

Software Test Plan

Date: 4/10/2018

Version 2.0

Project sponsor: Barbara Jenkins

Team faculty mentor: Ana Paula C. Steinmacher

Vincent Messenger (Lead)
Anderson Moyers
Andy Salazar
Nathan Franklin

1

Table of contents

1. Introduction 3

2. Unit Testing 4

3. Integration Testing 11

4. Usability Testing 17

5. Conclusion 19

2

1. Introduction
Alzheimer’s Disease, or AD, is a progressive form of dementia which gradually destroys

mental function and memory. It often manifests as short term memory loss like forgetting minor
details in early stages and it progresses to pervasive, long-term memory loss like forgetting
essential functional tasks and loved ones. In the last stages of AD, cognitive function declines
until bodily functions are impaired, ultimately leading to death. As of 2015, there were an
estimated 29.8 million people suffering worldwide from AD. It is the sixth leading cause of death
in the U.S., and a new case is diagnosed every 66 seconds.

Research indicates that fortunately, regular cognitively stimulating interactions can

reduce the risk of Alzheimer’s Disease. This research has precipitated interest in playing brain
stimulation games to keep the brain healthy and game companies have started researching and
designing games for this purpose. Lumosity, an online site, is an example of a gaming platform
that offers this type of cognitive gameplay. Lumosity relates their game design to studies
conducted on how humans learn: the idea is that by giving users a fun way to challenge their
brains, users can keep their brains healthy and reduce the symptoms of degenerative brain
diseases.

Barbara Jenkins, our sponsor, has created a fast-paced word game called WordScuffle

that incorporates social gameplay in order to provide users with maximum potential for
increasing their brain health. The game generates random letter sets with which the user will
have three minutes to construct as many words as possible. Players construct words in a
grid-like fashion, which allows words to intersect. Once a game is finished, a player’s score is
calculated and they can compare their score and words with other players of the game.

Our team BrainStim Studios is working with Barbara to realize this game as a web

application. Our web application will offer automatic, integrated word validation which will reduce
misspelled words. A score calculator will also be updated as users construct words onto their
board. Scores will be maintained in a database, where players can retrieve scores and results
from other players. Our scoring system will improve competitiveness because it prevents
players from seeing results before they have finished their own set. To enhance social
stimulation, we will provide players with a way to view their friends’ scores. Our web application
improves on Barbara’s current pen-and-paper version of the game by:

● Automating scoring, allowing players to focus on word combination
● Improve social aspects by controlling tileset generations and high-score viewing,

as well as implementing an ability for users to form communities
● Providing word validation to lower confusion and eliminate scoring mistakes

We have implemented the game as a web application now. The next step towards

having a completed product is to thoroughly test our app. The game is playable, and we only

3

pushed changes to the server that appeared to function properly, but a big part of testing is to
make sure the product is fail-safe. All features were implemented from our requirements
document and work how they should, but now we have to make sure the features behave
correctly for all possible workflows. The most important work flows are the unexpected
workflows that a user may do either unintentionally or maliciously. The software must handle
these alternative workflows properly.

We have split our testing into three types. The functional requirements from our
requirements document have been used to create our unit tests. Our integration testing makes
sure the main components of our application work correctly in all conditions. Lastly, we explain
our usability testing.

2. Unit Testing

For our Unit Testing plan, we have decided to split testing segments up according to our
functional requirements. For each functional requirement, we have explained the main workflow
that the requirement was designed to accomplish correctly, and the alternative flows that we
have to make sure do not crash the game.

Test Case 1: Construct Words

Constructing words is one of the main functional requirements of playing a round of

WordScuffle. In order to make WordScuffle playable on mobile devices, we will implement tile
movement with drag-and-drop functionality. A user will receive a bank of tiles from which they
can drag onto a grid to form words. The grid will be at least 13x13 but should be designed to
accommodate spaces up to 16x16 (grid size will be statically defined by an administration
setting and the grid will be generated accordingly). Both the grid and tiles will adjust
automatically in size according to screen size and the size of both the grid and the tiles must
correspond to one another at any given time. The user should be able to drag tiles to the grid
and back to the tile tray. Words can be constructed vertically and horizontally.

With every tile change (either placed or removed from the grid), the board is sent to the
server for word validation.

Main Flow

The main flow involves a tile being placed on the board, connected to other tiles and

creating a valid word. The board is sent to the server for word validation. The server finds all
words in the board and for each word. The server finds the word in a hash table containing all
ScrabbleTM tournament-legal words (that resides on our server). All words from the board were
verified to be valid, so the server tells the client that the board is valid. The client changes all
tiles on the board to be green so the user knows the word is valid.

4

Alternative Flow

The alternate flow is that an invalid word is created with the tiles. The server gets the

board, finds the words on the board, doesn’t find the word in the list of valid words, and tells the
client that the board is invalid. The tiles in the board are changed to purple.

The other alternative flow is when a tile is picked up from the board and placed in the tile

tray or placed somewhere else on the board. Any change causes the board to be re-validated
by the server. Tiles can only be placed in the starting tile tray, or on the playgrid.

Test Case 2: Keep Score

Keeping score is another functional requirement of playing a round of WordScuffle. As

words are formed on our gameplay grid each round, a user’s active score for that round is
always displayed. The score will be incremented for each correct word that is validated. If
letters are dragged from the grid and this causes words to become invalid, the score will be
decremented and displayed accordingly. When a round is complete, our web application will
automatically save the user’s score for that round in a cloud-based database. As a user plays
more rounds of WordScuffle, their score history will continue to accrue in our database.

Main Flow

The main flow for scoring is that the board is changed and it is sent to the server. The

server finds all words on the board. The words are all legal, and the server adds up the points
for every word and sends this new score to the client. The client updates the displayed score.

Alternative Flow

The alternate flow is that the board is changed and it is sent to the server. The server

finds all words on the board. Only one word has to be invalid when the words are checked for
validity, and the server sends a score of zero to the client. The client displays the score of zero.

Test Case 3: Track Time

When a user begins a round of WordScuffle, our web application will begin timing the

round and it will display the time throughout that round. The default time for each round, as
determined by Ms. Jenkins, is three minutes. The global setting for the length of a round will be
editable on the administration console. When time is up, the game is over and our application

5

will exit the wordplay screen. Time tracking will be implemented in a way that cannot be
manipulated by a user during gameplay.

Main Flow

A game challenge is started and the time is set to the time specified in the admin
console. The time reaches zero, and the board and tile tray are sent to the server.

Alternative Flow

A game challenge is started and before time runs out, the user closes or by redirect the

webpage. The server knows when to expect the challenge to end, and when the board is not
submitted on time, a score of zero is saved for the challenge.

Test Case 4: Validate Words

Word validation occurs throughout each round of WordScuffle. When a singular

non-adjacent tile is placed on the board it will not be validated and will automatically be
assumed to be an invalid word. This is because our implementation and our dictionary do not
accept one-letter words. Word validation for a given array of tiles on the board will begin when
a user completes the placement of a second adjacent tile and will continue to occur after each
successive tile placement within a particular array. Word validation will also occur after a tile is
removed from an array on the board, as long as the array remains at least two tiles long. Each
time an array of tiles is changed, (whether it is one tile long or two or more tiles long), our
gameplay grid will provide visual feedback to the user by changing the appearance of the entire
tile array to indicate that it is either an invalid or valid word.

Main Flow

The main flow for validation of words occurs when a user builds a contiguous word grid
of two or more tiles. In this situation, the frontend client sends off a request to the server to
validate the built word grid. The server then recursively parses all words from the word grid,
validates them, and sends the results back the frontend client. If all parsed words are valid, the
user’s word grid will be colored green. There score will also be updated. If not all parsed words
are valid, the user’s word grid will be colored purple and their score will be set to zero.

Alternative Flow

The first alternative flow for word validation occurs if a user builds a word grid that has 2
or more tiles, but is not contiguous. In this situation, a request is sent off to the server to validate
the grid. The server then parses all words from the grid and discovers that it is not a contiguous
word grid. When this happens, the server sends the frontend client a response that indicates

6

that the grid is not valid, which triggers the user’s board to be colored purple and their score to
be updated to zero.

The second alternative flow for word validation occurs if a user’s device loses network
connectivity. In this situation, the frontend sends off requests to the server, but the server does
not receive the requests until the user’s device regains connection to the network. When this
happens, all word validation completely stops. However, because we created a web application,
one of our environmental requirements is that a user has a device that is connected to the
internet. Because of this, the team does not have a solution to an interrupted network
connection.

Test Case 5: View/Compare Results

An instance of a gameplay result includes a user’s final score and word configuration for

a round; this data is saved after each round of WordScuffle. Users will have access to view
results independently of playing a game, available at any point from the main menu after they
are logged in. A user will also have the opportunity to view results after finishing a round of
WordScuffle. When a user views their gameplay results they will be given these results in
relation to their community members’ score data (if they are participating in a community).
Viewable gameplay results include historical results occurring previously to the current day as
well as a ranking with results for the current day relative to other members of the community.

Main Flow

The main flow for viewing and comparing challenge occurs when the user clicks on a
challenge that they have completed. In this situation, the frontend directs the user to the View
Solution component where their submitted solution is shown. At this time, the frontend sends off
a request to the server to build a challenge leaderboard object based off the user’s friends list.
This list is based on the user’s friends that have also completed the challenge. Once the server
has built this leaderboard object, it is sent back to the frontend client where it is displayed for the
user. When the user clicks on a name in the leaderboard display, the displayed solution is
changed to the solution of whichever name they clicked on in the leaderboard.

Alternative Flow

The only alternative workflow for viewing and comparing challenge results occurs when
the user clicks on a challenge that is not completed. When this happens, if the challenge is
unlocked, the user is directed the the Game Component where they can then play the
challenge. If the user clicks on a challenge that is not completed and is locked, nothing
happens. In this case, the application stays the same so the user cannot view challenge results
before they have completed the challenge.

7

Test Case 6: Manage Friends

After a user logs in, they will have access to a link in our applications main menu for
accessing community information. This link will take them to a main section that gives them the
option to manage their friends list. A user will also be able to view basic information like their
friends list and pending friend requests. Any functionality outside of viewing the community in
their user profile will redirect the user to the main community management page.

Main Flow

The main flow for managing friends occurs when a user navigates to the friends page

and searches for another user by email address. When the user has found someone they wish
to add, they can hit the plus button to send them a friend request. This places a pending friend
request object in both users’ data.

Another main flow occurs when a user wants to remove a friend. The user does this by

clicking on the ‘X’ on a friend on the friend page. When a user does this, this sends a request to
the server to remove the corresponding friend object from both users’ data.

Test Case 7: Manage User Profile

When a user signs up for WordScuffle, they will be prompted to create a basic user

profile with first and last name, email address, and a password. Further customization is not
required to participate in communities or gameplay, but we will provide options for further
personalization. Similar to managing communities and viewing gameplay results, a user will be
able to access their profile for viewing or editing from the main menu at any point after logging
in. From the user profile page, they will have the options to create an avatar, view personal
information, manage their membership type (we are designing our web application with the
possibility of monetization in future implementations), distinguish which information is viewable
by others, and view basic information about the community they have joined.
Main Flow

The main flow for managing the User Profile occurs when the user clicks on their

username and a drop down appears. The user clicks on “Account” where they are sent to the
User Settings Component. This is where the user is able to update their username and clicking
the “Update Username” button which saves the name for the user and is then displayed when
the page is refreshed on the top left corner of the webpage. The user can also reset their
password by clicking the “Reset Password” button which then displays to the user that an email

8

has been sent to the email registered with the user to reset their password. The user can click
the “x” to close the message to reset their password.

Alternative Flow

Another alternative flow is when the user tries to enter a blank username. This is not

allowed so the front end will tell the user to enter a username that is valid. The front end will not
let the username be saved and it will display an error message when the user clicks on “Update
Username”.

Test Case 8: Administration Console

Ms. Jenkins has requested an administration console which enables an administrator to
manage variables about the game. We will provide authentication access to the console
through the same login portal created for all users of the web application. An administrative
user will have an additional option (beyond what a non-administrative user will have) to access
the console from the main menu. The administration console will include options to remove or
“ban” users from the web application in the case of use violation. It will include options to
change global gameplay variables like the number of tiles generated per round (this affects the
creation and layout of the game-grid as well as tile set generation), the number of rounds
playable per day (this affects the number of tile sets generated per day), the time allotted per
round and the score weighting. There will be separate global variables specific to the two
different game modes.

Main Flow

The main flow for the administrative console occurs when a user is an administrative
user. In this situation, when the user clicks on their name in the menu bar, they will see a
dropdown option for the admin console. When they click on this link, a request is sent to the
server to check if the user is an administrative user. If this check passes, the user is allowed into
the admin console. At this time, the user has the option to modify game settings or manage the
administrative user list. When a user modifies settings and clicks the save button, the frontend
sends a request to the server. At this time, the server checks if the user that sent the request is
an administrative user. If this check passes, the setting modifications are saved into the
database.

Alternative Flow

The only alternative flow occurs when a user is not an administrative user. At any point
within the main flow of this requirement a user is found not to be an administrative user, they will
not be allowed to do anything. This means that they cannot navigate to the admin console.

9

However, if they navigate to the admin console and are subsequently inactivated as an admin
user, all further requests they try to make regarding the admin console will return errors
specifying that they are not an admin user.

Test Case 9: User Authentication

Logging in or authenticating is vital to our implementation because many of our other

functional requirements require user authentication. For instance, providing an administration
console requires our web app to differentiate between users to give administrative access to
users only when appropriate. Participating in communities, score tracking, and comparing
scores also requires the ability to remember a user’s settings and previous history which is not
possible without authentication. Creating and managing a user profile is also directly dependent
on the ability to authenticate a user.

Main Flow

The main flow for accessing the User Authentication is when the user is at the home
page for our web application. The user must click on the “Sign Up” button where a modal form is
displayed by the front end to fill out. The user has to provide valid input fields for all inputs in the
modal. Once the user clicks on “Sign Up”, if the user has inputted valid inputs, the user can
continue onto the web application and play WordScuffle.

Another main flow for accessing the User Authentication is when the user is already
signed up to WordScuffle, the user can click on the “Login” button where a modal form is shown
for the user to input the valid email address and password. Once entered the valid inputs, the
user can click “Login” to be directed to the Daily Challenges Component and start playing
WordScuffle. If the user has forgotten their password, the user can click “Forgot Password?”
where the frontend displays a Password Reset modal. The user can than enter their email
address and click “Reset”, which then sends an email to the email of the user to reset their
password.

Alternative Flow

One alternative flow can occur in multiple instances when a user is trying to sign up to
WordScuffle. An error can occur when a user enters an email that is already taken by another
user on Wordscuffle. The front end will display an error message to prompt the user to enter an
email that has not been used yet. Another error than can occur is when the user enters a
password into the password fields and the two passwords do not match. The front end will then
display an alert to the user to input matching passwords. Another alternative flow for the User
Authentication occurs when the user is trying to sign up, but has not filled out all the required
fields. If this has occurred, the front end will send an alert to the user to fill out the required fields

10

that were missing. Once completed the user can then continue onto the web application and
play WordScuffle.

Another alternative flow can occur on a couple instances when a user is logging into
WordScuffle. An error can occur when the user enters the wrong email address or password,
which the front end will then send an alert to the user, displaying which field was not correct. If
the user enters an email that is not valid, the alert will display to the user that the email address
does not exist in the WordScuffle database.

Test Case 10: Game Rules

Ms. Jenkins has supplied us with specific rules for the WordScuffle gameplay. There are
general rules that apply to all gameplay, like every user getting the same generated tileset
because users will compare scores for the specific tilesets, and there are specific rules that
make the two game types unique.The player will have the ability to view the game rules for the
different game modes that are offered.

Main Flow

The main flow for accessing the game rules occurs when a user is viewing the Daily

Challenges Component and clicks on the “Question Mark” symbol. This is when the frontend
displays a pop out on how to play the two game modes available. The scoring for each of the
game modes is available for user to see as well. The user can access the game rules while
playing each of the game modes on the Challenge Component following the process described
above.

3. Integration Testing

Introduction

To aid understanding of how our app disseminates data, these are the main layers of our app:

Layer 3 (top) : Angular Components

These are the interfaces with which users directly interact. Components display and retrieve
user input, but do not perform any direct communication with backend layers (they rely on
Angular Services for this).

Layer 2 : Angular Services
Services that reside below components inside the Angular Framework. These services
contain methods which directly write to or retrieve from Firebase (for user authentication
related tasks) or pass requests down through Node.js’s server endpoints for all other tasks.

11

Layer 1: Node.js Server
Contains endpoints with which Angular Services interact. The server receives POST
requests from Angular Services. For requests which require computation, the server
computes them and responds to the Angular Service. For requests which require
communication with Firebase, Node.js performs these read/write requests with Firebase and
returns a response to the Angular Services layer.

Layer 0: Firebase
Our app uses two Firebase databases, one for user authentication and the other for all other
game data. For any user authentication related requests, Firebase receives these directly
from the Angular Services layer. For all other requests, it receives them from the Node.js
Server layer.

Integration Test Cases
We have included test cases below for requirements which require the communication of more
than one layer in our app.

ITC4: Validate Words

Main Flow

1.) A non-authenticated user has navigated to the Demo Component or an authenticated
user has clicked on a Challenge on the Challenges Component.

2.) A user drags a tile onto the gameboard.
a.) The Game Component updates a 2D array with configurations of where a tile is

stored and sends this to the Game Service. The Game Service relays this 2D
array to our Node.js server through an HTTP POST request. Our Node.js server
recursively parses the 2D array and separates individual words which are then
verified against a server-side hash table that holds all words listed in the
Tournament Word List.

b.) The Node.js server sends an HTTP response to the Game Service with a list of
parsed words and whether each is valid or invalid. The Game Service relays
this to the Game Component.

Expected Outcome

If data is valid

● If all words are valid, the Node.js server will locate all words in the TWL hash table.
● The Node.js server’s HTTP response to the Game Service entailing parsed words will

contain only entries that say words are valid.
● The Game Component will display the entire game board as valid (green).

If data is invalid

12

● If words are invalid, the Node.js server will not locate them in the TWL hash table.
● The Node.js server’s HTTP response to the Game Service entailing the parsed words

will contain an entry that says a word is invalid.
● The Game Component will display the entire game board as invalid (purple).

ITC5: View/Compare Results

Main Flow

1.) User has previously authenticated.
2.) When a user is logged in they are automatically redirected to the Challenges

Component or they navigate there manually by clicking on Challenges on the main menu
of the application.

a.) At load, Challenges Component calls the Game Service which sends an HTTP
POST request to our Node.js server to retrieve challenges from Firebase for the
day by the current user’s ID. This request includes information about all of the
daily challenges as well as what challenge is the “next” available to be played.
Data is filtered back up through the layers until it reaches the component, at
which time it’s displayed according to what’s been played vs. what hasn’t.

3.) User clicks on a past challenge
a.) At load, the View Solution Component calls makes a call that filters through

the same layers in a similar way to 2a above, except that it retrieves a single
challenge by current user id and selected challenge. In this case Firebase
returns jsonified data that expresses tiles that were placed on the board and their
locations in a 2d-array format as well as the score for the challenge. This data
returns up through the layers in a similar way and is then parsed back out onto
the gameboard once it reaches the View Solution Component.

4.) User clicks on friends dropdown and selects a friends’ score
a.) Same process occurs as with 3a above, except the main retrieval relationship

pertains to the clicked friend’s user id instead of the current user’s id.

Expected Outcome

If data is valid

● The view of which challenges have been played and their respective scores on the
Challenges Component will be representative of what is stored in Firebase.

● Viewing a past challenge will deliver the same view of the game board as the last view
the user saw when playing, including purple or green coloring if the board was invalid or
valid respectively.

● Viewing another friend’s solution will display a board with the same specifications as the
point above, except for that user.

13

If data is invalid

● The Challenges Component relies on the number of objects returned from Firebase to
generate challenges on the component so it will display a new challenge for whatever
number of objects is returned. If no data is returned or if it returns something not
parsable as an integer, the page will display no components.

● If a user selects a past challenge on their Challenges Component or views a past
solution of a Friend and there is no data a truncated (smaller) game grid will show up
and there will be no tiles present.

ITC6: Manage Friends

Main Flow

1. A user has previously authenticated with Firebase.
2. They click on the Friends link in the main navigation menu of our app.

a. At load, the Friends Component communicates with the Friends Service to
retrieve current friends. This service sends an HTTP POST request to the
Node.js server with the same request -- The Node.js server sends a read request
to Firebase to retrieve a list of current userIDs (friends) associated with the
current userID. This data is filtered back up through these layers.

3. A list of friends is displayed on the Friends Component. Any pending requests (as
recipient or sender) are also displayed on the friends list.

4. A user searches by email and adds a friend by pressing the add button next to a
returned result -or- they accept/deny a pending friend request by clicking accept or deny
next to a listed friend -or- they delete an existing friend by clicking delete next to an
existing friend.

a. The Friends Component sends a corresponding request (addFriend(),
acceptInvite(), denyInvite(), deleteFriend()) that is filtered down through the same
layers in a similar way as mentioned in 2a.

5. Any actions mentioned in step 4 are updated immediately in the component and
viewable by the user without refreshing the entire page.

Expected Outcome

If data is valid

● The list of friends will accurately reflect what is in Firebase at any given time.
● A “friend” block will show up for each person that is a friend, or is pending in any way.
● Searching for a friend will show a result if that user is in Firebase, otherwise it will not.

If data is invalid

14

● If no friend objects are returned from Firebase, no friends objects will be displayed on
the page.

● If the endpoint to the server is not working (lack of internet connection), there will be no
status refresh to indicate that an action occurred because there will be no postback
indicating a change. This means that nothing will visibly happen on the page.

ITC7: Manage User Profile

Main Flow

1. User is previously authenticated with Firebase.
2. They click on the Account link in the main navigation menu of our app.

a. At load, the User Settings Component queries the User Service to find out
the current variable for username. This is stored in current session for the app
and so the User Service does not have to send any external requests when it is
displayed on this component. The username field is displayed in the component
view.

3. The user fills in a new username and clicks Change username or they click another
button to reset password.

a. The User Settings Component sends a corresponding request to the User
Service which sends a write request directly to Firebase (no intermediate layers
needed). Firebase responds with a success or failure.

Expected Outcome

If data is valid

● Firebase responds with no error message.
● A success message is displayed in the component view.

If data is invalid

● Firebase returns a descriptive error message.
● An error message is displayed in the component view.

ITC8: Administration Console

Main Flow

1.) A user has previously authenticated with Firebase and the current user settings within
User Service have been updated to admin = true if the user is an admin or admin =
false otherwise.

2.) The user sees the Admin option under the main dropdown menu for the app if admin =
true. Otherwise, they do not see the link.

15

3.) User visits the Admin link if visible.
a.) The Admin Service communicates with a Node.js endpoint through a POST

request to retrieve current admin settings from Firebase. Once our Node.js
server receives the POST request from the Admin Service, Node.js sends a
formatted request to Firebase and returns results from Firebase once it receives
them. The Admin Console Component then displays data received from the
Node.js server’s POST response.

4.) Once on the page, user can change game mode settings or administrator settings.
5.) If user wants to change game mode settings

a.) user clicks on accordion section for game mode
b.) user clicks on dropdown in particular setting and chooses new value
c.) to submit changes, they click Save Admin Console button.

6.) If user wants to change administrator settings
a.) user types an email address in the search box and submits the search
b.) if a user account corresponding to the email shows up, they can add the user to

the list of administrators by clicking the add button.
c.) user wants to demote an administrator (leave them on list but remove their

privileges, they click the subtract button.
d.) user wants to remove an administrator entirely from list, they click the x button.

7.) For steps 6 and 7 and their subcomponents, a data interaction takes place when the
user clicks any of the buttons listed. This triggers:

a.) The Admin Console Component sends data which correspond to the currently
viewed configuration of the administration console to the Admin Service. The
Admin Service opens a POST request through an endpoint with our Node.js
server. The Node.js server then sends a write request to Firebase to update
currently stored admin settings to those included in the request.

Expected Outcome
If data is valid

● Admin Console displays data currently stored in Firebase.
● If data is changed, Firebase is updated to reflect what’s viewed in admin console.
● Administrator changes take place immediately and gameplay changes take place the

next day.

If data is invalid

● Our app prevents invalid data by providing dropdown buttons with specific values. Any
changes to values of settings must come from a predefined list which our app supports.

● Hackish attempts to change data values are prevented by requiring that a user be
authenticated as an administrator in association with changing values.

● Our app prevents non administrator access to the Admin Console Component by both
removing links but also implementing an Auth Guard (this allows any form of direct
access to this component by a non-admin user).

16

ITC9: User Authentication
A user must be authenticated to view the following functionalities:

ITC5: View/Compare Results
ITC6: Manage Friends
ITC7: Manage User Profile
ITC8: Access Administration Console

Main Flow
User has a previously created account, but the website is not logged in under a currently
authenticated token.

1.) Visit WordScuffle’s website
2.) User clicks on Login Link
3.) User fills input fields for email address and password and they hit enter on the keyboard

or press submit to submit a login request.
4.) The Login Modal Component submits the request to the User Service which

transmits data directly to the user authentication database in Firebase.

Expected Outcome

If data is valid

● Firebase will not return an error message to to the User Service.
● The User Service will its variables to contain all of the Firebase object’s relevant

settings for the user that requested a login.
● Any components throughout the app that require user authentication to interface with

data will request data about the current user from the User Service.

If data is not valid

● Firebase will return a descriptive error message related to the login request. If the user
entered an incorrect email address, Firebase will return the message “The email address
is badly formatted”. If the email address is correct but the password is wrong, Firebase
will return the message, “The password is invalid or the user does not have a password.”

● The Login Modal component will display an alert that displays the exact message that
Firebase returned.

4. Usability Testing
For usability testing, our group will be focusing on the design of our web application and

the user interaction. One requirement for the user interaction in our web application is giving
the user a persistent menu that is available throughout the application. For our gameplay, we
focus on usability testing to ensure that users can navigate through the gameplay. To ensure

17

easy navigation throughout our web application we added buttons to navigate the user. This will
be a focus on our usability testing to ensure new users can navigate easily throughout our web
application. These requirements will be the focus points to understand how real users interact
with our web application.

UTC1: Navigability

For our web application, we provided our users with a persistent menu that is available
throughout the application. The only page this is not available on is the home splash screen.
From this menu, the user has access to every page around the application. The only pages that
can’t be reached through the menu are the Game Component and the View Solution
Component, because these pages require the user to click on specific challenges on the page.
For these reasons, the user is able to make it to any functionality of the application within three
clicks.

To inform the user on how to navigate throughout our web application we incorporated
buttons that will guide the user around the application. For each button we handpicked icons
and verbiage to reflect the functionality that will be performed. An example of this is shown on
the Friends Component where you are able to add and remove a friend. When adding a friend
you can type in an email to search, once the email is typed and you have clicked to search, the
user’s name will appear and a green plus sign is available for the user to click on to send a
request for the user to add as a friend. Once users are friends, they will appear in a list on the
Friends Component. The user then has the option to remove the friend by clicking on the red ‘x’
button which the user that has been deleted will not be shown in the list. Another example that
can be seen throughout the web application is the view instructions button. We used a ‘question
mark’ symbol for the user to click, which will then explain how the user will play the game
modes. In conclusion, we have provided buttons throughout the application with icons that
reflect the functionality that will be performed. Doing such has allowed us to ensure users will be
able to use our application without difficulty.

Measurement:

The user must be able to make it to any functionality of the application within three
clicks.

UTC2: Gameplay Usability

Another aspect of usability testing we will focus on is gameplay. For our situation, we
needed to be able to ensure that gameplay functionality is obvious enough for the users.
Because we place an “instructions” component on the gameplay page, we believe that the user
will be able to easily understand how to play the game. However, to assist the user, we have
tried to make all functions related to gameplay intuitive. One way we do this is by changing the
user’s cursor to reflect the actions that are available to certain objects on the page. For
example, when the user hovers over a tile, we change the cursor to a hand to reflect that they

18

can click and drag the tile. Another way we assist the user in understanding what is going on in
the game is by coloring the game grid. When a user places a tile, the game grid is colored green
if all parsed words are valid. If invalid words are encountered, we color the user’s grid purple.
This coloring happens within half a second of placing a tile, which provides the user with almost
instantaneous feedback whether they word grid is valid or invalid.

Our application has been hosted online for over a month now, and we have been able to
invite friends to play the game and give us feedback on usability during this time. Between
reactions from the people playing during this ‘closed beta’ and Barbara’s feedback, we have
been able to make interface changes that create the interface that everyone is happy with as it
is now.

Measurement:

The user must be able to make it throughout the gameplay in four clicks. While the user
is playing a challenge, the user can drag and drop a tile within one click, and to submit the
challenge the user can click once. To view previous solutions from the daily challenges
component, the user can navigate to their solution in one click, and to view their friends scores
they can navigate to it within two clicks once at the view solutions component.

5. Conclusion
In conclusion, our team BrainStim Studios has finished developing the Wordscuffle web

application and the next big step towards a finished product is completing the tests described in
this document. We had these tests in mind during the development phase, and now will be
running hard-coded tests to assure the code works correctly and covers all possible workflows.
Our unit tests focus on smaller scale communication of data, while the integration testing
focuses on the organization and distribution of the data throughout the application. Finally, our
usability testing focuses on providing a streamlined user experience. Successful results in these
various tests will ensure that our application is ready to be made available to a larger number of
users.

19

