

Software Design

Date: 2/20/2018

Version 2.0

Project sponsor: Barbara Jenkins

Team faculty mentor: Ana Paula C. Steinmacher

Vincent Messenger (Lead)
Anderson Moyers
Andy Salazar
Nathan Franklin

1

Table of contents
1. Introduction 2

2. Implementation Overview 3
Server 4
Frontend Client 4
Dragula 5
Hosting 5

3. Architectural Overview 5

4. Module and Interface Descriptions 7
App Component 7
Game Component 9
Challenges Component 9
Friends Component 10
Admin Console Component 11
User Settings Component 11
View Solution Component 12

5. Implementation Plan 13

6. Conclusion 14

2

1. Introduction
Alzheimer’s Disease, or AD, is a progressive form of dementia which gradually destroys

mental function and memory. It often manifests as short term memory loss like forgetting minor
details in early stages and it progresses to pervasive, long-term memory loss like forgetting
essential functional tasks and loved ones. In the last stages of AD, cognitive function declines
until bodily functions are impaired, ultimately leading to death. As of 2015, there were an
estimated 29.8 million people suffering worldwide from AD. It is the sixth leading cause of death
in the U.S., a new case is diagnosed every 66 seconds and more than 5 million Americans live
with the disease at a cost of $259 billion per year. Without any treatment, those numbers are
projected to explode to 16 million Americans with the disease, at a cost of over $1 trillion a year,
by 2050.

Research indicates that fortunately, regular cognitively stimulating interactions can

reduce the risk of Alzheimer’s Disease. This research has precipitated interest in playing brain
stimulation games to keep the brain healthy and game companies have started researching and
designing games for this purpose. Lumosity, an online site, is an example of a gaming platform
that offers this type of cognitive gameplay. Lumosity relates their game design to studies
conducted on how humans learn: the idea is that by giving users a fun way to challenge their
brains, users can keep their brains healthy and reduce the symptoms of degenerative brain
diseases.

Barbara Jenkins, our sponsor, has created a fast-paced word game called WordScuffle

that incorporates social gameplay in order to provide users with maximum potential for
increasing their brain health. The game generates random letter sets with which the user will
have three minutes to construct as many words as possible. Users, or “players”, construct words
in a grid-like fashion, which allows words to intersect. Once a game is finished, a player’s score
is calculated and they can compare their score and words with other players of the game.

There are different game modes that present users with different scoring systems. This

forces users to adapt the way they think to successfully solve the challenge that is presented.
The game will generate ten letter sets per game-type every day that each user can complete.
Once a given letter set has been completed, users can then compare their scores with other
users of the game. On top of this, the user will have the option to play unlimited practice games,
where unique letter sets will be generated at the beginning of each game. These practice
games are not eligible for community comparison.

WordScuffle currently takes place with a pencil and paper, time and scores are manually

kept, and results are compared through email. It takes considerable time to tally up scores,
scores and results are viewable by players before they may have finished their own tileset, and
there is enough entropy in the game’s workflow that more time is spent with minute tasks of

3

gameplay than playing the game. Because much of the gameplay requires “manual” human
processing, there are numerous chances for error.

Our team BrainStim Studios is working with Barbara to realize this game as a web

application and resolve these workflow problems to make the game more fun, more interactive,
less tedious, and even more socially stimulating. Our web application will offer automatic,
integrated word validation which will reduce misspelled words. A score calculator will also be
updated as users construct words onto their board. Scores will be maintained in a database,
where players can retrieve scores and results from other players. Word validation combined
with more robust scorekeeping will eliminate human error and reduce entropy in the game. To
boot, our scoring system will improve competitiveness because it prevents players from seeing
results before they have finished their own set. To enhance social stimulation, we will provide
players with a way to create communities with other players, so they can filter high scores to just
those they wish to see. Our web application improves on the pen-and-paper version of the
game by:

● Automating scoring, allowing players to focus on word combination
● Improve social aspects by controlling tileset generations and high-score viewing,

as well as implementing an ability for users to form communities
● Providing word validation to lower confusion and eliminate scoring mistakes

The purpose of this software design document is to work like a ‘blueprint’ to show how

we intend to implement WordScuffle. With the given idea of WordScuffle, we were able to create
some requirements that would need to be met to successfully create what Barbara imagined.
We have nine main functional requirements: constructing words, keeping score, tracking time,
validating words, allowing users to view and compare scores, allowing users to join or create a
community, allowing users to manage their account, easy to use/access admin console, and
user authentication in the form of logging into accounts. These functional requirements are
coupled with the non-functional requirements of tileset generation, tile set attributes, word
validation attributes, device compatibility, and server reliability. The environmental requirements
are that the game will require the users have internet access, the game will only run on devices
with certain hardware specifications, and the reliability of our chosen servers is out of our
control.

2. Implementation Overview
WordScuffle is a fast-paced word game that was created by our sponsor, Barbara

Jenkins. Currently the only way to play the game is with pencil and paper, recording scores
down, and comparing your scores with friends through email. Our team BrainStim will be
developing a highly responsive 2.0 web-based application and mobile-friendly game. To solve
this we will be using many technologies to implement WordScuffle onto a server and having it
accessible to many users around the world.

4

Figure 1: Architectural Design of our WordScuffle Web Application.

Server
 Our teams has chosen to use Node.js to create a server to perform tasks related to user
management and authentication. As shown in Figure 1, the server will communicate with
Firebase to allow users to create accounts and login to their accounts. The server will also use
Firebase’s Realtime Database to store gameplay data such as user data, community scores,
and gameplay configuration.

 This server will perform tasks related to gameplay. The server will be responsible for
generating and serving random tilesets that players will use to construct their word grids. It will
also perform the word validation as players construct their words as well as scoring for each
word that is validated. Once a user has completed a challenge, the server saves the word grid
and score into the Firebase Database.

Frontend Client
The team will be using Angular 4 to construct a highly responsive user interface that will

allow users to use the various features offered by WordScuffle. The server will serve random

5

generated tilesets to the frontend client, which players will use to construct words onto a play
grid. Once the game time limit has passed, the frontend client will send the constructed grid and
score to the server to be saved.

The frontend client will also allow the user to manage their account data and participate

in community gameplay functionality. From the frontend client, the user will be able to change
the personal information associated with their account. They will also be able to form
communities with other users in order to compare scores and constructed word grids.

Because Angular is a web framework, it is compatible with all mobile and web browsers.
Furthermore, users will be able to access our web application on mobile devices and any
browser on a computer. Angular will allow our web application to resize to fit any device.

Dragula
As shown in Figure 1, we are using ng2-Dragula that is an implementation of Dragula

that is optimized to work with Angular. We are using Dragula to create the locations on the page
for users to drag and drop tiles to and from on the webpage. Dragula is used in our web
application as a container element in our templates that help organize the tilesets when being
dropped into the game grid. The tilesets are dragged over a container and once let go, they
drop into place for the user trying to configure a word to validate.

Hosting
The team will be hosting the web-application on DigitalOcean. DigitalOcean is a cloud

computing platform that will help manage infrastructure easily. DigitalOcean’s servers use
high-performance Solid State Disks that will directly benefit the performance of our hosted
web-application, WordScuffle.

3. Architectural Overview
Figure 1 shows the high-level detail of how we built our web application for our sponsor’s

game, WordScuffle. Below in Figure 2, we have a diagram that describes the Architectural
Overview of the Data Flow of our web application. Firebase will be used as our Database which
will be communicating to the server back and forth. The server will then communicate data to
the services such as User, Game, and Friend services. These services will then communicate
back and forth with the various front end app components of our web application as shown in
Figure 2 below.

6

Figure 2: Architectural Overview of Components Data Flow

Our team chose to use Firebase Database to authenticate users who are using the web
application. Firebase Database stores realtime gameplay, scores, daily challenges, and
communities being defined by users on the Node.js server. Data is stored as JSON and
synchronized in real time to every connected client. With the realtime database, our client will
automatically receive updates with the newest data.

The Node.js Server can create an HTTP server that listens to server ports and gives a
response back to the client. The server will communicate with the Firebase Database to
authenticate users, as well as ensuring real time data is being displayed properly on the front
end of the web application. Once a user has generated a random tileset of unique words, the
server will validate the word, then send the validation to the front end of the web Application,
which we will be using Angular 4.

Angular 4 is being used to create components on our frontend that will be
communicating with our client to display the functions of our web application. Our web
application is using Angular 4 to route from different components to one another, as well as
keeping a nice interface for different devices, such as computers, mobile devices, and tablets.

7

4. Module and Interface Descriptions
Our web application is broken up into several modules and components. This was done

to organize logic and implementation into separate areas to ensure that the various components
do not interfere with each other. The sections below describe the various modules and
components that make up our application.

App Component

The AppComponent is the main overarching component of our web application from which
every other component is routed. It essentially bootstraps the front-end of our web app and
handles global logic and settings. When a user visits the web app in a browser, they are first
routed to AppComponent which then navigates the user to the default component for the web
application. Using router settings in the app module (app.module.ts), AppComponent defines
URLs throughout the site to navigate the browser to their associated components. To simplify
login and signup, login/signup modals are included as subcomponents of the AppComponent,
which makes them available across the entire application. The main ways that a user will
interact with the AppComponent is by clicking on different navigational links and buttons. User’s
also have the ability to interact with the AppComponent’s router through workflow based routing.

8

Figure 3: App Component Architecture

9

Game Component

GameComponent is navigationally accessible from within the ChallengesComponent.
GameComponent is loaded when a user clicks on a new challenge listed in
ChallengesComponent. The GameComponent is the main WordScuffle gameplay area where a
player receives their letter tiles and places them on a grid while formed words are validated.
GameComponent sends and receives data about the current letter tileset and word validation
from game service while it retrieves and associates the current game and score to the current
user using the user service. The main way that users will interact with the GameComponent is
through the drag-and-drop interface provided by Dragula. Dragula is installed as a package and
available to use throughout the different application components. Users will drag tiles onto the
game grid, which builds the game grid data structure behind the scenes with each tile drop.
User’s will also be able to interact with the components public method of submitting a score if
they wish to submit their challenge before the time runs out. This will be exposed through a
button on the page.

Figure 4: Game Component Architecture

Challenges Component

ChallengesComponent is available navigationally from any page in the web app after a user is
signed in. It displays a list of challenges available to a user for that day. ChallengeComponent
receives challenge data from the user service. The data it receives determines which challenges
are available, which have been completed, and which can be played next. When a user clicks
on the next playable challenge, they are routed to GameComponent. If the user clicks on a
previously completed challenge, they are routed to ViewSolutionComponent. Challenges are
generated every day and served to the users as they play through their challenges. However,
the application also has the ability for users to play practice games where scores are not
tracked. Because of this, the game component also has a method to ask the server for a freshly
generated random tileset.

10

Figure 5: Challenges Component Architecture

Friends Component

FriendsComponent is available navigationally from any page in the web app after a user is
signed in. This component gives the user the ability to manage their friends list. When users
become friends, they then gain the ability to view each other’s scores for the various daily
challenges. The page will display the logged in user’s current friends list, as well as any pending
friend requests that they can respond to. FriendsComponent receives and sends information
between user service (user.service.ts) to appropriately display information to a user and update
information in the app’s firebase database when data is updated from the front-end. One way
the user will interact with this component is by typing a user’s email address into the search bar
in order to send friend requests. Also, the user will be presented with the option to remove any
current friends from their friend list.

11

Figure 6: Friends Component Architecture

Admin Console Component

The AdminConsoleComponent is available navigationally from any page in the web app after a
user is signed in if they are flagged as a site-wide administrator. The AdminConsoleComponent
displays fields where an administrator can update global game-related and sitewide variables as
well as perform some administrative tasks related to managing others’ accounts. The user will
most communicate with this component through input fields that they can modify with
associated buttons they can press to update the respective values in the database.

Figure 7: Admin Console Component Architecture

User Settings Component

UserSettingsComponent is available navigationally from any page in the web app after a user is
signed in. The page supports the ability to change basic settings associated with a person’s
user account. It automatically subscribes to certain data fields within the user service
(user.service.ts) and updates these fields if a user submits changes on the page. The user will
interact with this component through input fields where they can change their modifiable data.

12

They will also be presented with a button that will send an email with a link to change their
password.

Figure 8: User-Settings Component Architecture

View Solution Component

ViewSolutionComponent is accessible navigationally from within the ChallengesComponent. A
user is routed to this component when a user clicks on a previously completed challenge on
ChallengesComponent. Data loaded inside this component is static, or read-only.
ViewSolutionComponent receives data about the particular challenge instance using the user
service (user.service.ts) and displays it identically to what it looked like when they originally
played and submitted it in GameComponent. Because of this functionality, the user’s interaction
with this component is limited. They only way they can interact with this component is by clicking
a button to route them back to the daily challenges page.

Figure 9: View Solution Component Architecture

13

5. Implementation Plan
We started the Spring 2018 semester with a working prototype and a signed

requirements specifications document. The prototype was used as a proof of concept to verify
that our chosen technologies were going to work with our plan. The requirements specifications
document explicitly listed what the app would have to do, and was signed by Barbara so it
would act as a contract. At the end of this semester, the app will be evaluated by how well the
requirements specifications were met.

We were told to have a functioning application by Spring break. All tasks related to the
components described in the section above are scheduled to be finished the week before
Spring break. Beautification and playtesting should be the only parts left to do after spring
break. Tasks are split up at our team meeting for the coming week. Tasks are split to match
each person’s programming skill-set.

Most of the components take place in the web application as individual webpages.
Because of this separation, the less complex components one team member could be tasked
with completing a component. Andy Salazar is working on the community component, Nathan
Franklin is working on the userSettings, and admin Console, and the rest of the components are
split between teammates based on subtask.

As seen in figure 10, development of these components starts with a clear
understanding of what is expected. This allows us to find any overlooked problems before
coding has begun. The front end of the website gets built first, then functions can be
implemented to connect with the front end.

Anderson Moyers works front-end web development, and Vincent Messenger knows
how to do everything else. Group coding sessions at least once a week have been a crucial part
of completing the more complex components. The most complex and most important
component is the game component. Word validation, score calculation, and game rule
implementation (for both game types) are part of this component. At least one person always
has a task related to this component.

Basic testing of components is done before new code is pushed to the git repository, so
that the master will always be stable. We all test features as they are added to the master. Full
testing will happen after Spring break. Unit tests and end-to-end tests have been automatically
generated by the software we are using for app development, and will be ran after Spring break.
Testing also consists of allowing Barbara to play the game

14

.

Figure 10: Gantt Chart of our Implementation Phase

The last six tasks in the gantt chart are the milestones for document final draft due dates and
presentations dates. While the actual task breakdown and details for how work is split for these
deliverables are not supposed to be in the project gantt chart, displaying these milestones in the chart
remind us of other things that will need to be worked on alongside production of the app code.
Document rough drafts and dry-run presentations are not displayed in the chart, because they would
engulf the app development part of the chart. At all times of development, there will be at least one
non-programming task being worked on.

6. Conclusion
In conclusion, our team BrainStim Studios will be developing a web application

implementation of WordScuffle, a word game designed to incorporate cognitive and social
gameplay to help reduce the symptoms of Alzheimer’s Disease. Our web application will resolve
several key workflow problems associated with the current pen and paper implementation of the
game on which our web application is based. We have had many discussions with our sponsor
Barbara Jenkins to create our set of requirements based off WordScuffle gameplay, expected
website workflow, and website administration functions.

The main component, app component, will control the game, challenges, community,
admin console, user setting, and view solution. It allows seamless navigation through the
website, and controls what data gets sent to the client. We are confident that by following our
design plan that has been thoroughly discussed in this document, we can create a web game
that meets the project requirements and may help prevent the onset of Alzheimer’s Disease.

