
	
	 	
The	Virtual	Office	Door	|	Team	Conquistadoors	

SOFTWARE	TESTING	
PLAN	
James	Hauser,	Mitchell	Hewitt,	Nicolas	Melillo,	David	Snow,	Tyler	Tollefson	
	
Mentor:	Dr.	Eck	Doerry	
	
Clients:	Dr.	Eck	Doerry	and	Dr.	Michael	Leverington	
	
Date:	3/21/17	
	
Version:	1.0	

	 2	

Table	of	Contents	

1.	Introduction	...	3	

2.	Unit	Testing	..	4	

3.	Integration	Testing	...	4	

4.	Usability	Testing	...	6	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	 3	

1.	Introduction	
Our	project,	the	Virtual	Office	Door,	is	meant	to	serve	as	the	remedy	for	issues	that	arise	when	
non-direct	communication	is	a	major	factor	in	a	workplace	over	directed	communication.	From	
that	we	need	to	ask	the	question,	what	constitutes	non-directed	and	directed	communication?	
In	the	scope	of	our	project’s	problem	area,	directed	communication	relates	to	the	use	of	
various	technological	tools	used	to	relay	messages	to	colleagues,	students,	etc.	Non-directed	
communication	though,	takes	the	form	of	fliers,	sticky	notes,	bulletins,	and	other	physical	
media	that	would	be	posted	on	an	office	door	or	a	cubicle	wall.	With	that	being	said,	our	
primary	goal	is	to	not	replace	current	forms	of	directed	communication,	but	expand	upon	
current	technologies	by	merging	the	two	forms	together.	Our	Virtual	Office	Door	‘s	purpose	is	
to	effectively	be	a	method	of	directed/non-directed	communication	and	alleviate	the	stress	
that	comes	from	relying	on	non-directed	content.	
	
In	the	software	development	world,	software	testing	relates	to	the	idea	that,	while	finishing	a	
piece	of	software	is	paramount,	testing	makes	it	so	that	the	software	actually	functions	
according	to	previous	documentation	(requirements	document/software	design	doc).	From	
that	we	have	the	different	types	of	tests	to	be	performed:	unit,	integration,	and	usability.	Each	
of	these	types	of	tests	represents	a	different	layer	of	the	application	that	you	are	testing,	with	
unit	testing	being	the	smallest	components	possible	that	you	are	testing,	and	then	working	your	
way	up	from	there.		
	
Thankfully	with	our	web	application,	because	the	UI	libraries	and	backend	libraries	are	straight	
forward	and	handle	a	majority	of	error	checking	already,	doesn’t	require	as	thorough	testing	as	
we	originally	thought.	From	that	we	identified	that	we	would	need	to	do	the	following	testing:	

• Unit	testing	for	critical	widget	and	backend	functions.	
• Integration	testing	for	the	login	page	to	backend,	and	the	office	door	page	to	backend.	
• Extensive	usability	testing	for	the	front	page/login	and	the	office	door	

	
Our	specific	software	testing	plan	follows	the	regime	above	because	of	a	few	factors,	and	the	
reasons	are	detailed	below:	

1. Our	libraries	are	straight	forward	and	do	a	majority	of	the	error	checking	for	us.	We	
mainly	need	to	be	concerned	with	how	our	get/post	requests	are	functioning	and	some	
of	the	other	functions	we	implemented	ourselves.		

2. Our	application	is	mainly	end-user	facing.	This	requires	a	stricter	usability	testing	section	
for	our	testing	plan	over	the	other	two	sections.	However,	this	doesn’t	mean	that	unit	
and	integration	testing	won’t	be	conducted,	it	is	just	emphasizing	our	need	to	promote	
ease	of	use	in	the	application.		

3. As	we	have	been	developing	we	have	been	doing	minor	error	checking	to	handle	certain	
random	cases	where	we	might	run	into	an	error,	and	correcting	those	so	it	does	not	
occur	further	down	the	line.	

	 4	

	
The	following	sections	in	the	document	closely	represent	what	we	detailed	above	and	reflect	
our	rationale	for	our	testing	regime	closely.	Within	the	sections	we	outline	the	different	tests	
we	will	be	conducting	within	that	testing	type	and	go	into	further	detail	about	each	specific	
test.	

2.	Unit	Testing	
As	detailed	above,	our	unit	testing	isn’t	the	most	rigorous	testing	done	in	our	application,	in	
fact	it’s	quite	minimal.	Because	of	that	we	are	only	focusing	on	rigorously	testing	a	small	subset	
of	our	custom	implemented	methods	as	well	as	get/post	requests.	With	the	small	amount	of	
unit	testing	that	we	are	doing	we	will	be	creating	custom	built	unit	tests	and	not	be	using	a	
library,	simply	to	conserve	resources	and	to	keep	development	and	refinement	on	track.	
Detailed	below	are	the	unit	tests	we	will	be	conducting	and	how	we	will	be	conducting	them.	

• Testing	Get	requests	
For	testing	Get	requests,	we	know	exactly	the	return	data	types	that	we	will	be	
receiving,	so	structuring	the	tests	is	simple:	when	the	get	request	is	called,	does	it	return	
the	specified	data	type.	This	can	also	be	structured	with	erroneous	outputs	and	inputs	
but	does	not	need	to	be	with	our	application.	

• Testing	Post	requests	
For	testing	Post	requests,	it	requires	admin	access	to	the	backend	and	then	actually	
running	the	tests	in	the	application.	How	this	test	will	work	is	the	post	request	will	be	
sent,	with	data	encapsulated,	and	then	the	admin	will	check	the	backend	to	make	sure	
the	correct	data	type	was	received	and	the	data	can	be	processed.	

• Testing	other	minor	functions	
There	are	other	functions	created	within	our	application,	such	as	functions	to	return	a	
widget	type,	delete	and	item	from	a	list,	etc.	These	will	be	tested	by	passing	in	random	
widget	data	or	random	data	in	general	and	then	making	sure	the	error	checking	
methods	we	currently	have	in	place	catch	data	types	that	don’t	conform	to	the	
functions	return	type,	or	their	input	types.		

In	the	next	section	we	detail	the	different	types	of	integration	testing	that	we	will	be	
conducting	as	well	as	the	methods	we	will	use	to	go	about	the	testing.	
	

3.	Integration	Testing	
For	integration	testing,	the	primary	modules	to	be	tested	are	the	Google	API	login	functionality,	
the	widget	functionality,	the	database	functionality,	and	the	communication	between	these	
modules.		Testing	these	will	be	done	through	the	website	itself	and	looking	at	the	results	will	

	 5	

involve	accessing	the	database	through	the	Django	database	admin	permissions.		Certain	tests	
that	involve	repeating	an	action	many	times	in	a	short	period	of	time	will	be	done	through	an	
automatic	testing	software	suite	such	as	Selenium	or	through	written	scripts.		The	following	are	
possible	tests	to	incorporate:	
	
Tests	to	create:	
	

• Uploading	the	same	image	multiple	times.	
What	happens	in	the	database	when	uploading	the	same	image	multiple	times?	

	
• Uploading	different	images	sharing	the	same	name.	

What	about	uploading	different	images	but	they	all	share	an	identical	name?	
	

• Logging	in	and	logging	out	multiple	times	with	a	single	account.	
What	happens	if	all	you	do	for	an	hour	is	login	to	your	account	and	logout	over	and	
over?	

	
• Logging	in	and	logging	out	multiple	times	with	multiple	accounts	at	the	same	time.	

What	happens	if	you	do	the	previous	but	with	multiple	accounts?	
	

• Adding	a	widget	and	removing	multiple	times	
What	happens	when	you	add	a	widget	and	remove	it	hundreds	of	times	in	a	short	
period	of	time?	

	
• Putting	as	much	information	as	possible	into	a	widget	

Try	putting	megabytes	of	text	data	within	a	widget	and	see	what	happens	when	the	
database	receives	it.	

	
• Putting	database	compromising	information	inside	a	widget	

If	the	user	knows	what	kind	of	database	we	are	using,	what	happens	if	you	put	
procedure	calls	or	similar	database	specific	data	inside	a	widget?	

	
• Putting	database	compromising	information	inside	profile	textbox	

If	the	user	knows	what	kind	of	database	we	are	using,	what	happens	if	you	put	
procedure	calls	or	similar	database	specific	data	inside	a	profile	edit	textbox.	

	

	 6	

• Trying	to	add	the	same	widget	multiple	times	
The	same	widget	isn’t	allowed	but	what	happens	if	you	try	to	add	it?		Is	there	a	way	to	
forcefully	add	a	widget?	

	
• Making	widgets	absurdly	big	or	absurdly	small	

What	happens	when	you	try	to	make	widgets	really	small	or	really	big?		Is	the	data	
transmitted	properly?	

	
• Putting	widgets	off	screen	

What	about	when	putting	widgets	off	screen?		Is	that	allowed	and	what	happens?	
	

• Logging	into	the	website	on	separate	accounts	on	separate	browsers	on	the	same	
computer	
What	happens	when	the	website	recognizes	multiple	accounts	from	the	same	IP?	
	

After	creating	the	above	tests	we	needed	to	look	at	how,	after	everything	is	integrated	
successfully,	to	test	our	application	for	ease	of	use	and	cleanliness.	This	is	done	through	
rigorous	user	testing	with	multiple	test	end-users.	
	

4.	Usability	Testing	
For	this	specific	type	of	testing,	we	decided	that	the	best	way	to	go	about	it	was	to	have	actual	
users,	in	this	case	teachers,	set	up	an	office	door	and	test	it	with	their	students.	From	that	we	
could	gain	feedback	from	the	users	on	the	look	of	the	site,	how	it	navigates,	and	the	look	and	
feel	of	the	widgets.	If	possible,	we	want	to	have	a	class	and	professor	use	the	website	over	a	
period	of	time	of	one	to	two	weeks	and	at	the	end	of	the	testing	period	present	a	survey	with	
questions.		Our	primary	plan	is	to	create	our	survey	through	Google	Forms	so	at	the	end	of	the	
survey	access	period	we	can	analyze	the	answers	as	a	whole	and	look	at	comments	at	an	
individual	level.	
For	the	professor	the	survey	will	ask	questions	such	as:	
	

• Ease	of	logging	in	
• Ease	of	adding	widgets	
• Ease	of	changing	widgets	
• Usefulness	of	the	website	as	a	whole	
• Overall	experience	using	the	website	

	 7	

• A	question	for	each	main	page	asking	overall	appearance	of	the	webpage	
	
Each	question	will	be	answer	on	a	1-5	scale	with	1	being	very	poor	and	5	being	very	
good.		Along	with	each	question	a	text	box	will	be	provided	so	the	professor	can	give	any	
desired	feedback	such	as	improvements,	criticism,	and	more.	
	
For	the	students	they	will	also	be	given	a	survey	but	with	questions	from	the	point	of	view	of	a	
viewer	of	doors.		They	can	have	questions	such	as:	

• Appearance	of	the	website	as	a	whole	
• Appearance	of	individual	web	pages	
• Usefulness	of	viewing	a	door	
• Mobile	appearance	
• Website	responsiveness	
• Mobile	responsiveness	

	
Similar	to	the	survey	for	the	professor,	each	question	will	be	on	a	1-5	scale	and	along	with	each	
question	a	textbox	will	be	provided	so	the	student	can	give	any	further	feedback.	
Based	upon	the	usability	testing	response,	changes	to	appearance	or	functionality	can	be	
altered	to	improve	the	usability	of	our	capstone	product.	
	
From	the	three	types	of	testing	above	we	will	be	able	to	effectively	resolve	any	issues	that	
occur	within	our	application,	and	make	sure	that	it	is	deployment	ready	come	the	end	of	April.	

