DlueSky Group

Software Design Document

Version 1.0
Team Members: Joseph Griffith, Robert McIntosh, Brandon Samz, Corban Stevens
Project Sponsor: Gary Matsch and Harlan Mitchell

Faculty Mentor: Austin Sanders

Created: 2/07/18

Revised: 2/25/18

Table of Contents

1. Introduction

2. Implementation Plan

3. Architectural Overview

3.1.

Key Requirements

4. Module and Interface Description

4.1.

4.2.

4.3.

4.4.

4.5.

Faults Module
Events Module
Summary Module
Bluetooth Module

Exceedances Module

5. Implementation Plan

6. Conclusion

1. Introduction

Every day, over one hundred-thousand flights are scheduled across the globe. With so
many flights occurring everyday, accidents are inevitable. In 2016 alone, there were
sixty five accidents on commercial airlines resulting in ten deaths. Accidents can
happen for a number of reasons, most of which are out of the control of aircraft
operators and engineers. However, it is the responsibility of the aircraft engineers and
operators to minimize the risk of failure as much as possible. We are focusing our
concerns on the needs of the engineer, and any engineer will inform the best way to see
a problem in your system before it happens is to collect ample operation data.

Technology today is data driven, and, as software developers, data is paramount to
building and maintaining successful solutions. Our team (BlueSky Group) has been
tasked with assisting our client in their goal of obtaining more data. Gary Matsch and
Harlan Mitchell with Honeywell Aerospace develop turbine engines and engine control
systems for a myriad of private jets. These engines and their connected systems
generate data every flight, data that is paramount to the reliability of their product.
Currently, this data is downloaded from a computer that monitors the engine's
performance through a wired connection. Honeywell Aerospace technicians periodically
connect to this Engine Control Unit (ECU) and retrieve the data as often as they can.
However, this process does not happen frequently enough. The cumbersome process
of physically connecting to a computer and downloading this data on location greatly
limits the amount of flight data that Honeywell can collect. Developing a wireless
solution to this problem would allow Honeywell to collect ample amounts of data, but
this solution would not bring immediate profit to their company. In other words, there is
no business case to solve this problem. This is where our team comes in; our clients,
Gary Matsch and Harlan Mitchell, see this as a very cumbersome and unnecessary
process in an age when everything is wireless. To assist our client in proving to his
superiors the importance of this solution, we at BlueSky Group will develop a prototype
that solves this problem. With this problem solved Honeywell will be able to market their
solution to anyone who owns a plane and sell this product. Currently there is already a
wireless solution out there that performs a similar function, but it is bulky and still
requires a computer and a lot of setup time. With our solution Honeywell will be able to
complete with this other wireless model of data transfer and expand their already large
client base.

Our prototype will take the form of a mobile app that uses Bluetooth to connect to the
Engine Control Units, download their data, and process it. Currently, Honeywell
technicians use an archaic Engine Management System called EEI to process flight
data. Once they have downloaded the data from the ECU, this system displays the data
in a way that can be analyzed by the technicians. Our prototype will emulate the
functions of this system on a mobile platform, allowing for ease of access to this data.
Our prototype will allow for a secure and easy way to download flight data on a much
larger scale meaning greater reliability for the products Honeywell Aerospace creates.

We will also ensure that our solution will meet the requirements specified in our
requirements document. The key functional requirements that our solution will be able
to satisfy are allow for easy access with both a smartphone a tablet to ensure that data
can be access on different platforms as long as they are all running android. The engine
data should also be able to be downloaded any place the plane has landed with only a
smartphone or tablet necessary for the engine download. Our application will also be
able to download all of the data from the ECU to ensure they we get all of the data that
we need to represent an accurate picture of how the engine is performing. Our
application will then allow the technician to review all of the data that was collected in a
presentable fashion. The application will also communicate with the ECU over a
Bluetooth connection to ensure the the engine data can only be downloaded locally and
transferred in a secure measure.

Our key performance requirements are as follows. Our application will download data
with a lossless protocol. This will ensure that when we are downloading and displaying
our data that it is accurate and the technicians are not going to make mistakes due to
misinformation. Our application will also be able to do the download within 1 minute.
With this goal we will make sure that our solution is much better than the current version
of EEI in which the download currently takes around 10 minutes and requires a lot of
setup. Our application will also not report incorrect data. Data that is shown will be
displayed in correct formats as expected by technicians, and it will be displayed in a
way that is readable in understandable. Lastly, our application will be able to establish a
connection between the phone and laptop in under 15 seconds. This window of time will
once again ensure that our application will be better then the current version of EEIl as it
is now where a technician has to walk into the plane and manually connect wired into
the plane in order to start the download.

The environmental requirements for our application follow as such. Our application will
run on android OS. We chose this platform because it has been the easiest platform for
our team to develop on. This being said our application will be able to run on all android
devices. This will ensure that no matter who is running our application then if they have
an android device they will be able to run our application regardless of what actual
device it is. As specified by our sponsor our application will also be able to mimic the
basic functions of EEI but in a different layout that is much more readable than what is

currently available. This will allow technicians to read the data they collect much more
easily than before. Our application must also be able to download at least 5 dummy
data sets in order to compare the data on them. This would simulate the collection of
multiple data sets over time, so being able to compare the data from these files is a
must for technicians working on these aircraft.

2. Implementation Overview

Our primary goal with this project is to bring Honeywell’'s data acquisition methods into
the 21st century. Their current wired-connection methods are much too cumbersome
and deprive Honeywell of their full data acquisition potential. To solve this issue we will
be making a mobile application that will utilize Bluetooth technology to access flight data
wirelessly. This wireless functionality will provide Honeywell a number of benefits;

1. The ability to access flight data without a wired connection

2. The ability to access flight data anywhere in the world regardless of internet
connectivity

3. The ability to download all flight data kept by the ECU

The ability to download flight data with only minor intrusion in the aircraft’s cabin

5. The ability to view and process flight data on a mobile platform

s

These functionalities of our system will allow Honeywell to obtain vastly larger amounts
of data as well to save large amounts of time and money. To implement these
functionalities we will utilize five technologies: Linux Virtualbox, Python, Android Studio,
Bluetooth, and MPAndroidChart.

Bluetooth
Engine Control : Micracontroller -
- — —_— :
Unit (ECU) Flight Drata Simulated by

Linux Virtualbox

'

Python Script
Transmits Flight
Data

Android Mobile Device

Flight Data

Displayed in

Android by
MPAnRdroidChart

Figure 1: Overview of System Functionality

In order to test the previously listed functionalities in our system we have to ensure that
we come as close as possible to reality. Honeywell turbine engines use Linux for their
ECU’s and so we must ensure that our system receives its flight data from a linux

system. To meet this demand, we will store and transmit our flight data from a Linux
Virtualbox. To transmit the flight data wirelessly, we will use Bluetooth to form the
connection and a simple Python script to initiate the data transfer. Once this process is
completed, we will have met the first four previously mentioned functionalities. To
achieve the fifth functionality, we must parse the data in the background of our Android
application and display it in the foreground using the library MPAndroidChart. The
following sections will expand upon the interaction of these technologies.

3.

Architecture Overview

The architecture of our system consists of four main sections each utilizing the
aforementioned technologies; the python script for sending files hosted in the Linux
Virtualbox, the Bluetooth functionality modules, the file parser, and the display modules.

3.1.

Key Requirements:

Linux Virtualbox Send File: The only module in our Linux Virtualbox is responsible
for awaiting a Bluetooth connection and sending the stored data file across the
Bluetooth socket upon connection.

Bluetooth Functionality: This module is responsible for displaying a list of available
Bluetooth connections and previously paired devices. Upon selection of a device
this module forms a connection between the two devices.

File Parser: This module takes a file stream from the Bluetooth socket and parses
it into a number of different data structures to be stored.

Display Modules: These modules take in the corresponding data structures
necessary for displaying their data using MPAndroidChart libraries.

The biggest architectural influence for this project is the software we are attempting to
recreate, EEI. This software is old and cumbersome but the fundamentals of it are fairly
simple. EEI allows the user to view a myriad of system info, and we intend to come as
close to its functionality as possible without keeping its outdated appearance. That
being said our application does follow the same architecture with the minor tweaks of
how the data is collected and the platform the system is being developed for.

android Application

Exceedence’s
Page o Exceedence Data |-
Faull's Page |e—— Fault Data B
Engine Data —T
Summaries Page |- -
Engine
Maintenance Data
Ewvent's Page - Ewvent Data =]

_
_
_
_
_
L

r——-

BlugtoothConmection

-Fills list with prev
paired devices and new
connections

-Passes connecion
info to ConnectThread
upon selaction

File Parser

- Takes in file from
Bluetooth Socket

- Parse file for pertinent
info

- Stores data in
classes

Figure 2: Architecture Overview

ConnectionThread

-Takes in the
connecton info of
selected device

- Opens connection
between host device
and selected device

Linux Virtualbox

Send Fila

- Look for BT
Cannaction

- Send Fllg

4. Module and Interface Descriptions

In this section we will illustrate the finer points of our systems architecture. The following
sections are separated by the GUI pages within our application. Each module defines
how the information is displayed and where its information is coming from. In this
manner we will present the inner workings of our application

4.1. Module: Faults Page

The faults page is responsible for displaying faults read from the ECU data in an
easy-to-read table format. This table should display the FF Fault ID, description, and
time of each fault. Generally, this module interacts with the FileParser module by
reading the list of faults that are stored into a Fault class. This list of faults is then used
to build the table.

FileParser

engineData: EngineData

read(): void
passlinformation(): void

EventDisplay

faults: ArrayAdapter

A 4

add(Fault): void
Fault remove(int): void

ffFaultiD: int
description: string
dateTime: Date

getinfo(): void

Figure 3: UML Class Diagram for Faults page.

Due to the nature of the faults screen, there is not much the user can interact with or
modify. In general, the public interface is the EventDisplay, which displays fault data in a
table format for the user to view. These faults are displayed using an ArrayAdapter,
which will create the table that displays the FF Fault ID, description, and time of each
fault. Should the list be long enough, users will be able to scroll through the list to view
the full list of faults.

4.2. Module: Events Page

This component of the application will fill the role of displaying all of the events recorded
by the ECU. These events are one of the major things that technicians look at when
they are trying to diagnose what is wrong with an aircraft. These events are anything

that the ECU deems a significant change to the engine while it is running. This means
that if there is a change in anything that is not recognized as “normal” by the ECU it will
flag what is happening and start taking information down about what is happening the
time it started and the time it ended. This component will fit in with the larger
architecture because it is one of the main pages that we will have available for users to
utilize while they are analyzing data from that they have just downloaded. This module
will also receive data from the file parser class which will be given by way of passing a
message and creating a new class every time a new one is read from the file.

FileParser

engineData: engineData

read()

passinformation()]

Event Chart
type: string eventType: sting
stariTime: ime event: Event
endTime: time chartType: string
date: date
values: int array
units: string

etinfo()
% i getEvent{int)

selectEventienum)

A 4

Display

refreshi)
addnewchart(bool)

h 4

k4

Event Storage

events: Event array

add{event) All Events Chart
delete(int)

parameter: String array
» value: int array
unit: String array

updateChart{Event)
updateDisplay()

Figure 4: Events UML

Our public interface that the users interact with will be with the display, the chart, and
the all events chart. When it comes to interacting with each of these, the user will not be
inputting any information of their own on this page. The user will only be able to select
what they want to do based on the options that they are given. This means that the
parameters for any of the functions involving display will only have a few set options.

The only interaction with the All Events Chart will be a scroll bar. This chart just displays
all of the events meaning what they are, the abnormal value received, and the units that
go along with that value.

The next part of the module that the user will be able to utilize is the individual charts
that display a graph of the event. These graphs will display the value in question over
the time of the event occurring. The chart will start blank and the user will be able to
select from the available events which one they want to display. This will use the
selectEvent function. This function will have an enumeration of all the available events
for the user to choose. Once the user chooses one the chart will then display this data
as a graph to the user.

The last part of this module that the user will be able to utilize is the ability to select the
chart currently being displayed. Since we do not know if the user running our application
will be on a mobile phone or a tablet this will allow the user to select what information
they need to view. The user will interact with the display class here and choose if they
want to view a different chart if they do then the display will refresh bringing up that
chart to the user.

4.3. Module: Summary Page
The summary page offers Honeywell technicians with a basic overview of engine data

and engine maintenance data. The summaries page also allows the technicians to add
comments to the data from this page,

FileParser

+ enginelata; Data

+ readi)
+ passinformation()

4

= “engineMaintData
" display Summary
— + numbdaintCand: int

+engineData + numExceeds: int
+ engineMaintData + numEvents: int
+ comments: String + numChips: int

_ _ v + numOilBypasses: int
+ display():)

engineData

+ serialNumber: String
+ aircraftiD: String

+ downloadDate: Date
+ engPosition: String
+ operator. String

Figure 5: Summary UML

The summaries page contains two tables, one for engine data and one for engine
maintenance. The engine data is akin to a configurations page, it contains info on the
type of engine and aircraft the technician is analyzing. The engine maintenance table
contains the real summary of the page. From this page the technician can instantly see
if any serious problems occurred during the flight. If the technician notices that the
number of exceedances and events is more than zero, he knows to visit those pages
and investigate further

4.4. Module: Bluetooth Connectivity

The Bluetooth module for our app is responsible for connecting to the Linux Virtualbox
as well as finding and displaying the local available Bluetooth connections. It uses one
small utility file named ConnectionThread. When the user interacts with this page they
see a list of available connections and connections remembered by their device. They
can tap on any of the devices on the list to establish a connection.

Android Application

Linux Virtualbox

bluetoothConnection

+ ConnectThread()

connectThread SendFile
+ bluetoothAdapter
: E:Eg}ggmggﬁﬁ: — Arrayﬁdapter<8_tring> + File
+UUID ¥ b;Dewces[]: String[]
+ ListView)
+ broadcastReciever + sendFile()

+ Button: Home

+ run()

+ getPairs():

+ enableBT();

+ buttons();

+ onCreate();

+ connnect(String);

Figure 6: Bluetooth Connection Module

Before the BluetoothConnection class can initiate a connection there are a number of
steps that need to be taken. First, the class calls the function enableBT() which prompts
the user for the apps permission to use the host devices Bluetooth capability. The next
step is to fill the list with the devices that the host device has paired with in the past. The
function getPairs() accomplishes this task by querying the host device for an array of
remembered devices, when the host device returns the device info the getPairs()
function adds them to the ArrayAdapter which is then displayed in the list. The final step
of setting up Bluetooth is to search for new devices, this is accomplished by the
broadcastReciever. As the broadcastReciever finds new devices it passes them to the

onRecieve() function which adds them to the list in a similar fashion to the getPairs()
function. When a user selects a device from the list the buttons() function passes the
devices name and mac address to the ConnectThread() function. This function stores
the host devices mac address and uses these two addresses to establish a connection
by calling the run() function. Finally, when a connection is established the Linux
Virtualbox automatically sends its file via the Bluetooth socket so it can be stored and
parsed.

4.5. Module: Exceedances Page

The exceedances module in our app will show if a parameter for the engine reached
above a certain threshold. Technicians will be able to see what these exceedances are
and view the details regarding them. These details include the time and date that an
exceedance occurred at and duration that exceedance occurred. The data for this page
is obtained from the FileParser.

FileParser
+ engineData: EngineData

+ read(): void
+ passinformation(); void

L 4
==(nfeface==

ExceedanceSummary
+ exclD: string ExceedanceDetail
+ date: Date
+ time: Time + parameter: string
+ peak: float —|_,. + value: float
+ duration: Time + Wnits: string
+ mc: int

+ display(): void

+ getDetail(): void

+ display(): void

Figure 7: Exceedances UML

There is not that much that can be changed about this page. The only interactable
object on this page will be for if a technician wants to view the details of an exceedance.
There will be a scrollbar on the ExceedanceSumary and the ExceedanceDetail pages if
the items for these lists become long enough.

5. Implementation Plan

With the module design in mind, the team was able to plan out the schedule for
implementing each module. The focus was to ensure that important modules and
modules that are relied upon by others were implemented first. The second focus was
to schedule tasks that can be worked on in parallel as much as possible, in order to

maximize group productivity. Below is the Gantt chart outlining the implementation plan
and timeline.

i Task Name | Week 1 | Week 2 [Week 3 l Week 4 ‘ Week 5 } Week 6 ‘ Week 7 | Week 8 | Week 9 IWesk TO‘Week 11|Week 12]Wsek 13|Week 14|Week 15[Week 16‘
Initial Implementation/Prototype

Bluetooth Connectivity
Bluetooth Data Transfer
File Parser

Data Display - Summary
Data Display - Exceedances
Data Display - Faults
Data Display - Events
Module Integration
GUI/Design Elements
Data Display - Additional
Application Testing
Acceptance Testing

Figure 8: Gantt Chart for Implementation Plan Timeline

The initial eight weeks of the semester will consist of implementing the application into a
working prototype. The initial focus (spanning Weeks 2-4) will be ensuring that
Bluetooth connectivity and Bluetooth data transfer work correctly, as these modules
cannot be tested via emulator. Once the Bluetooth functionality is working, the team will
finalize a format for data files so that the file parsing module can be implemented
starting in Week 5.

After work on the file parsing has begun, the team will be able to begin working in
parallel on the various data display screens which will span Weeks 6-8. As these
screens only receive data from the file parse module, and not each other, they can be
implemented in parallel without any conflict. Once these various pages are working, we
will begin to integrate the various modules in Week 8, which should consist of ensuring
that each page is accessible and that data is being passed properly to each module.

Once basic functionality is implemented, the team will begin refining the GUI and other
design elements beginning in Week 8 and continuing through Week 15. For the most
part, these should be tweaks that make look application look and feel better, so they
have a lower priority than modules that provide actual functionality. Similarly, the team
will begin extending and adding functionality beginning in Week 9 and continuing
through week 16. Functionality added in this stage is not the team’s main focus and will
be added (time permitting) throughout the testing stage.

In Week 9, the team will begin the testing phase, which will last through Week 15. The
application will be thoroughly tested to ensure that all requirements are met. Each

module will also be tested to ensure that all output is accurate and provides expected
results. Testing will be performed while keeping acceptance testing (Week 16) in mind,
to ensure the final product passes the acceptance testing.

6. Conclusion

Many people rely on aircraft to get from one place to another in a timely manner, so
making sure that they are safe to use is a critical task for many people. Engineers and
maintenance personnel need to make sure that the airplanes that they are working on
do not have any mechanical failures or faults that could result in an accident. To do this,
technicians currently use a piece of software called EEI to help identify problem areas.
Unfortunately, this piece of software is old and cumbersome. Blue Sky Group will
provide the owners of EEI, Honeywell, with a mobile application prototype to aid with the
modernization of EEI. The main task that Honeywell wants our team to accomplish is to
be able to download a file from a Linux computer onto a mobile device using Bluetooth.
To accomplish this task, our team will be using a python script on a Linux virtual
machine that will send a file over Bluetooth. This file will then be received by a mobile
device running android. This file will then be parsed and the data that it contains will be
used to create graphs and to fill tables so that airplane technicians will be able to easily
read the data and figure out what is wrong with the aircraft.

