Technology Feasibility
Analysis
Date: 11/8/2017
Project sponsor: Barbara Jenkins

Team faculty mentor: Ana Paula C. Steinmacher

BRAINSTIM
STUDIOS

Vincent Messenger (Lead)
Anderson Moyers
Nathan Franklin




Table of contents

1. Introduction
2. Technological Challenges

3. Technology Analysis
3.1 Authentication
3.2 Server Language
3.3 Database
3.4 Word Validation
3.5 Javascript Framework

4. Technology Integration

5. Conclusion

- © 0o O ~PdP O DN

= A -
A W



1. Introduction

Alzheimer’s Disease, or AD, is a progressive form of dementia which gradually destroys
mental functions and memory. It often manifests as short term memory loss in early stages,
progressing to pervasive, long-term memory loss. Cognitive function declines until bodily
functions are impaired, ultimately leading to death: Alzheimer’s is the sixth leading cause of
death in the U.S. and as of 2015, there were an estimated 29.8 million people suffering
worldwide from AD. Research has shown that engaging in intellectual activities may reduce your
risk of symptoms associated with AD.

Brain stimulation games are a method of Alzheimer’s Disease prevention that has
gained attention in the last 5-10 years. Current solutions such as Lumosity make use of this
concept by presenting users with stimulating brain challenges. Lumosity is an online site that
uses scientific research about the brain to create games that enhance cognition in different
aspects. The idea is that by giving users a fun way to challenge their brains, users can keep
their brains healthy and reduce the symptoms of degenerative brain diseases. There is one
aspect however that many brain game platforms, including Lumosity, do not address: social
interaction.

Research has shown that regular stimulating interactions can also reduce the risk of
Alzheimer’s Disease. Barbara Jenkins, our sponsor, has created a fast-paced word game called
WordScuffle that incorporates social gameplay in order to provide users with maximum potential
for increasing their brain health. The game generates random letter sets with which the user will
have three minutes to construct as many words as possible. Words will be constructed in a
grid-like fashion, which allows words to overlap. Once a game is finished, the user’s score is
calculated and they can compare their score and words with other users of the game.

There are different game modes that present users with different scoring systems. This
forces users to adapt the way they think to the challenge that is presented. The game will
generate ten letter sets per gametype everyday that each user can complete. Once a given
letter set has been completed, users can then compare their scores with other users of the
game. On top of this, the user will have the option to play unlimited practice games, where
unique letter sets will be generated at the beginning of each game. However, these practice
games are not eligible for community comparison.

WordScuffle currently takes place with a pencil and paper, time and scores are manually
kept, and results are compared through email. It takes considerable time to tally up scores,
scores and results are viewable by players before they may have finished their own tileset, and
there is enough entropy in the game’s workflow that more time is spent with minute tasks of
gameplay than playing the game. Because much of the gameplay requires “manual” human
processing, there are numerous chances for error.



Our team BrainStim Studios is working with Barbara to realize this game as a web
application and resolve these workflow problems to make the game more fun, more interactive,
less tedious, and even more socially stimulating. Our web application will offer automatic,
integrated word validation which will reduce misspelled words. A score calculator will also be
updated as users construct words onto their board. Scores will be maintained in a database,
where players can retrieve scores and results from other players. Word validation combined
with more robust scorekeeping will eliminate human error and reduce entropy in the game. To
boot, our scoring system will improve competitiveness because it prevents players from seeing
results before they have finished their own set. To enhance social stimulation, we will provide
players with a way to create communities with other players, so they can filter high scores to just
those they wish to see.

In this technology feasibility analysis document, we discuss our primary needs to
implement a web application version of WordScuffle, the possible technologies which could fulfill
these needs, and our ultimate choices and conclusions for specific technologies. The team
needs to investigate all possible technologies for each aspect of the project, because changing
a technology after development has begun will result in wasted time and effort. Throughout this
paper, we will analyze our technology options for user authentication, server language,
database, word validation, and Javascript framework.

2. Technological Challenges

Our team has identified four main challenges we must address before we begin
developing our web application: a.) establish an authentication system and database, b.) create
our own server, c.) determine a method of word validation and d.) decide on a Javascript
framework.

We will need a secure method for authenticating users, as well as a database to store
user data. Both of these are necessary to maintain history and contextual data for players; this
data is vital for our web application not only because it enables players to participate in
communities and track their scores but because it supports the broader purpose of our web
application: providing social and cognitive stimulation to support brain function and reduce the
symptoms of Alzheimer’s disease.

To facilitate communication between the frontend and the authentication and database
services, we will also need to create our own server. Creating a server is necessary for
gameplay integrity because it allows us to abstract data and perform tile set generation remotely
instead of on a player’s device. Using a server will also better support general data storage for
our implementation because it is a web application, not a standalone application.



Word validation is necessary because we seek to reduce word misspellings in our
implementation. Since this web application will be a timed game, we need a quick and reliable
way to validate words that users create.

Lastly, we must find a suitable Javascript framework to communicate with the server and
to provide tools for Ul manipulation. We decided on Javascript because we require a robust
modern client-side framework to create a fast-paced user experience that involves frequent
object manipulations from users. To simplify development and maintain feasibility, we need a
framework that has good compatibility with the other technologies we choose and we must find
this framework very early in the development process.

3. Technology Analysis

In this section, we give in-depth analysis for each of the requirements that we proposed
earlier in this document. For each requirement, we compare our top three technology choices,
and justify our final decision.

3.1 Authentication

In order to keep track of individual player data, we will need to give users the ability to
create an account and authenticate into the account at later times. Because user accounts may
contain personal information related to profiles and payment information for monetization,
security is vital. When a user visits our web application through a browser, they will have to
login in order to see any of their user data. Once logged in, they will also have the option to sign
out of the system.

When researching various web application authentication methods, we were looking for
options that would be easy to setup and maintain, provide robust authentication functionality,
and that were secure. We found a couple highly recommended methods, which were Firebase
and Passport.js. Based on our research, we believe that both of these methods would work for
our web application. However, there is also the option of creating our own authentication that
should be explored.

3.1.1 Firebase

Firebase is a service that is backed by Google. That means that it is built on Google’s
infrastructure and provides automatic scalability. It has an entire suite of products that
developers can mix and match to provide robust functionality to users. One of these features is
user authentication. It's also important to note that Firebase is cloud based. It also provides
workflows for resetting user passwords and other admin-like requirements. The main
drawbacks of using Firebase relate to future support: Firebase currently offers (for free)



authentication services which are highly customizable and powerful. The options and costs may
change with time and require additional developer support to stay abreast of these changes.

3.1.2 Passport.js

Passport.js can be easily added into web applications to provide user authentication. It
currently provides 307 different strategies for authenticating uses, including social sign-on and
numerous Open Authorization (OAuth) providers. However, based on our research, it seems
that there is still some configuration setup required to get the authentication functioning. Also,
the user data would live on the server that is serving the application, which could increase the
cost to host the application.

3.1.3 Creating Own Authentication

Creating our own authentication is an option that is not practical for our project. We need
a secure way to store our user data, which our team could definitely achieve. However, it would
be unwise for our team to spend the time to create a robust authentication library that provides
the features that are already provided by other established methods such as the ones listed
above.

3.1.4 Conclusions

According to the table below, Firebase is the option that meets all three core
requirements we seek in an authentication system: this option is the easiest to integrate into
web applications, it provides numerous features that the team can use, and has excellent
security. Overall, Firebase will take the least amount of time to implement and maintain, which is
important to the team so we can focus on bigger pieces of the project.

Ease of Robust Security
Setup/Maintenance | Functionality
Firebase X X X
Passport.js X X
Create Own Auth X

3.1.5 Proving Feasibility

Our basic plans for proving the feasibility of using Firebase are to simply implement user
login and logout functionality in a web app. We have researched many tutorials of setting up
Firebase in a web application, which includes the Firebase documentation, and we have




determined that Firebase will be quick and easy to implement using whichever Javascript
framework we choose to use.

3.2 Server Language

For this project, the team will need a server for communicating with the authentication
service, database, and web applications running on individual client devices. It will also be
responsible for serving the web application front-end code.

There are a few things to consider when choosing a language with which to write a web
application server. We need the server language to be easy to develop and maintain, we need
available external libraries, and we need the language to be easily compatible with Javascript.
Based on team experience and research, we have narrowed our server language options to
Java and Javascript Node.js. There is also the option of creating a serverless web application
that should be explored.

3.2.1 Java

Java is a strongly typed language that has been used to create application servers since
its emergence in the late 1990s. It has a sizable development community, which means there
are many external libraries that can be used. One benefit to using Java is that we could take
advantage of multithreading. However, since our server logic will not be overly complex, utilizing
this sort of functionality might be unnecessary for our web application. The downsides of using
Java for our server are related to ease of use and compatibility. A Java-based server would
have less inherent compatibility with our Javascript-based front-end than a Javascript-based
server. Furthermore, although Javascript is very robust it is also more complex, would require
classing for all functionality, and has numerous features we do not need based on the
complexity of our server-side needs.

3.2.2 Node.js

Node.js is a server language written entirely with Javascript. It is extremely simple to
write a server to serve a web application’s frontend code in Node.js. Also, it can be achieved
without the overhead of creating classes to communicate with each other, which is a
requirement in Java. Also, because Node.js is written with Javascript, it is readily compatible
with Javascript libraries and data structures. Another benefit to using Node.js is that we could
easily import external libraries using Node Package Manager (npm). It is important to note that
certain members of the team already have extensive experience with using Node.js to serve
web application frontend code and data. The drawbacks of Node.js relate to robustness and
volatility: Node.js does not support multi-threaded processing and its API frequently undergoes
changes which may require developers to maintain code.



3.2.3 Serverless Web Application

A serverless web application is possible to achieve if there is little need for a server, but
there are definite negative impacts due to this. For one, all logic would take place on the client's
device, which could potentially lead to security risks. Since we are building a web game that
incorporates community score features, it is a bad idea to allow communication with our
database to be handled by only the client’s device. This would also expose details about the
administration section of the web application that should be kept hidden. By bypassing any type
of server, we also place restrictions on functionality that can be explored with the web
application.

3.2.4 Conclusions

The table below outlines ease of development/maintenance, library support and
Javascript compatibility as our main requirements for a server technology. Node.js meets all
three of these. Beyond attributes already discussed, Node.js has the benefit of being able to
effortlessly use and serve Javascript Object Notation (JSON) data, and research has shown that
Node.js is quicker at performing the sort of tasks we would be building into our server logic.
Also, since both the client and server will be written in the same language, we will not have to
rewrite logic in a different language if we decide to move code between our server and client.

Ease of External Libraries Ease of Javascript
Development and Compatibility
Maintenance

Java X X
Node.js X X X
Serverless App X

3.2.5 Proving Feasibility

To prove the feasibility of using Node.js as our server language, the team plans to
develop a server that will serve the frontend code for our web application. We will also add
routes for user account creation, user login and logout, and saving user data to our database.



3.3 Database

User scores will be stored in a database every day, which will allow users to compare
their solutions with other game players. High scores can be viewed on a worldwide scale, or by
user-defined communities of users.

We researched different database technologies with a few key features in mind.
Compatibility with Javascript means it will be easy to implement with the rest of the parts of the
project, because Javascript is what we are using for the other main components of the project.
We mainly focused on open source database technologies for cost reasons. The team is also
looking for options that are easy and cheap to host. After comparing database technologies, we
narrowed the decision to one of the top-rated SQL databases, one of the top-rated non-SQL
databases, and Firebase.

3.3.1 MySQL

MySQL is the top-rated open source SQL database. It uses a relational database system
which is great for complex queries. One key factor for including this in our evaluation is that
each member of the team has experience with this technology. Because of this knowledge of
MySQL, creating a database and constructing queries would be easier than learning a new
database structure. However, since our user data is not overly complicated, using a SQL
database could be unnecessary and lead to over complicating our application logic.

3.3.2 MongoDB

MongoDB is a database that is structured using Javascript Object Notation (JSON), so
inherently it is compatible with Javascript. It is a NoSQL database, which means that SQL does
not need to be used to retrieve stored data. Instead, the database is accessed using a
Javascript-like syntax. Due to the absence of a structured query language, there are restrictions
in terms of reporting that can be done, because it becomes more complicated to report from
NoSQL databases. However, due to our specific requirements, our user data will not be overly
complicated, and therefore we should have no issues retrieving data in any way we need.

3.3.3 Firebase

Firebase provides a real-time database that can be used with or without its
authentication functionality. This real-time database is a NoSQL database that stores its data in



JSON. Since Firebase is provided by Google and is hosted as a cloud service, Firebase’s
real-time database is reliable. This also means the team would not have to find a place to host
the database. It is important to note that Firebase provides free storage to a certain extent.
When the project scales, the team would most likely need to eventually pay for additional
storage. However, for the purposes of this project, we should be able to develop the web
application without incurring any such costs.

3.3.4 Conclusions

Based on the database criteria in the table below, our database choice is Firebase.
Because the rest of the project will use Javascript, it is important for the database to work well
with Javascript. Since Firebase offers free storage, we will be able to avoid incurring costs until
the project scales. With MySQL and MongoDB we would have to find a solution for hosting the
database, but Firebase hosts their own databases and includes pre-existing functionality that we
would otherwise have to implement on our own server. We have already determined that
Firebase fits our needs for authentication and so we can simplify our database and
authentication usage by combining them with one service.

Includes Host Free to Use Compatible
Server During Javascript
Prototyping
Phase
MySQL X X
MongoDB X X
Firebase X X X

3.3.5 Proving Feasibility

To prove the feasibility of using Firebase’s real-time database, the team will setup
endpoints to facilitate communication between the Javascript framework and the database. We
will make it possible to save and edit certain pieces of user data from the frontend client.

3.4 Word Validation

Ongoing word validation is a core functionality of our web application: with every tile
placed on the game grid, any combinations of two or more tiles in a row will be checked for
validity using a word list similar to the dictionary Scrabble™ uses.



10

Features to look at are how fast this validation happens; validation should happen quick
enough to give the appearance of instant validation. This application has to run on tablets and
smartphones, so available client-side resources will be limited compared to the computers we
will be testing this application on. There are not a lot of available tools for word validation, but
the tools we narrowed our options to are WordGameDictionary.com Validation API and
Word-List. However, we will also be exploring the potential of creating our own word validation
library.

3.4.1 WordGameDictionary.com API

WordGameDictionary.com has an API that developers can use to validate words. The
free version is for non-commercial use and allows up to 5000 requests per day. Because
validation happens on a server and transfers tiny amounts of data, the validation can be almost
instant and is not dependent on client device resources. We have deduced that the
three-minute, thirteen tile game will average thirty word validation calls. There are ten available
games per game mode each day, so we will need to be careful how we set our application up to
send requests to this server. We need to plan our solution to prevent sending 5000 requests a
day, so we can avoid incurring extra costs.

3.4.2 Word-List

Word-list is a GitHub project with an MIT license and uses the same word list as the
WordGameDictionary.com API. There is very little information about this project, and we would
still need to manually implement validation if we use this technology. This package basically
provides a word list that developers can then use to build their own validation.

3.4.3 Create Own Validation Library

Making our own validation would be time consuming, but would be specific for our
needs. There is a tournament word list to start with, but searching through every word looking
for the passed in word would be inefficient. This option is not our preference, because the team
would like to spend more time on other aspects of the user experience.

3.4.4 Conclusions

According to the criteria listed in the table below, the WordGameDictionary.com APl and
implementing our own validation are our two best options. Ultimately, we choose the
WordGameDictionary.com API because the provider already has the infrastructure infrastructure
to implement validation. While implementing our own word validator would be possible, making
it run efficiently enough to appear to validate in real time on any client device would take too
much effort and time away from the overall development process.



11

Easy to Free after Scaling | Not Reliant on
Implement Client Device
Resources
WordGameDictionary API X X
Word-List X
Make our own X X

3.4.5 Proving Feasibility

To prove the feasibility of using the WordGameDictionary.com API to validate words for
our web application, we will create proof-of-concept validation with basic words in an interactive
prototype. Single words will be checked against the API to verify results. Because latency and
number of queries is an important factor of feasibility, we will record validation times and use
estimates of usage to determine how many queries will be submitted daily.

3.5 Javascript Framework

There are many advantages to using a Javascript framework in a web application.
Javascript frameworks save developers large amounts of time and effort by providing
well-structured pre-built patterns and functions. It is also much more secure to communicate
with servers using Javascript frameworks due to provided functionality.

When researching Javascript frameworks, we sought options that would a.) work well
with our technology decisions for authentication and database and b.) present the smallest
learning curve for our team and c.) maximize external library support. We narrowed our options
down to Angular 4, ReactJS, and Vue.js.

3.5.1 Angular 4

Angular 4 is the third version of AngularJS. It is an MVC-based Javascript library that
was acquired by Google soon after its release in 2009. Angular provides ways to develop web
applications supported across all platforms. One benefit is that since Angular and Firebase are
both Google products, they have strong compatibility. Another benefit is Angular has two-way
binding, meaning it provides ways to keep frontend data synchronized between the database
and frontend clients. Angular also has a large development community, with external libraries
being added every day. It is also important to note that as an added benefit, members of the
team have extensive experience using Angular to create web applications. The drawbacks of
using Angular are its learning curve and its maturity. Angular is verbose and can be complex to
learn: although most of our team members have experience the complexity is increased for



12

team members without experience. Also, Angular has gone through significant paradigm
changes between AngularJS (original version) and Angular 4. Although many developers are
involved in the community, the structure of code and paradigm is relatively new.

3.5.2 ReactJS

ReactJS has grown in popularity in the development community in the past few years.
Unlike Angular which is MVC based, ReactJS is more concerned with the task of creating user
interfaces. ReactJS is compatible with both Firebase and Node.js, and the team has found that
it is simple to add Firebase integration to a ReactJS application. Based on our research, it
seems ReactJS has a relatively small learning curve, however since it is basically more of a
view library, it could take time to get the team accustomed to best practices. It is also important
to note that no members of the team have development experience using ReactJS.

3.5.3 Vue.js

Vue.js is a Javascript framework that in its core is only focussed on the view layer of the
frontend client. However, it is advertised as incrementally adoptable, which means developers
can integrate more robust Vue.js functionality as they find the need. This means that for simple
web applications, Vue.js can be kept as a lightweight package, which is beneficial for speed and
efficiency. Vue.js is compatible with both Firebase and Node.js, which would mean the team
could use Vue.js with the other aspects of the web application. However, since Vue.js is a
relatively new Javascript framework, there could be a bit of a learning curve for the team.

3.5.4 Conclusions

Our chosen option for a Javascript framework is Angular 4. Because Angular is an
MVC-like Javascript framework, the team can take advantage of modularity and robust
functionality for Ul manipulation and communication with our various data services. The team
can also make use of Angular’'s two-way binding to keep user data synchronized across
devices. Because more members of the team have extensive experience developing web
applications using Angular than those who do not, we feel that the overall lowered learning
curve will be a really huge benefit for us in this project.

Compatible with Small Learning Curve | External Libraries
Server and Database

Angular 4 X X X

ReactJS X X

Vue.js X




13

3.5.5 Proving Feasibility

Through previous experience we have determined that an Angular 4 application can be
served by a Node.js server and that Angular can be updated and installed with the NPM
package manager in Node.js. To demonstrate feasibility for this project, we will create an
example Angular 4 front-end prototype and show that a.) this front-end communicates with the
Node.js server and b.) it works with key graphical libraries such as Dragula (a drag and drop
library) which we intend to use for our Ul and gameplay. Through this prototype, we will prove
Ul library compatibility by allowing user to drag and drop letters to form a word which will then
be submitted to the Node.js server. We will then return a result to the front-end which shows
feedback about validation of the word.

4. Technology Integration

Word Game Dictionary / €] Firebase Liser Auth

Firebase Database

Mode.js Server

Angular Frontend

Above is a diagram of our planned prototyped system. Frontend code will first be served
from the Node.js server to the users web browser. The Angular client that is served to the user’s
web browser makes requests to the Node.js server in order to communicate with Firebase user
authentication service and the Firebase Real-time Database service. The Angular frontend will
also make requests to the Node.js server in order to communicate with the Word Game
Dictionary API to validate words as user construct them with tiles.



14

5. Conclusion

In conclusion, our team BrainStim Studios will be developing a web application
implementation of WordScuffle, a word game designed to incorporate cognitive and social
gameplay to help reduce the symptoms of Alzheimer’s Disease. Our web application will also
resolve several key workflow problems associated with the current pen and paper
implementation of the game on which our web application is based. Our web application will:

expedite and simplify scoring, allowing players to focus on having fun
improve game integrity by preventing players from viewing results before they
submit their own

e provide word validation to lower confusion and reduce scoring mistakes

The table below gives an overview of our chosen technologies and our confidence level
that we can successfully use these technologies in our project. We have chosen technologies
that will expedite and simplify parts of our project that would be very complex if we implemented
ourselves but for which there are pre-existing technologies and libraries. Using Firebase for our
user authentication and database and using the WordGameDictionary.com API for our word
validation are two such examples of this. This approach will allow us be as efficient as possible
with our development process so that we can focus our attention on user interface and
gameplay logic.

Proposed Confidence Level (1-5)
Solution 1-strongly not confident
3-neutral
5-strongly confident
User Authentication | Firebase 5
Server Language Node.js 5
Database Firebase 5
Word Validation WordGameDictionary.com API 5
Javascript Angular 4 5
Framework

Now that we have our chosen technologies, we are excited to start prototyping
WordScuffle. We are confident that we will be able to use these technologies to successfully
create a web game to help prevent the onset of Alzheimer’s Disease.



