

Requirements Specification

Date: 11/22/2017

Project sponsor: Barbara Jenkins

Team faculty mentor: Ana Paula C. Steinmacher

Vincent Messenger (Lead)
Anderson Moyers
Nathan Franklin

Accepted as baseline requirements for the project:

Client: Team Lead:

Page 1

Table of Contents

1. Introduction 2

2. Problem Statement 3

3. Solution Vision 4
3.1 Node.js Server 4
3.2 Angular 4 Frontend Client 4
3.3 Workflow Diagram 5

4. Project Requirements 5
4.1 Functional Requirements 6
4.2 Non-functional Requirements 7
4.3 Environmental Requirements 8

5. Potential Risks 8
5.1 API Request Usage 8
5.2 Server Security 9

6. Project Plan 9

7. Conclusion 11

Page 2

1. Introduction
Alzheimer’s Disease, or AD, is a progressive form of dementia which gradually destroys

mental function and memory. It often manifests as short term memory loss like forgetting minor
details in early stages and it progresses to pervasive, long-term memory loss like forgetting
essential functional tasks and loved ones. In the last stages of AD, cognitive function declines
until bodily functions are impaired, ultimately leading to death. As of 2015, there were an
estimated 29.8 million people suffering worldwide from AD. It is the sixth leading cause of death
in the U.S., a new case is diagnosed every 66 seconds and more than 5 million Americans live
with the disease at a cost of $259 billion per year. Without any treatment, those numbers are
projected to explode to 16 million Americans with the disease, at a cost of over $1 trillion a year,
by 2050.

Research indicates that fortunately, regular cognitively stimulating interactions can

reduce the risk of Alzheimer’s Disease. This research has precipitated interest in playing brain
stimulation games to keep the brain healthy and game companies have started researching and
designing games for this purpose. Lumosity, an online site, is an example of a gaming platform
that offers this type of cognitive gameplay. Lumosity relates their game design to studies
conducted on how humans learn: the idea is that by giving users a fun way to challenge their
brains, users can keep their brains healthy and reduce the symptoms of degenerative brain
diseases.

Barbara Jenkins, our sponsor, has created a fast-paced word game called WordScuffle

that incorporates social gameplay in order to provide users with maximum potential for
increasing their brain health. The game generates random letter sets with which the user will
have three minutes to construct as many words as possible. Users, or “players”, construct words
in a grid-like fashion, which allows words to overlap. Once a game is finished, a player’s score is
calculated and they can compare their score and words with other players of the game.

There are different game modes that present users with different scoring systems. This

forces users to adapt the way they think to the challenge that is presented. The game will
generate ten letter sets per gametype every day that each user can complete. Once a given
letter set has been completed, users can then compare their scores with other users of the
game. On top of this, the user will have the option to play unlimited practice games, where
unique letter sets will be generated at the beginning of each game. However, these practice
games are not eligible for community comparison.

In this requirements specifications document, we go into great detail about the
requirements that we have discussed with our sponsor that will need to be satisfied in our
finished product. The technologies we will be using to produce the finished product were
carefully picked out so that the project requirements can be met. These requirements have been

Page 3

classified as functional, non-functional, or environmental. With a clearly defined set of
requirements, we will be able to use this document as a contract with the client for completing
the project. If our software meets all the agreed upon functional requirements and performance
requirements, the client should be happy with the finished product we supply them with in May
2017. The requirements will allow us to stick to a plan for the development of the software, and
the client should not be surprised by the software we present to them. By thoroughly discussing
with the client what they want us to produce, we will have a set of requirements that need not
change as the software is constructed.

2. Problem Statement
Although there are existing platforms which offer cognitive gameplay, these platforms do

not adequately address the social components of cognition in preventing the onset of AD.
Lumosity’s games for example offer no wider social context: gameplay is solo, players have little
chance for interaction and players cannot learn from the results of others and compete.

WordScuffle offers a chance to have fun with wordplay while specifically addressing the

social brainflexing that other platforms lack; the game however is currently played with pencil
and paper, time and scores are manually kept, and results are compared through email. It
takes considerable time to tally up scores, scores and results are viewable by players before
they may have finished their own tileset, and there is enough entropy in the game’s workflow
that more time is spent with minute tasks of gameplay than playing the game. Because much of
the gameplay requires “manual” human processing, there are numerous chances for error.

Our team BrainStim Studios is working with Ms. Jenkins to resolve these workflow

problems to make the game more fun, more interactive, less tedious, and even more socially
stimulating. Our web application will offer automatic, integrated word validation which will
reduce misspelled words. A score calculator will also be updated as users construct words onto
their board. Scores will be maintained in a database, where players can retrieve scores and
results from other players. Word validation combined with more robust scorekeeping will
eliminate human error and reduce entropy in the game. To boot, our scoring system will
improve competitiveness because it prevents players from seeing results before they have
finished their own set. To enhance social stimulation, we will provide players with a way to
create communities with other players, so they can filter high scores to just those they wish to
see.

In the following sections we outline the overall picture of how we will translate the

workflow of Ms. Jenkins’ current implementation to software, the key requirements we must fulfill
in order to successfully complete our implementation, and how the technologies we have
chosen will meet our needs in this process. We begin with our Solution Vision in the next
section.

Page 4

3. Solution Vision
In order to solve the outlined issues, our team is working with Ms. Jenkins to realize

WordScuffle as a mobile-friendly and highly responsive web application. The team will develop
a server to perform tasks related to user management and gameplay. The team will also create
a frontend client that will allow users to play games, manage their user data, and participate in
community aspects of the game.

3.1 Node.js Server
The team will be using Node.js to create a server to perform tasks related to user

management and authentication. This server will communicate with Firebase to allow users to
create accounts and login to their accounts.The server will also use Firebase’s Realtime
Database to store gameplay data such as user data, community scores, and gameplay
configuration.

This server will also perform tasks related to gameplay. The server will be responsible
for generating and serving random tilesets that players will use to construct their word grids. It
will also perform the word validation as players construct their words, as well as scoring for each
word that is validated. Once a user has completed a challenge, the server saves the word grid
and score into the Firebase database.

3.2 Angular 4 Frontend Client
The team will be using Angular 4 to construct a highly responsive user interface that will

allow users to use the various features offered by WordScuffle. The server will serve randomly
generated tilesets to the frontend client, which players will use to construct words onto a play
grid. Once the game time limit has passed, the frontend client will send the constructed grid and
score to the server to be saved.

This frontend client will also allow the user to manage their account data and participate
in community gameplay functionality. From the frontend client, the user will be able to change
the personal information associated with their account. They will also be able to form
communities with other users in order to compare scores and constructed word grids.

Page 5

3.3 Workflow Diagram

The above diagram shows an example of a potential workflow for our solution. In this
example, the frontend client requests a tileset from the server. The server responds with a
randomly generated tileset, which the frontend client uses to start a new game for the user.
Once the user finishes the game, the frontend client sends the results to the server to be saved.
After the save has happened, the server then responds with the community results for that
particular letter set. Once the community results have been displayed, the user can begin
another game.

4. Project Requirements
To acquire project requirements for our implementation of WordScuffle, our team has

been meeting bi-weekly with our client for approximately three months. During our first month of
meetings we played WordScuffle to gain basic ideas about how the game is played and we
discussed basic requirements for the implementation such as Mrs. Jenkins’ desire for the game
to be a Web 2.0 application and to be mobile friendly.

Page 6

In our last month of meetings, we focused on honing domain-level requirements to reach
main functional, non-functional and environmental requirements. We approached requirements
acquisition by examining the way the game is currently played manually and then conceiving of
a comparable workflow for our web application implementation of WordScuffle. We used the
workflow of how a user will interact with the web application to determine our functional
requirements. We were then able to extract non-functional and environmental requirements
based on what we determined we must have functionally.

The main domain-level requirements determined by our project sponsor are the

following. First and most importantly we should be able to play the pen and paper version of
WordScuffle with our new implementation. Our implementation should secondly be a Web 2.0
Application which combines with our third requirement that it be playable on mobile devices,
especially iPad. For our fourth domain-level requirement, we should include an administration
console so that an administrator can change global settings for our WordScuffle once it is up
and running, manage data from the game, and manage accounts and communities. Fifth and
finally, we must design our web application with monetization in mind.

4.1 Functional Requirements

Playing a round of WordScuffle is our main category of functionality and it is comprised
of four main functions: constructing words, keeping score, tracking time, and validating words.
These are our first, second, third and fourth functional requirements. When a player begins a
game, this cues these four functions concurrently: the player must have the ability to form
words; while they form words, our web application will simultaneously keep their score, track
time for the round, and perform word validation.

Remaining functionality consists of what a user can do in the web application beyond

playing a game. Our fifth functional requirement is to view and compare scores, and our sixth is
to join a community. In our implementation of WordScuffle, players can participate relative to
communities they choose to join. When a player compares their scores, they should see how
their scores rank with other members of their community. Our seventh functional requirement is
the ability of a user to manage their account in order to upgrade/downgrade their account type
or change their personal information. General requirements and requests of our project sponsor
determine our eighth functional requirement, the ability to access an administration console to
change application settings. Our project sponsor has requested the ability to log in to an
administration area to manage variables and data associated with the game.

Finally, logging in or authenticating is our ninth main functional requirement because

some of our other functional requirements, like the ability to access an admin console to change
settings and the ability to track scores and join communities, are determined by our ability to
identify users within our web application.

Page 7

4.2 Non-functional Requirements

There are several non-functional requirements we have determined, some of which we
feel are quantitative components of functional requirements while others are not and yet they
are important for the overall success of our web application.

For instance, there are particular quantitative requirements we have determined

necessary in order to make forming words a naturally-mapped experience for users on a wide
variety of devices. The functional requirement is users must be able to form words, but we
additionally require gameplay to feature drag and drop tiles. Furthermore, to maintain feedback
in the game, lifting a tile should require no more than 250ms and afterwards, the location of the
tile relative to the tip of the finger should be no more than 1-2mm from the original configuration
of the fingertip when the user originally touched the tile.

Another non-functional, quantitative requirement relates to our functional requirement of

word validation. We have determined that to successfully validate words in a manner that
prevents players from becoming impatient with gameplay, word validation should complete and
provide feedback within two seconds for each validation attempt. To follow industry standards,
we have an additional accuracy requirement that our word validation appropriately reflect what
is contained in the official ScrabbleTM dictionary.

We include tile set generation here as a non-functional requirement because a user

action does not precipitate generation; this process will occur on a normal basis on our server to
create the data which our users will access during gameplay. Tile set generation is an
extremely important part of playing WordScuffle: each day, our server must randomly generate
ten tile sets (these are the default settings for WordScuffle) for gameplay: all players will receive
the same tileset for each round and there are ten total rounds.

Similarly, device compatibility and reliability of server are two more requirements which

are important for our web application but which are not specific functions triggered by a user.
For device compatibility: based on project requirements defined by our project sponsor, our
implementation of WordScuffle should be both playable on mobile devices and a Web 2.0
application. This means that our implementation must be a web application that is fully scalable
and playable on everything from mobile devices with small screens to desktop browsers and it
must render the same across a variety of browsers. For browsers, we expect to support about
95% of the general American population.

For reliability of server: because our web application will be served, we have a

non-functional requirement to provide reliability and a contingency plan in case of failure. Given
a failure of our server, we must automate rebooting and automate notifications with server
status for quick follow up from a support person or developer. Providing redundancy to restore

Page 8

settings from a catastrophic failure is vital. If such a failure occurs, users should be given
feedback within several seconds that the application’s backend is out of service. Whatever
gameplay has occurred client-side should be saved until the server is back up to avoid user
frustration.

4.3 Environmental Requirements

Our two main environmental requirements relate to a.) a low cost solution and b.)
development for cross-compatibility.

Because we are completing this project with as low a budget as possible, we must

choose technologies that include only nominal fees or are free. This requirement affects for
instance affects our implementation of word validation. We must choose a word validation
technique that is free yet fulfills our non-functional requirement of performing validation and
providing result within two seconds.

Cross-compatibility for a wide variety of browsers and screen configurations is another
considerable environmental requirement because it affects the scope of our UI design.
Providing a gameplay experience in a browser versus creating a dedicated mobile application
per platform means that we will need to design the UI more generally, with a widely applicable
interface and a gaming experience that is cohesive no matter where a user logs in to play it.
This means for instance that we must design for input types relative to the platform on which a
user accesses the game through a browser. If a user is using a keyboard-enabled device they
should be able to use this as well as drag and drop touch-based mechanisms. The design
should be cohesive enough across different devices such that a user can find their needed task
within 10 seconds on any device even if they haven’t used that device before to access the
application.

5. Potential Risks
Throughout the requirements acquisition phase, the team has identified and considered

two main risks. The first risk comes from the fact that our chosen method for word validation is
an API with a 5000 request limit for free plans. The second risk relates to server security. The
team needs to come up with a way to ensure that secured areas within the application remain
unbreached by unauthorized users.

5.1 API Request Usage
After conducting thorough research and consideration, our team decided to make use of

the WordGameDictionary.com to power our applications word validation functionality. This API
is free, reliable, and fast, so it fits in perfectly with the rest of our system architecture. However,

Page 9

there is the fact that this API has a 5000 request limit for free developer accounts. Because of
our environmental requirements to keep our solution costs low, this could be an issue for us. It
is important to note that the team doesn’t suspect we will ever hit our API request limit
throughout the scope of this project, but if the project ever scales to a greater user base, there
could be increased cost associated with hosting.

The team plans to solve the issue of our 5000 request limit by using some
implementation of server-side caching. The team doesn’t have all the details of this caching
algorithm determined at this point, however we have determined that caching of requests could
reduce the number of requests that leave our server every day. An example of such functionality
can be seen in the following example.

Suppose two users make a request to the server to validate the same word. When the
server gets the request from the first user, the server will check its local cache to see if that
request has been made before. Since this is the first time a request for this particular word has
come in, the server routes the request to the word validation API. Once it receives the response
from the API, the server saves the results of the request in its local cache and sends the results
to the requesting user. Now when the second user makes a request to validate this same word,
the server will check its local cache, determine that it already has the validation results from this
particular word, and send the results of this request back to the user. In this case, only one
request was sent to satisfy two validation requests. This is just one example of a caching
algorithm that prevent the team from ever hitting our 5000 request limit.

5.2 Server Security
Because our solutions features secured areas such as an administrative console, our

team needs to make sure that these areas remain secured to people that should not access
them. For instance, we need to make sure that non-administrative users stay out of the
administrative console.

By having the user client program running in the user’s web browser send the unique
user account token to the Node.js server when requesting web pages, the node.js server can
verify the user’s account type in the firebase database. Once the user account has been verified
as having permissions to view the requested web page, the web page data can be sent to the
user client. For administrative changes to WordScuffle rules or altering account information for
other user accounts, the node.js server will act as a ‘middleman’ to verify the client has the
authorized level of power to make such changes to the database.

6. Project Plan
Throughout November, we have started working with the different technologies that were

chosen to implement the game of WordScuffle. Tasks were initiated in an order based on how

Page 10

they interface with each other, starting with Angular.js as the main platform for the game.

When the class schedule is released next semester, we will be able to make a more
detailed gantt chart for the rest of the project. At the moment, we have set a few major
milestones for our project.

6.1 Tech Demo
To prepare for the tech demo, we plan on having all chosen technologies working together to
give a general idea of gameplay and confirm the technologies will work together.

6.2 Winter Break
The exact level of productivity for this project over winter break is not certain. Technically, there
will be more time to work on the project while classes are not in session, but we may have plans
other than working on the project. We will stay in contact with each other over this time, but
project productivity will be limited.

6.3 Closed Beta Testing
The plan is to get the whole game done by the end of March, so we can release it ‘private beta’
style to Ms. Jenkins and some of her friends. We will expect feedback from them, and will be
able to put all programming efforts into any problems they have or changes they want that fit
within our ‘contract’. It is important that some of the people in the closed beta testing are
unfamiliar with the game, because players experienced with the game rules may have a bias for
ease to learn the game and navigate the website.

6.4 Project Due
Near the end of April, the project will be due. Exact date is yet to be discovered. Depending on
project progression and actual project due date, closed beta testing may happen sooner than
noted.

6.5 Capstone Completion
At the end of the semester, when we have completed the project, we will consolidate a list of
accounts and passwords linked to the technologies used for creating WordScuffle. We created a
developer email to be used for all needed developer accounts used for creating WordScuffle, so
that easy transfer of developer accounts to Barbara’s possession is possible. Instructions for

Page 11

any important administration control not implemented into the front-end of the website will be
written and given to Ms. Jenkins.

7. Conclusion
In conclusion, our team BrainStim Studios will be developing a web application

implementation of WordScuffle, a word game designed to incorporate cognitive and social
gameplay to help reduce the symptoms of Alzheimer’s Disease. Our web application will also
resolve several key workflow problems associated with the current pen and paper
implementation of the game on which our web application is based. We have had many
discussions with our sponsor Barbara Jenkins to create our set of requirements based off
WordScuffle gameplay, expected website workflow, and website administration functions. Our
web application improves on the pen-and-paper version of the game by:

● Automating scoring, allowing players to focus on word combination
● Improve social aspects by controlling tileset generations and high-score viewing,

as well as implementing an ability for users to form communities
● Providing word validation to lower confusion and eliminate scoring mistakes

Our nine main functional requirements are as follows: constructing words, keeping score,

tracking time, validating words, allowing users to view and compare scores, allowing users to
join or create a community, allowing users to manage their account, easy to use/access admin
console, and user authentication in the form of logging into accounts.

These functional requirements are coupled with the non-functional requirements of no
tile dragging ‘lag’, accurate word validation (after every change to the tile playgrid) in less than
two seconds, tilesets generated for the day’s challenges at a set time, mobile device
compatibility, and server reliability, as well as the environmental requirements to provide a low
cost solution and address cross-compatibility to meet the needs of a variety of devices within a
browser application.

To address our key requirements for our web implementation of WordScuffle, we will be
combining Dragula (a Javascript-compatible drag-and-drop library) with a Node.js-served
Angular front-end. We will supplement these technologies with a word validation API from
WordGameDictionary.com (to get fast validation from the ScrabbleTM dictionary) and the
database and authentication services offered by Firebase, a mobile development platform
backed by Google.

