
 
 

 
 
 

Technology Feasibility 
11/07/2017 

 
 

Project 
Tailored Tutoring Business Portal 

Robert Lokken 
 

Mentor 
Ana Paula C. Steinmacher 

 
Team 

Alex Kahn 
Jesus Garcia 
Taylor Walker 
Tyler Mitchell 

 
 
 
 
 

 
 

 



Table of Contents 
 
 
1) Introduction…………………………………………………………………..2 
 
2) Technical 
    Challenges…………………………………………………………………....3 
 
3) Technology 
    Analysis…………………………………………………………………...…..4 

 
3.1 Frameworks……………………………………………………………………….4 
 
3.2 Large Data 
Storage……………………………………………………………………………...….6 
 
3.3 Account Data 
Storage………………………………………………………………………....……....9 
 
3.4 Hosting……………………………………………………………………………12 
 
3.5 User Interface 
Design…………………………………………………………………………………14 

 
4) Technology 
    Integration…………………………………………………………………...17 
 
5) Conclusion…………………………………………………………………..18 

 
 
  

1 



1) Introduction 
Our client, Tailored Tutoring Co., is a start-up online tutoring company here in Flagstaff, AZ.  It is 
kind of a blend of other online-tutoring platforms such as Chegg and Khan Academy.  Like 
Chegg and Khan Academy, Tailored Tutoring offers in-person tutoring for clients, as well as 
online video tutoring.  However, what makes Tailored Tutoring Co. unique is their feature 
“Submit My Assignment”, where students can upload specific homework problems and receive 
repeatedly-viewable, personalized video-solutions from qualified tutors. 
 
While the “Submit My Assignment” feature is what makes Tailored Tutoring Co. unique, it is also 
what is currently causing the biggest problem and headache for our client Robert Lokken, the 
founder and CEO of Tailored Tutoring Co.  Robert currently has to manually handle every 
problem-submission via the “Submit My Assignment” feature, repeatedly wasting lots of time 
and energy during the process.  For the user, the submission process is also a little 
cumbersome and frustrating.  
 
As it currently goes:  A student has to visit the Tailored Tutoring website, take a picture of the 
problem on their phone, most likely email it to themselves, download it to their computer, and 
then upload that picture to the Tailored Tutoring website.  The current website, 
www.tailoredtutoringco.com​, is not optimized for mobile use, making the user's 
problem-submission process more difficult.  
 

 
Diagram 1: Problem-Submission Process 
From there: Robert gets an email notification that a problem has been submitted ​(Diagram 1 
above)​.  He then has to review the problem and categorize it under the current subject, ex: 
Calculus 1, Chemistry, Algebra etc…  Once categorized, he looks for qualified tutors in that 
subject area to see who is currently available, and then emails them the submitted-problem. 
The tutor creates a video solution, uploading it to a Google Drive, and emails Robert letting 
them know the video is complete.  Robert then has to create a personalized link for the video 
solution, and email and send that link to the client notifying them that their solution is now 
available.  
 
As you can see, the current process is just too cluttered, time-consuming, and unsustainable; 
both from the users end, and especially our client, Robert’s end.  
 

2 

http://www.tailoredtutoringco.com/


In order to refine their business process, and help Tailored Tutoring Co. scale, that is where we, 
team Business Web Solutions, come in.  Business-Web Solutions is the NAU CS Capstone 
team comprised of Jesus Garcia, Alex Kahn, Tyler Mitchell, and Taylor Walker.  Our goal here is 
to simplify our client’s business-process by building an automated system for Tailored Tutoring 
Co.’s “Submit My Assignment” feature.  
We will start with building a website that is optimized for mobile, that way the users/students can 
access the website via their phone, take a picture of their problem on their mobile-device and 
upload it directly to Tailored Tutoring Co. via their phone.  
 
 
 

        

Diagram 2: Automated Submission Solution      ​Diagram 3: GUI Profiles 

Our other main goal is to automate ​(Diagram 2 above)​ the whole “Submit My Assignment” 
feature from Tailored Tutoring Co.’s end, making Robert’s life much easier.  This will involve 
building a scalable web-application with a GUI system and profiles ​(Diagram 3 above)​ for both 
tutors and students/users.  The user profiles will detail the subjects and classes the students are 
currently taking, allowing them to submit the problem under a certain subject-category.  From 
there, the system will match the subject-category with tutors in that area, and will automatically 
notify these currently available tutors about the problem.  Thus, eliminating the need for Robert 
to be constantly on-call, and having to manually handle notifications and emailing both the 
clients and tutors.  

Now that we have given a brief overview of who our client is, detailing their current 
business-problem and how we intend to solve it, the rest of this document will get more in-depth 
on our solution and focus on the technology-aspect of how we intend to build this solution.  In 
this document, we will discuss the specific technologies we have chosen, why we chose those 
particular technologies versus other viable options, and prove the technological feasibility of 
how these technologies will function together enabling us to build out our solution of an 
automated system.  

 
2) Technical Challenges 
 
With any large scale project there are a number of considerations that must be made before the 
design process can start. A firm understanding of the key components of the project and the 

3 



technologies on offer that can complete those parts is crucial in any planning phase. This 
section goes over, at a high level, the major components of our project. 
 

● Lightweight Framework​- We will need a lightweight framework to integrate all of our 
technologies together, in order to complete the web app. 

● Storage​- We will need a way to store extremely large amounts of data in the form of 
videos and images. Ideally... 

○ The client could add more storage capacity as needed. 
○ The videos should be able to be streamed on the website. 
○ The videos can be normalized. 
○ The videos won’t have to buffer under heavy load (i.e. exam season) 

● Database​- We will need to store customer and employee profile information in a 
database. Ideally: 

○ This is easily scalable to other business sites for the future 
○ This uses a flexible model to fit the client’s evolving business needs 
○ This software is open-source to support small business budgets 
○ This is a reliable system and performs well under mixed workloads 

● Hosting​- We will need some service to host our website once it goes live 
○ This service will need to fast and reliable, also accounting for future growth 
○ This service must be able to host and incorporate all other pieces of technology 

we’ve chosen 
● User Interface/Mobile-Friendly​- We will need to design the web-application to be 

mobile-friendly. 
○ All features must look great from mobile 
○ All functions must work seamlessly from mobile 

 
3) Technology Analysis 
Now that we have established each of the major components of our project it is now time to 
dissect each one and find how best to tackle that section. In this section we look at each of the 
above stated problems, but much more in depth this time. We look at the potential challenges of 
each part, the technologies on offer that can help us, and at the end a decision on which of the 
technologies to use. This helps us form an overall understanding of each problems, how exactly 
to complete them, and inevitable, how each part joins to form the whole. 
 
3.1 Frameworks 
 
3.1a) Problem 
Our client needs a stable application that can handle the many aspects of his business. To be 
more specific our client needs an application that is intuitively designed, so that both end users 
and his employees know exactly what to do and how to do it. He also needs full integration with 

4 



his file storage, file uploading, and payment systems. In addition to that our client needs his 
application to maintain personalized user accounts and pages for his clients and employees. 
These profiles can be accessed by site users as well as administrative accounts to oversee his 
application and its user. The problem of needing a lightweight framework that allows us the 
opportunity of the integration between our technology will be resolved with careful consideration 
and in-depth analysis of staple frameworks commonly used in applications today. 
 
3.1b) Our Options 
Our client maintains that the web portal for his site is one of crucial importance, making the 
decision on which web framework to use very important. Web frameworks are booming now as 
Web2.0 has increased in popularity alongside the development of web apps. As a result there 
are a plethora of frameworks to choose from. Such frameworks include Facebook’s ReactJS, 
Google’s Angular series, and MeteorJS. Web frameworks are extremely popular and are clearly 
backed by some big names in the industry, but no two are alike so they must be compared in 
order to find the best fit for our client. 
 
3.1c) Comparisons 

● Meteor​ - Meteor is a robust framework that can be used for just about any application 
you can think of. It has a massive package library to draw from that include things like 
components for logins, user interface features, and database connections. While it has a 
large library to draw from, Meteor can be limited in what it can actually do. Meteor is 
referred to as “opinionated,” meaning  that a lot of components are decided by Meteor 
and not the developer. For instance, Meteor exclusively works with MongoDB, and can’t 
integrate with other databases. This is limiting for obvious reasons as it means we have 
only one option for our database. Lacking freedom can cause problems later on during 
development and can cause us to develop into a corner with no way out without a 
perfectly planned tech stack. 
 

● Angular​ - Angular is another robust framework much like Meteor, and offers many of the 
quality of life bonuses that Meteor utilizes. Instead of a package library to install from, 
Angular seeks to solve all problems with their own implementations, so instead of 
constantly installing new packages made by independent open-source developers, it has 
it’s own packages for every single thing. How this benefits the developer is through 
consistency. Since Angular is responsible for all packages, problems such as 
compatibility conflicts between packages is almost non-existent. Angular also suffers 
from being “opinionated” but to a lesser degree than Meteor. While it may try to dictate 
what components to use in the tech stack, it is still opened up for other implementations. 
This benefits the developer in helping develop the stack they want to use, but can still be 
limiting in the long run. 
 

● React​ - React is different from the other in the one simple fact that it is not an actual web 
framework. Instead, React is just a javascript library for frontend development, meaning 
that React doesn’t have a package library for every little detail that the developer may 

5 



need. It instead opens it up for the developer to design these components and features 
themselves. It embraces a do-it-yourself philosophy to development allowing the 
developer full control of their stack. The drawback to this is that a lot of the details on the 
back end are not abstracted out for the developer. Instead it is almost exclusively left up 
to the developer to establish the connections with their stack. This creates more work in 
the long run, however it is very difficult to be caught in a corner with no way out, and it 
helps to modularize the development process. It is ultimately the option with the most 
freedom, but at the cost of a learning curve and added development time. 

 
3.1d) Conclusions 
All three of the options offer their own strengths and weaknesses, and the decision ultimately 
lies in evaluating each of the options’ strengths in relations to those weaknesses. If we are to 
look at our options in terms of the freedoms in our stack, and thus, the strengths they provide in 
their use we can compare the options thusly: 
 

React>Angular>Meteor 
 

We have seen that React is by far the least limiting option, and moving down we get more and 
more limited in what our options are in our stack. But this comparison is in direct opposition to 
the level of abstraction that each options gives. Comparing that abstraction we get a 
comparison that looks like this: 
 

Meteor>Angular>React 
 

Meteor is at the forefront of this comparison on account of its sheer level of abstraction, and as 
we move down the line we see less and less of that abstraction with React having almost none. 
This may look like a bad thing for React, however as we’ve shown above that lack of abstraction 
is what creates that abundance of freedom. 
 
We believe that the lightweight, and limitless nature of React will allow us to deliver on our 
promise to our client with a tech stack that suits his needs. 
 
 
3.2 Large Data Storage 
 
3.2a) Problem 
Our client is running a business that relies on online storage for videos and images, and as 
such, our solution requires a way to store massive amounts of data easily. On top of this, the 
service our client is providing is certainly one of convenience, so there is the added requirement 
of reliability where any given video has a very high rate of uptime. Of course, there is a desire to 
be as cost-efficient as possible as well. 
 

6 



3.2b) Our Options 
Our client has shown great interest in Scalability with our solution, so with that we decided that 
to save our client time in the future, we would only consider the big names in the industry. The 
big names we had considered were Amazon Web Services, Google Cloud Platform, and 
Microsoft Azure. While these three cloud platforms are all similar, they have different methods of 
implementation and features, as well as different pricing models. 
 
3.2c) Comparisons 
For similarities, all services have 3 different levels of object storage types, a “Hot,” “Cool,” and 
“Cold” storage. These different storage types charge different rates for access, so for Hot, where 
access is determined to be common, there is a higher flat rate, but lower access request rates, 
and for Cold, there is a lower flat rate, but higher access rates, and Cool is a mix of both. 
For prices, they all have a Per GB/per Month model of charging, as can be seen in diagram 4 
and 5 below, which leaves no room for paying more than you need: 
 
(Prices taken from the official websites, all for US West: Oregon server space) 

Amazon S3 Standard “Hot” Storage Infrequent Access “Cool” Archive “Cold” Storage 

First 50 TB / month $0.023 per GB $0.0125 per GB $0.004 per GB 

Next 450 TB / month $0.022 per GB $0.0125 per GB $0.004 per GB 

Over 500 TB / month $0.021 per GB $0.0125 per GB $0.004 per GB 

Google Cloud       

First 50 TB / month $0.02 per GB $0.01 per GB $0.007 per GB 

Next 450 TB / month $0.02 per GB $0.01 per GB $0.007 per GB 

Over 500 TB / month $0.02 per GB $0.01 per GB $0.007 per GB 

Azure Storage       

First 50 TB / month $0.0208 per GB $0.0152 per GB N/A 

Next 450 TB / month $0.02 per GB $0.0152 per GB N/A 

Over 500 TB / month $0.0192 per GB $0.0152 per GB N/A 

 ​Diagram 4: Table comparing prices of services 
  
 
 
 
 
 
 

7 



 
They also charge for “per 10,000 operations,” like Read and Write operations: 

Amazon S3 Standard “Hot” Infrequent Access “Cool” Archive “Cold” 

PUT, COPY, POST, 
LIST 

$0.005 per 1,000 requests $0.01 per 1,000 requests $0.004 per GB 

GET and Other requests $0.004 per 1,000 requests $0.01 per 10,000 requests $0.004 per GB 

Delete Free Free Free 

Lifecycle Transition 
Requests into Standard 
– Infrequent Access *(or 
Cold) 

N/A $0.01 per 1,000 requests *$0.05 per 1,000 
requests 

Data Retrievals N/A $0.01 per GB (Special Pricing) 

Google Cloud       

PUT, COPY, POST, 
LIST 

$0.05 per 1,000 requests $0.10 per 1,000 requests $0.10 per GB 

GET and Other requests $0.004 per 1,000 requests $0.01 per 10,000 requests $0.05 per GB 

Delete Free Free Free 

Azure Storage       

WRITE, LIST, CREATE $0.055 per 1,000 requests $0.10 per 1,000 requests $0.10 per GB 

READ and Other 
operations 

$0.0044 per 1,000 
requests 

$0.01 per 10,000 requests $0.05 per GB 

Delete Free Free Free 

Data Retrieval per GB Free $0.01 per 10,000 requests N/A 

Data Write per GB Free $0.0025 per 10,000 
requests 

Free 

Diagram 5: Table comparing prices of operations  
 
3.2d) Conclusions 
Among the various videos and articles we found, the general consensus seemed to be that 
AWS is for small businesses, Google Cloud is for personal use and research, and Azure is for 
Enterprises. With this knowledge in hand, it seems AWS and Azure are the two choices, and of 
those two, AWS would fit closer to what the client would be defined as. While our client would 
like this business to be huge, it isn’t a business model that would reach Enterprise level needs. 
Considering we will likely be using MongoDB, AWS and Google Cloud seem to have okay 

8 



documentation to using MongoDB with each service, however, Azure seems to only have a 
mere mention of the possibility of Azure+MongoDB.​ ​Our client has also shown interest in AWS 
and its pricing models so we will be using Amazon’s S3 storage service. 
 
 
3.3 Account Data Storage 
 
3.3a) Problem 
Our client has a business that deals with multiple employees and customers that communicate 
online every day. To expedite his business, our application will store user profiles for students, 
tutors, and administrators. Our application will need to use a database technology to store this 
personal data for users’ profiles, as well as store transaction information. Our client is also 
planning to scale his business to other university campuses, and as such, we will need software 
to be scalable to accommodate this. In choosing database technology, we are researching 
options that are low- to no-cost to achieve as small a project budget as possible, scalable so 
that the client may expand their business technology easily in the future, and works well with a 
web application by using languages compatible with our front-end framework. Considering each 
of these requirements, NoSQL databases were our primary choice due to being easily scalable 
and using flexible data models that would fit the changing nature of a rapidly growing business. 
With relational databases, changing a data model to fit a change in the business would take a 
substantial amount of effort, so that alone was enough to rule them out for consideration for us. 
  
3.3b) Our Options 
We decided to choose NoSQL databases due to our client’s growing business model, which 
would be constrained by a standard relational database. So, our options for NoSQL databases 
were some well-known choices, MongoDB, CouchDB, and Azure DocumentDB, each with 
ample documentation, as well as analyses done by professionals that have experience with the 
technology. 
 
3.3c) Comparisons 

● MongoDB 
MongoDB has many pros for us, each completely meeting our requirements. MongoDB 
is very scalable, especially horizontally, meaning it replicates easily to use at other 
business sites. This factor is huge for us, in that MongoDB is built to scale ​by design​. 
Another pro for MongoDB is it’s high consistency and performance, so that mixed 
workloads (reading and writing) are not an issue, and guarantees to return the most 
up-to-date value on a read. These capabilities guarantee a business-friendly system that 
will not report old data that could harm company operations, and will be able to handle 
the amount of traffic associated with a successful business. Finally, MongoDB is an 
open-source, document-oriented database, making it free software, and utilizes a flexible 
data model to meet our client’s changing business. A summary of these benefits are 
shown below with diagram 6. 

9 



 
Some cons for MongoDB are it’s searching capabilities. MongoDB supports basic text 
searching in the database, but nothing complicated, and is not designed to be a search 
engine, running large amount of searches all the time. But since our app will not need 
this type of feature, we can afford this weakness. 

 

MongoDB 

Property Description 

Horizontally scalable Quick and easy sharing and replication 

Highly consistent/performant May read immediately after writing; handles mixed workloads 

Flexible Data Model Ideal for a growing business with growing needs 

Document-Oriented Stores JSON to work easily with web frameworks 

Open-source  Affero General Public License v3.0 (AGPL v3.0) 

Diagram 6: MongoDB at a glance 
 

● Azure DocumentDB 
Azure DocumentDB was another strong consideration, since they offer a large suite of 
products that works easily together, so depending on choices for other technologies, 
Azure may be our project database. Some pros that DocumentDB has are similar to 
MongoDB, such as being document-oriented, consistent, and scalable (while not as 
scalable as MongoDB), as shown in diagram 7. So this fits many of our client’s 
requirements. 
 
The main con for Azure products is that an Azure account is required, meaning our client 
will be purchasing the software by a usage rate. For DocumentDB, pricing is charged by 
capacity and request units together, request units being amount of reads and writes per 
second. 

 

Azure DocumentDB 

Property Description 

Horizontally scalable Quick and easy sharing and replication 

Highly consistent May read immediately after writing 

Flexible Data Model Ideal for a growing business with growing needs 

Document-Oriented Stores JSON to work easily with web frameworks 

10 



Azure Account Required Charged by Request Units (RUs) and capacity (GB) 

 ​Diagram 7: Azure at a glance 
 

● CouchDB 
CouchDB was another popular alternative to MongoDB, and had many business cases 
for switching to CouchDB from other companies, so it is definitely worth consideration. 
There are many pros to Couch: it is scalable the same way as MongoDB, though some 
think Couch replicates easier, it is document-oriented and flexible, and it is open-source. 
These meet many needs from our client, but there is one primary difference with Couch 
from MongoDB. 
 
CouchDB’s major problem is that it is highly available, rather than highly consistent. The 
difference between a highly available and a highly consistent database is that a highly 
consistent database will always guarantee returning the most up-to-date value, even 
right after writing the update. Highly available databases have eventual consistency, 
meaning a read immediately after updating may still return the old value, which could 
lead to some confusion or users not receiving the proper videos. 

 

CouchDB 

Horizontally scalable Quick and easy sharing and replication 

Highly available Can always read for a document, eventually consistent 

Flexible Data Model Ideal for a growing business with growing needs 

Document-Oriented Stores JSON to work easily with web frameworks 

Open-source Apache License 2.0 

Diagram 8: CouchDB at a glance 
 
 
These choices meet the majority of our requirements in a database, so we had to compare them 
on a smaller level than just overall capabilities. Azure DocumentDB has been proven to be a 
less mature version of MongoDB, with less-sophisticated indexing, as well as less query 
language support. Azure is also a paid service, marking it lower than MongoDB again. We have 
considered Azure services for storage as well, and since DocumentDB works with other Azure 
products, DocumentDB would have complemented our storage solution, had we chosen Azure 
Cloud over Amazon’s S3 storage service. 
 
CouchDB is a popular alternative to MongoDB due to its’ high availability, rather than 
consistency, which may fit some business cases for other clients. Our application will need to be 
consistent so that data is always up-to-date for customers and tutors using the portal. In other 

11 



ways, CouchDB and MongoDB are very similar, but we additionally considered that Alex and 
Tyler already have work experience with MongoDB, so it is our top choice for database 
technology. 
 
3.3d) Conclusions 
Pending input from our client, our top choice in database technology is MongoDB. In Diagram 9 
below, you can see some of the considerations that led us to this decision.  MongoDB is a 
NoSQL database that horizontally scales, which fits our client’s scaling needs, as well as being 
very quick and simple to replicate, which assists maintenance and technology upgrades. 
MongoDB is a consistent database, so an update is guaranteed to be returned by a read 
operation for any given document. MongoDB is also open-source and uses JavaScript and 
JSON, and we have team members with experience using this technology, so it is easily our 
primary selection. 
 
 

  NoSQL Consistent Scalable Open-
source 

Web-Friendly Experience 

MongoDB             

DocumentDB             

CouchDB             

Diagram 9: Table comparing database features 
  
To test our choice, we will be creating a simple web application that stores very basic data 
through user input. This will allow us to both test our front-end framework choice, as well as its 
compatibility with setting up a MongoDB collection for our data. This short application may serve 
as our demonstration, and will need to be discussed further.  
 
3.4 Hosting 
 
3.4a) Problem 
The issue right now is that our client is using Wix, as an all in one hosting package.  Not being 
very tech savvy, it is his current solution and what the site is built on.  We feel that using a 
provider like this will limit us too much (will be discussed below), and have decided to build part 
of his current website, the “Submit My Assignment” portion, on a separate hosting of our 
choosing.  
When clicking the link for “Submit My Assignment” it will take the user to the portion of the site 
we have built on separate hosting.  This will enable us to build a better web-app for him, while 
also not having to rebuild the entire website.  Also, it will leave our client the option to migrate 
away from Wix in the future, and hopefully migrate the rest of the site over to the better hosting 

12 



package that we chose. The technical challenge of integration of all our technologies also 
somewhat relies on this technology. 
  
 
3.4b) Our Options 
When looking at web-hosting, there are a few factors that are important to consider.  First off is 
price, especially since Tailored Tutoring Co. is still a smaller company they do not have extra 
money to spend.  Also important are speed and reliability.  And maybe most importantly is 
compatibility.  
 
3.4c) Comparisons  

● Wix- Wix is a good starter web-hosting service.  It is good for a novice web-builder 
because it has website builder tools and DIY options.  Also, it automatically backs up 
your website. But the packaged plans, are definitely pricey if you’re trying to build a 
bigger business with lots of web-traffic.   It is also a little slower, and not as reliable as a 
cloud based service, uses shared hosting, and not as easily scalable.  But overall, it is a 
good option and deal for smaller websites.  

  
● AWS EC2​- Amazon Web Services, AWS, is a cloud based web hosting service. 

Because it is built by Amazon, it now has a massive host-base, protection against DDOS 
attacks, unlimited scaling options, and would be compatible with our storage option of 
AWS S3, as well as being great for open-source development.   However, the pricing is 
could get expensive if you use it a lot (using a pay as you-go, charge per hour model), 
and there is a bit of learning curve. 

 
● Azure​- Azure is also a cloud based web hosting service, which also incorporates a 

similar “pay as you-go” pricing plan.  The only difference from AWS, is they charge per 
minute (which can be a bit more accurate). They also offer short-term commitments. 
Azure is another cloud-based service that offers great scalability, prioritizes security and 
privacy, and is easier to use out of the box, especially for Windows users.  However, 
there could be compatibility problems with our AWS S3 storage option, and isn’t as 
compatible with GitHub (which we are using for our project) and open-source 
development.  

  
  
3.4d) Conclusions 
Wix was a good starter web-site builder host for our client when he was getting Tailored 
Tutoring setup.  However, when we look at important factors such as scalability and pricing, it 
just makes sense that it is time to migrate to a better platform.  
  
We ended up deciding on AWS EC2, although it was very close between AWS and Azure. 
They both offer cloud-based hosting, which allows Tailored Tutoring to scale their business as it 
grows.  And both also have a very reliable platform, while AWS has been around for longer, but 

13 



Microsoft for Azure is a trusted name.  Even though it is a bit difficult to determine the pricing 
up-front, it seemed that AWS and Azure offered pretty similar pricing plans, and payment 
models, only making you pay for the services that you actually use. 
  
It really came down to keeping things simple for us and our client.  Since we are using AWS S3 
for their storage, we know that AWS hosting will be extremely compatible with the storage 
system.  And, it just keeps everything in one place and a bit easier to work with, for both us and 
the client. 
  
Below, in Diagram 10, is a table with some of the key factors we considered when looking at 
each technology: 
 
 

  Scalability Pricing Security Compatible 
with AWS S3 

Ease of 
Use 

Wix           

AWS           

Azure           

Diagram 10: Table comparing hosting features (Light green represents partial support) 
 
 
Pending our client’s approval, we will try to set up both the AWS S3 storage, as well as the 
web-hosting using AWS EC2.  We’ve discussed some of the pricing, and what it offers, and he 
does seem open to it.  And also seems like he might want us to port over his whole website onto 
the AWS platform. 
In the end, the documentation suggests that both of the AWS services are designed to work 
together.  However, we will have to verify this once we get the go-ahead from our client, and 
actually build our working demo by the end of the semester.  
 
 
3.5 User Interface Design 
 
3.5a) Problem 
The main problem for designing the user interface is having it mobile-friendly.  We want to build 
a mobile-friendly web-app, that looks great on mobile devices.  We foresee the end-user 
accessing Tailored Tutoring, and in particular the “Submit My Assignment” portal, via their 
phone.  This will make it easier for them to take a picture of their homework problem with their 
phone, and then upload it directly via the web-app.  For this, we really need something that is 
beyond “mobile-friendly”, and rather a “mobile-first” design tool, as the technical challenges 
indicate. 

14 



3.5b) Our Options 
The first thing to consider is whether we want just a “mobile-first” website, or an actual App.  Our 
client does think he wants an App in the future, but at this current juncture just wants to get his 
web-site fully functioning and optimized for mobile.  Once we accomplish that for him, he may 
choose to base an actual Native App off of our website solution.   This lead us to consider a 
Hybrid mobile app, using something like HTML5. 
  
3.5c) Comparisons 

● HTML5​- HTML5 is used to create hybrid mobile apps, which could be a mixture of what 
our client wants, but we don’t see it as being the ideal solution.  Instead of giving our 
client a great product, we feel like we would be giving him another solution for the time 
being, but he would still need to recreate his website, and then create a faster app later. 
Hybrid apps simply are not as good as native apps.  They are not as fast, reliable, or 
smooth as native apps.  When it comes to taking pictures, and dealing with larger image 
and video files; we would want something fast and reliable.  As an end user, it could 
really turn them off having to wait excessively long times to upload image files, or 
download and access the video solutions.  For our client, he still would not be getting a 
fixed or upgraded website, which he and the company do need. 

  
● Bulma​- Bulma is built off of Flexbox, which is a framework designed for a responsive 

web design.  It is easy to learn, very straightforward, and doesn’t have as steep of a 
learning curve.  Being built off of Flexbox, and utilizing CSS Variables and CSS Grid, 
Bulma is extremely current with today’s browser technology.  The grid system allows for 
easy layout, and there is no JavaScript included.  Which means means designers can 
use their own to customize the SASS source files.  While in our opinion we see no 
JavaScript being included as advantage, other programmers may see it as a 
disadvantage.  Other disadvantages of Bulma might be a lack of customization options, 
as well as it only being 90% compatible with Microsoft’s web-browser, Microsoft Edge.  

 
 

● Bootstrap​- Bootstrap is a CSS framework that has been around for a while now, and 
has a heavy user base.  We would be remiss not to consider this as an option.  It has 
many clear advantages such as jQuery plugins, making it easy to add interaction to our 
website, and minimal cross-platform bugs.  Also, the large community base lends itself to 
advantages such as more questions getting answered and more promptly, and more 
themes and plugins being available.  Bootstrap also comes with its own disadvantages, 
such as JavaScript is tied directly to jQuery (which might be problematic when working 
with our chose JS library of React).  Customization can also be tricky, requiring lots of 
overriding styles and/or rewriting files.  Because of Bootstraps popularity, websites can 
start to look the same without significant customization. 

  
 
  

15 



3.5d) Conclusions 
In the end, we wanted a tool that would allow us flexibility in designing an awesome web-based 
UI, but also allow us to rapidly prototype.  We decided that Bulma was the best fit for us moving 
forward; and below, Diagram 11, is a table to summarize some of the elements that helped us 
reach this conclusion. 
  

  Ease of 
Use 

Mobile First 
Design 

React 
Compatible 

Large 
User-base 

Customization 

HTML5           

Bulma           

Bootstrap           

Diagram 11: Table comparing CSS Framework features 
 

When deciding between the technologies, we seriously considered Bootstrap.  HTML5 just 
didn’t seem the route we needed to go for the project, or the client.  However, between 
Bootstrap and Bulma, we just felt we could more rapidly prototype and use Agile Programming 
to show our client solutions, refactoring if necessary.  Both Bootstrap and Bulma look good on 
and use a mobile-first design philosophy, however we also we felt that we had better 
customization available to us with Bulma.  Also, it would be compatible with our JavaScript tool 
of React, to even further tailor our solution for the web-app. 
 
Bulma is designed to be compatible with most current web browsers today, and should work in 
our development environment.  We have already used Bulma to create our team website, which 
functioned perfectly, and looks really clean and professional.  Using our team website as an 
example, we were able to see how easy it is to use this CSS Framework to create something 
the end-users of Tailored Tutoring would enjoy using. 
  
To be extra sure though, we will build a simple web application that stores basic data through 
user input.  Making sure that our front-end set up with Bulma, will in fact be compatible with our 
backend database selection of MongoDB. We will complete this test before fully designing and 
incorporating our User Interface for the Tailored Tutoring. 
 
 
 
 
 
 
 

16 



4) Technology Integration 

 

 
Diagram 12: Layout of the decided tech stack 

 
 
The integration of our technology heavily relies on the framework picked for our project. This 
has been discussed in detail, but lacks more of the context surrounding the full integration of all 
of our technologies. While our client-side javascript library has been determined, the server-side 
will be the basic glue that will tie everything together. As a result the base of our application will 
be NodeJS. NodeJS works very well with React and so the two are often found, if not 
exclusively so, side-by-side. This is important in setting up a web server for our application. 
NodeJS will handle a lot of our server side javascript used to deliver and dynamically update our 
web app. This also gives us access to the Node Package Manager (NPM) which opens up an 
extensive and exhaustive database of open source libraries to help us with our project. Through 
NPM we can install libraries that can aide us in fully integrating all of our different technologies. 
The most useful of which will be when we are consuming the data from our database. We have 
decided to use a RESTful API when accessing data from our database. This means we will 
have to create an endpoint through NodeJS to consume and update our data from. NPM 
contains many useful tools for us to do this. There also exists an NPM package for the 
AWS-sdk, which will be useful when attempting to access the videos we have stored there. 
Lastly for things like our UI, we can use NPM to install our CSS framework for our UI. NodeJS 
will be how we tie everything together once our major technological components have been 
established. With its powerful package manager we can find a solution to all the little details that 
are too narrow or to specific to be handled by any other technology. Both utilities will allow us to 
connect all the pieces to complete a comprehensive whole. The above diagram shows a high 

17 



level concept of our current tech stack displaying how all the parts fit together to create our 
finalized system. 
 

5) Conclusion 
In summary, we, Business Web Solutions, have been tasked to build an automated solution to 
our client’s, Tailored Tutoring Co., picture-submission and then video-solution process for their 
online tutoring platform.  We plan to solve this problem by building an online GUI interface and 
create profiles for both sides of users, the clients/students and the tutors (also admin profiles). 
These profiles will incorporate pertinent details on the students and tutors, and automatically 
notify corresponding tutors when a problem is submitted, and then automatically notify the 
student once a solution has been posted, all via email notifications.  
 
The purpose of this document includes going over the high-level business problem and solution; 
but it is to mainly focus on the technologies we plan to use to build our solution, and the 
feasibility of how these technologies will work together to accomplish this goal as well as any 
problems we might be able to foresee and avoid by doing our research.  In the Technology 
Analysis section, we discussed the different components our tech needed to address, as well as 
different possible technologies we could use to accomplish those goals and the efficacy of each 
choice.  Finally deciding on our particular technology choices and then how they all fit together 
being discussed in the Technology Integration section.  As a refresher, Diagram 13 below is a 
table of the technologies that we chose and discussed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 



Tech Challenge Solution Confidence Level 

Storage of large amounts of 
data, in the form of videos and 
images 

AWS S3 Very High 

Store customer/student and 
tutor profile information, via a 
database 

MongoDB Very High 

A service to host our website AWS EC2 Very High 

Mobile-friendly design of 
web-application and user 
interface 

Bulma Very High 

A lightweight framework to 
integrate all of our technologies 
together, completing the 
web-app  

React High 

Diagram 13: Overview of our solutions and our confidence levels 
 

When designing any larger-scale technological solution, there will always be minor problems or 
complications that occur.  However, to quote Ben Franklin 1736: “an ounce of prevention is 
worth a pound of cure.” While we hope, but maybe do not expect, that everything runs smoothly 
when building out our prototypes and automated solution for Tailored Tutoring; we know that we 
have thought about and thoroughly investigated the technical solutions we have decided on. 
Also, we are fully confident, that utilizing these technologies, we will build out a solution that all 
parties involved will be happy with: the end-users, our client, and us as the creators.  In the end, 
providing a solution and service that enriches both our client’s and users’ lives.  

19 


