of an image on a page. This could
result in multiple searches to get info, and possibly not finding it. Since Jwiki is a Java
library, integration with Android Studio should work, but there are no guarantees.[14]

15

Multiple versions of the API for different platforms

No storage necessary for our app
Access of the data should be fast

Parsing through search results to get desired info takes time
The images might not always be in the same section of the page

Integration with android studio is untested

Chosen Option:

0 = insufficient
5 = over qualified

Solution Speed Data Usability Android Total
restrictions Studio
Support

Google 5 4 4 5 18
Drive

S3 4 3 4 4 15
MediaWiki 4 5 3 3 15

Table 4

We decided to go with the Google Drive API. The most important reason for this decision
is that the Drive APl is native to Android Studio, the development platform that we
decided to use. Android Studio is a platform that is known to have some integration
issues and to have a solution that is native to this platform limits these issues. The
second determining factor is the data restrictions imposed by the different platforms.
Amazon S3 does offer free tiers of their data storage, but they only last a limited time
and charge if data usage exceeds allocated amount. Google Drive allows for more
storage than we will need for this app at no cost and with no time restrictions. This
means that we will not have to worry about being charged for data usage. Another
important reason for the choice is speed. Google Drive is a file storage system that We
have been using for many years and access speeds have never been an issue,
especially for small things like jpeg images and text documents. If these speeds hold for
multiple users accessing the same drive, Google Drive should be our optimal solution.

16

Feasibility
To prove the feasibility of this choice, we did some research into the documentation that
comes with this option. There are many different tutorials and guides available both
through Google and third parties. We used some of these tutorials to follow the basic
steps of installing the Google Play SDK and adding it to the compile dependencies. After
this, you must add the authentication, which requires adding special keys and identifiers
to your app. We were unable to achieve this step in the initial phase, but a little more
time with the tutorials should get this part functioning. After your app has acquired
authentication, all that is left is writing the actual code.

Although the MediaWiki APl was not chosen as our solution, we might be able to use it
in another part of our development. Because the short descriptions and photos were not
given to us, we have to gather this information before we can store it anywhere. Because
of its ability to access this info from Wikipedia, the MediaWiki API will greatly decrease
the time to gather this information, but its lack of structure makes the risk of getting the
wrong information too high for it to be our main solution. Using the MediaWiki API to
gather the original information allows us to error check before storing it in Google Drive.

17

4. Technological Integration

Application Frontend
Application Backend

MP Android
Chart

rF
AWS RDS > SQL Queries <

Database
Computational
Library
s uery drive
: i b d List of
Google Google Drive API Animals
Drive
A return results

.| Text Files &

- Photos

Y - Legend |
8 Library/Data
Structure
Database Interface
API /Query

With the selected technologies, we can assemble these pieces together. For the mobile
environment we are using Android Software Development Kit (SDK). For the storage of
species information we are using Amazon Web Services (AWS). To store the pictures and
species description we are using Google Drive. To display the graphs we are using MP Android
Chart. Java and the Android SDK are compatible with other three technologies and will be the
interface between these components.The figure above demonstrates how these pieces will work
together.

The first component is the Application Cloud Base. It consists of two different databases: AWS
Relational Database Service (RDS) and Google Drive. The AWS RDS will store the
information on existing and extinct species which are extracted from the International Union
for Conservation of Nature (IUCN) and Historic Databases. The Google Drive will contain the
images and short description for each species in the AWS database.

The second part of the system is the Application Frontend, this is the part of the app that the
user directly interacts with. The app will generate a list of animals in the user’s location. The list

18

will be used for computing nutrient dispersal so that it can be graphed with MP Android Chart.
Furthermore, the user will be able to see the list of animals in their ecosystem. The list will
contain an image and description for each animal on the list.

The integration between the Application Cloud Database and the Application Frontend will be
connected by Application Programming Interfaces (API) and the Structured Query
Language (SQL), The application will begin by querying AWS using SQL to produce the list of
species and their corresponding information. After computations are applied, MP Android Chart
will graph the nutrient dispersal and range maps. Additionally, the application will be able to
present this list of the species so that each list item has a picture, a short description, and other
information (like threat level). The image and description will be obtained from the Google Drive
through the Google Drive API. The data on the Google Drive will be taken from Wikipedia by the
use of MediaWiki API.

The integration between these technologies is relatively simple. On the Application Frontend,
the four components are written in Java and will be compatible with Android. Communication
between the Application Frontend and the Application Cloud Database are executed through the
use of SQL and the Google Drive API. The Google Drive is able to get its data from Wikipedia
by using MediaWiki API. Therefore, the use of APIs and the SQL language integrates the
frontend and backend of the application making the integration of the technologies possible.

5. Conclusion

Chosen Options:
e Mobile Environment - Android Studio
e Data Storage and Hosting - Amazon Web Services
e Data Visualization - MP Android Chart
e Image Storage and Access - Google Drive

Animals play a role in many different services that are vital to ecosystems, such as nutrient and
seed dispersal. Sadly, the awareness for the services that animals provide is lacking. To
increase awareness for these services, we are going to create a mobile application that allows
users to see the impact of animals on a given ecosystem in an easily understandable fashion.

To create our app we had to make many choices, the most important of which was deciding to
use Android Studio as our development platform. Its built-in tools help development, and it can
be integrated with our other software choices with ease. Another key decision was to host all
database information on Amazon Web Services. This keeps all the information in one place and
allows for quick access over the internet. In order to create and display all the required graphs

19

and charts, we decided to use MP Android Chart. This choice comes with an extensive library
and allows us to display the information in a way that users will want to engage with. The final
decision was using Google Drive to store the animal images. This choice gives us ample free
storage with access speeds similar to a normal file system.

The final problem that we face is integrating these technologies together. Because most of our
choices considered integration with Android Studio as a factor, the integration process should
be without too many issues. We believe that we have made the correct technical decisions to
create a great app that allows all the parts to be integrated smoothly.

20

6. References

1. The legacy of the Pleistocene megafauna extinctions on nutrient availability in
Amazonia. Retrieved October 24, 2017.
https://www.nature.com/ngeo/journal/v6/n9/abs/ngeo1895.html

2. Python vs Matlab. Retrieved October 22, 2017 from Pyzo -
http://www.pyzo.org/python_vs_matlab.html

3. Pypi Pymatlab 0.2.3. Retrieved October 22, 2017 from Python:
https://pypi.python.org/pypi/pymatliab

4. Kivy: Cross-Platform Python Framework. Retrieved October 22, 2017 from Kivy:
https://kivy.org/#home

5. Amazon Relational Database Service (RDS). Retrieved October 24, 2017.
https://aws.amazon.com/rds/

6. Google Cloud SQL. Retrieved October 24, 2017.
https://cloud.google.com/sqgl/docs/

7. Microsoft Azure. Retrieved October 24, 2017.
https://azure.microsoft.com/en-us

8. MP Android Chart. Retrieved October 22 2017 from GitHub:
https://github.com/PhilJay/MPAndroidChart

9. Androidplot. Retrieved October 22, 2017 from AppBrain:
http://www.appbrain.com/stats/libraries/details/androidplot/androidplot

10. Androidplot. Retrieved October 22, 2017 from GitHub:
https://github.com/halfhp/androidplot

11. Showcase. Retrieved October 22, 2017 from android-graphview:
http://www.android-graphview.org/showcase/

12. Getting Started. Retrieved October 23, 2017
https://developers.google.com/drive/android/get-started

13. Getting Started. Retrieved October 22, 2017 from Amazon:
http://docs.aws.amazon.com/AmazonS3/latest/gsa/GetStartedWithS3.html

14. Jwiki Fastily Library. Retrieved October 23, 2017 from GitHub:
https://github.com/fastily/jwiki

https://www.nature.com/ngeo/journal/v6/n9/abs/ngeo1895.html
http://www.pyzo.org/python_vs_matlab.html
http://www.pyzo.org/python_vs_matlab.html
https://pypi.python.org/pypi/pymatlab
https://kivy.org/#home
https://aws.amazon.com/rds/
https://cloud.google.com/sql/docs/
https://azure.microsoft.com/en-us/
https://github.com/PhilJay/MPAndroidChart
http://www.appbrain.com/stats/libraries/details/androidplot/androidplot
https://github.com/halfhp/androidplot
http://www.android-graphview.org/showcase/
https://developers.google.com/drive/android/get-started
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://github.com/fastily/jwiki

