

Design Document
February 21st, 2018

Sponsor

Dr. Andrew Richardson

Dr. Mariah Carbone

Mentor

Ana Paula Chaves Steinmacher

Team

Sam Beals, James Beasley,

Andrew Greene, Joseph Kelroy

1

1. Introduction 2

2. Implementation Overview 3

3. Architectural Overview 4

4. Module and Interface Design 5
4.1. Home Screen 5

Overview 5
Methods 5

4.2. Metadata Screen 6
Overview 6
Methods 6

4.3. Graph Screen 7
Overview 7
Methods 7

4.4. File Directory Screen 8
Overview 8
Methods 8

4.5. Data Viewing Screen 9
Overview 9
Methods 9

4.6. Graph Manager Object 9
Overview 9
Methods 10

4.7. Line Graph Object 11
Overview 11
Methods 11

4.8. Data Reading Object 12
Overview 12
Methods 12

5. Implementation Plan 14

6. Conclusion 16

2

1. Introduction

Global climate change is an issue that will affect every person on the planet. It is widely

acknowledged that climate change is driven by rising levels of atmospheric carbon

dioxide (CO2) resulting from fossil fuel burning. The importance of research into climate

change cannot be understated, but when people think of data associated with climate

change they typically think of the carbon footprint of our cities. They often forget that the

environment and its carbon cycle hold data that is just as, if not more, valuable. Our

goal is to ensure that ecologists can collect data as quickly, efficiently, and as easily as

possible from the environment.

The Richardson-Carbone Lab is operated by Doctor Andrew Richardson and Doctor

Mariah Carbone at Northern Arizona University. The Richardson-Carbone Lab studies

carbon cycling in forest ecosystems. In a nutshell, the research is used to understand

the balance between carbon uptake (photosynthesis by plants) and release (respiration

both by living and growing plants, as well as by microorganisms decomposing dead

organic matter in the soil). Through the use of modern technology, we aim to make the

collection of CO2 data from trees a streamlined process with minimal cost and intuitive

user interaction, providing users the ability to collect, visualize, and interpret field

readings.

Currently, the Richardson-Carbone Lab has to use a cumbersome set of equipment to

conduct their research. This method of data collection is slow, not very portable/durable,

and it is not the easiest to view out in the field. The proposed solution will make the

entire process fast, portable, and easy to use while also providing important meta data

to the researchers in real time. Currently, we are in the process of developing a mobile

application for the Android platform. The app allows any Android device to communicate

with the client’s LI840A gas analyzer. The data is streamed into the app and displayed

in real time. Any of the data that is logged in the app can be saved and transferred out

3

of the app via email. Additionally, the data saved by the app can be reviewed and

deleted at any time by the user. This document will start with a brief explanation of our

implementation, and how exactly we plan to solve the client’s problems. It will then

move on to an architectural overview, explaining how our solution will be structured. We

will then give a more in depth analysis of each module in our architecture, before finally

wrapping up the document with our implementation plan and conclusion.

2. Implementation Overview

In order to solve the issues listed above for our client, we are developing an application

for mobile devices that can be used to measure and record data in conjunction with their

LI-840A gas analyzer. The application’s interface will be designed with a Lenovo Tab 4

in mind, as the large screen real estate allows for a higher level of detail. The

application will use Android GraphView to render a series of graphs that displays the

gas analyzer’s reported data in real time. The software will also provide several means

of statistical analysis, such as slope, standard error, and R2, so the user can generate

the information as needed with the convenience of staying within a single application.

Finally the application will be able to transfer data out via email with convenient naming

conventions of the files. With all of the tools being readily available on a tablet device,

any researcher out in the field will no longer be burdened with having to carry a laptop

or any other peripheral devices in order to collect and analyze data.

This implementation relies on the use of a few different existing technologies. We have

chosen Android for our mobile operating system, mainly due to its popularity in the

mobile device market and its wide range of libraries and tools it offers developers.

Android Studio uses the Java programming language so all back end code will be using

this. We will also be using the Android GraphView library as our data visualization tool

because it allows for a large degree of customization in how the data is represented, as

well as having support for many key features, such as live readout. Lastly, we chose

4

email for our method of data transfer out of the application because of its ubiquity and

easy integration with Android.

3. Architectural Overview

Java is an object-oriented language so our architecture can easily be organized into a

series of objects. We have devised eight different objects that will be required to meet

the requirements, with five being Android screen objects, and three being helper objects

to either organize data, or assist in the management of that data.

Each screen object will be responsible for handling every aspect of how the user can

interact with the software. For example, whenever the user presses a button on a

particular screen, a corresponding function will be called from within the screen’s object

file to execute the designated response. These responses can be taking the user to

another screen, changing the graph they are currently viewing, or starting to log a data

subset.

Each helper object will have unique usage scenarios, but will overall be used for the

easy manipulation of data within the application. For example, when a data reading

needs to be loaded into the application so that it’s information can be viewed again, we

will be building a Data Reading Object using the information present in the saved files.

5

This will allow us to easily access and pass around values from inside of a Java object

instead of having to pass around strings directly read in from Android file I/O. (See

Module and Interface Design for exact use cases).

In the following section, we will go over in more detail the responsibilities of each object,

what data they will store, and what methods will be necessary for them to fill their

responsibilities.

4. Module and Interface Design

4.1. Home Screen

Overview

This home screen will act as a navigation point to screens in the application. The

application has a forward thinking process. The Home screen contain some information

about the application, as well as to points of access to other screens. The first point is

to the Metadata screen. This will be used when a user would like to start a new data

set. The other point is the file directory screen. Both of these points of access will be

represented with buttons.

Methods

Name: goToMetaData

Parameters: none

Return value: none

Description: Takes the user to the metadata screen of the application.

Name: goToView

Parameters: none

6

Return value: none

Description: Takes the user to the view screen of the application.

4.2. Metadata Screen

Overview

On the metadata screen, the user will enter all of the information relevant to the specific

instance of data collection. This includes the following data: Operator Name, Site

Name, Plot Number, Temperature, Date, Time, and GPS. Once entered, the user will

move on to start the data collection. The user may also take a picture for the dataset.

There will be a button on the screen that will open the camera on the device. The

picture, as well as the dataset and metadata, will all be saved together.

Methods

Name: goToGraph

Parameters: none

Return value: none

Description: Takes the user to the graph screen of the application.

Name: autoFill

Parameters: none

Return value: Integer values for GPS, Time, and Date

Description: Automatically fills in the GPS, Time, and Date for the metadata screen

using given Java functions.

7

4.3. Graph Screen

Overview

The graph screen is the screen where the live graph readout can be observed, and data

can be saved to the device. It contains several elements, including button to switch

between graphs, start and stop logging buttons, and a button to finalize recording. In

order to operate fully, this screen uses both the graph manager, and line graph objects.

Methods

Name: initialize

Parameters: All the various metadata values.

Return Value: none

Description: Constructor for the graph screen. Initializes a graph manager object, and

tells it to start collecting information from the instrument.

Name: logButton

Parameters: none

Return Value: none

Description: Triggers when the user presses the start/stop logging button. Calls the

graph manager function to start recording a new data set. All series data reading will be

handled using the USB-serial android interface.

Name: nextButton

Parameters: none

Return Value: none

Description: Takes the user to the file directory screen. If a data log is still currently

being recorded, ends it before proceeding.

8

4.4. File Directory Screen

Overview

The file directory screen is the screen in which the user can view all their previously

recorded data sets in a list of the file names which are in the format: site name/sample

ID/date/time. It contains only two elements: a list of data readings, and a button to take

them to the home screen.

Methods

Name: initialize

Parameters: none

Return value: none

Description: Loops through the master application folder, builds an array of these files,

and constructs the list of these files on the screen.

Name: goToHome

Parameters: none

Return value: none

Description: Takes the user to the home screen of the application.

Name: goToView

Parameters: Data Reading Object

Return value: none

Description: Takes the user to the data viewing screen. The data reading parameter

corresponds to which data reading in the list the user chose.

9

4.5. Data Viewing Screen

Overview

The data viewing screen is the screen where previously recorded data sets can be

loaded from the device to have their values reexamined, and chosen to be emailed.It

contains buttons to switch between all the different graphs, several text fields to display

metadata values, and and button for emailing.

Methods

Name: initialize

Parameters: Data Reading Object

Return Value: none

Description: Takes in a Data Reading Object, and constructs the screen based off the

information in that object. This includes initializing four Line Graph Objects, which will be

set as images on the screen, and setting all the appropriate text boxes with the

metadata information like sight name and comments.

Name: email

Parameters: Data Reading Object

Return Value: none

Description: Builds an email using the Data Reading Object, and sends it from the

google email on the device. This will be integrated with the tablets chosen email.

4.6. Graph Manager Object

Overview

The Graph Manager Object is the object that is directly responsible for communicating

with the LI-840A and feeding information to the graphs. When initialized, it will establish

10

communication with the instrument, and set the appropriate polling rate. On its own

thread, it will continue to read in and store the information, before parsing it and sending

the values to the corresponding graphs.

Methods

Name: initialize

Parameters: none

Return value: none

Description: Constructor for the Graph Manager Object. Starts by establishing

communication with the LI-840A and setting the polling rate at twice per second. Then

the object initializes all the graphs and starts the update loop on its own thread.

Name: run

Parameters: none

Return value: none

Description: Used to implement the runnable interface. Runs a continuous loop to wait

half a second, then get data from the instrument and finally update the graphs.

Name: startLogging

Parameters: none

Return Value: none

Description: Tells the graph manager to start recording the inputs from the instrument

to be saved as a data log.

Name: stopLogging

Parameters: none

Return Value: none

Description: Tells the graph manager to stop recording the inputs from the instruments

in the current data log.

11

Name: toString

Parameters: none

Return Value: none

Description: Writes the entire current data log to a string and returns it. Used to write

the log to a text file easily.

4.7. Line Graph Object

Overview

The line graph object is a way for us to easily interact with the Android GraphView

library. Instead of having to interact with the methods of Android GraphView every time

we want to display a graph, this object can be used. The Line Graph Object will have a

simplified set of methods, tailored to our needs of a live updating line graph.

Methods

Name: initialize

Parameters:String graphName, String xLabel, String yLabel, String color

Return Value: none

Description: Constructor for the Line Graph Object. Sets class member variables for

the graph name, x and y axis labels, line color, and other necessary values.

Name: initialize

Parameters: String graphName, String xLabel, String yLabel, String color,

Return Value: none

Description:

Name: addPoint

Parameters:Float value, Float time

12

Return Value: none

Description: Adds a point to the graph at the value and time specified. If the maximum

x or maximum y values need to be adjusted to fit this new point, then it is done.

Name: toString

Parameters: none

Return Value: String

Description: Returns a string representation of the Line Graph Object. Used in writing

to a file.

4.8. Data Reading Object

Overview

The Data Reading Object is used to represent a previously collected data reading.

These objects will be constructed from the contents of a recorded readings folder, which

contains three files: Metadata.txt, Data.txt, and Image.png. An array of these objects will

be used to construct the list of readings on the file directory screen, and individual

objects will be used for constructing the display of the data viewing screen.

Methods

Name: initialize

Parameters: String metadata, String data, Image image

Return value: none

Description: Constructor for the Data Reading Object. Takes in the content of the three

files, parses them into individual values, and assigns those values to class member

variables. These variables will be used in the getter methods of the object.

Name: getName

Parameters: none

13

Return value: String

Description: Returns the name of the data reading.

Name: getTime

Parameters: none

Return value: String

Description: Returns a string representation of the time the data reading was taken.

Name: getGps

Parameters: none

Return value: String

Description: Returns a string representation of the GPS location where the reading

was taken.

Name: getComments

Parameters: none

Return value: String

Description: Returns a string of of the comments that were entered on the metadata

screen. Returns null if no comments were entered.

Name: getPlotNum

Parameters: none

Return value: String

Description: Returns a string representation of the data reading’s plot number. Returns

null if no plot number was entered.

Name: getOpName

Parameters: none

Return value: String

14

Description: Returns the name of the operator entered on the metadata screen.

Returns null if no operator was entered.

Name: getTemp

Parameters: none

Return value: String

Description: Returns a string representation of the temperature entered on the

metadata screen. Returns null if no temperature was entered.

Name: getImage

Parameters: none

Return value: Java Image object

Description: Returns a Java Image object of the image taken on the metadata screen.

Returns null if no image was taken.

Name: getGraph

Parameters: none

Return value: Line Graph Object

Description: Returns a Line Graph Object, constructed using the data found in Data.txt.

5. Implementation Plan

In order to go about fully implementing our product, we decided to split tasks and

responsibilities for each member based on the screens assigned to each of them. The

App consists of four main screens (and a basic home screen menu), with each screen

being fully realized by an individual member. Of course, there are some aspects of the

functionality that are not entirely contained to a single screen within the app. We have

set up a few measures for the group to prevent issues arising from this.

15

In order to avoid any discrepancies that may arise from shared data and values

between different screens, all of the work conducted by individual members is done in

the same location. When any issues in the code or confusions in the design abound, it

is discussed and settled in the same instance. This creates ease of communication and

maximizes efficacy in regards to decision making and bug fixing. Prior any initiative

being taken on a new aspect of the program, the parameters of its design is decided

and agreed upon. Any work that is done outside of the group meetings is approved via

online chat media on which the entire group is connected. This allows all members to be

involved in decision making and prevents any members from being left in the dark in

regards to new developments in our design.

As it can be seen, each team member is assigned at minimum one task per

week. The app’s navigation is on the forefront of the group’s priorities, but tasks become

more individualized as the project moves along in development. The File I/O system

and the UI are among the first things to be completed. After they are developed, we

move into the phase where most of the features the user interacts with will be

implemented. After a few weeks, the graphing screen will be finished, and the user will

be able to see data coming in from the gas analyzer in real time, and will also be able to

adjust the look of the output. The Email integration will be completed within the same

time frame, allowing the user the ability to transfer the data out of the app. A screen

displaying all of the stored data will be developed, and will allow the user to perform

various commands on them (e.g. email, delete, view). The app’s functionality will be

fully written and implemented by early March. After these features are implemented, the

group will being the testing and debugging phase, where we will fix any issues occurring

within the app as well as improving the polish on the UI.

16

6. Conclusion

The goal of our software is to aid in the gathering of field data for ecological research at

Northern Arizona University. This plan has been written to ensure that our product is

both comprehensive in how it solves problems for the client, and designed in a way that

allows for simple implementation and maintenance. Through the use of this design, we

plan to have a smooth and well defined implementation process that minimizes risk and

maximizes team productivity.

