

The Virtual Office Door | Team Conquistadoors

SOFTWARE DESIGN
DOCUMENT

James Hauser, Mitchell Hewitt, Nicolas Melillo, David Snow, Tyler Tollefson

Mentor: Dr. Eck Doerry

Clients: Dr. Eck Doerry and Dr. Michael Leverington

Date: 2/5/17

Version: 2.0

 2

Table of Contents

1. Introduction .. 3
1.1 Solution Overview ...4
1.2 Requirements Overview ..4

2. Implementation Overview ... 5

3. Architectural Overview .. 6

4. Module and Interface Descriptions .. 7
4.1 Presentation ..7

4.1.1 Google Login API and User Profile System .. 8
4.1.2 The Virtual Office Door.. 9

4.2 Application and Data Storage ... 10
4.2.1 Models ... 11
4.2.2 Serializers .. 12
4.2.3 Views ... 13
4.2.4 Urls .. 15

5. Implementation Plan ... 16

6. Conclusion ... 17

 3

1. Introduction
In many large organizations employees interact and reside in large physical office spaces that are

often populated by cubicles and large areas where employees of the organization can meet and

discuss ideas or issues. However, in most organizations cubicles and even office doors serve as a

valuable tool for communication between workers and can help convey urgent information to

coworkers and colleagues. This physical office door space is not only seen in the professional

world though; it is heavily used academia as well. Office doors used by teachers at universities

are often used to communicate with students about a variety of topics ranging from office hours,

class announcements and even the occasional cartoon or comic strip.

This is where our client, Dr. Michael Leverington comes into play. A past teacher at the

University of Nevada, Reno and a new professor at NAU. Dr. Leverington’s main business is

teaching classes, within that though resides a far more important business, communication with

students. Through this business of communication Dr. Leverington and other teachers convey

updates about students’ classes, grades being posted, and other class related information.

Academia is unlike most other businesses though, in 2015 NAU alone accepted 5,141 new

freshman students1. With class numbers increasing on a yearly basis it becomes more difficult to

communicate with larger groups of students, which can lead to a decline in student performance

(missing due dates, class-wide messages, etc.). This is only one example of the multitude of

problems that Dr. Leverington faces with the current methods of communication at his disposal.

Specifically, at NAU as well as Dr. Leverington’s previous school, the

major limiting factor in communicating with students just so happens

to be the physical door space, or the professor’s office door. A prime

example of such a situation is represented in Figure 1, an office door

that has a multitude of sticky notes attached to it. This kind of clutter

can not only be confusing to students but also to the office door owner

themselves. However, a cluttered office door is only one issue that

occurs when relying on a physical space for teacher/student

communications, some other issues are detailed below:

1. The door owner physically has to be at their door to post sticky

notes, i.e. “Back in 15”, “Office hours cancelled”, etc. or the

owner needs to send out a mass email to their audience to alert

them.

2. There is limited space on an office door, and much like in

figure 1, a door owner could have a multitude of different

messages that they could need to convey to their auidence.

1 Source: http://news.nau.edu/nau-breaks-enrollment-records-welcomes-largest-freshman-class/#.WJtS67YrIp8

Figure 1: A cluttered office door

 4

3. In order to view sticky notes, a office hours schedule, etc. it requires a person, who may

be under a time crunch, to actually visit the door. This situation only worsens as soon as

the person realizes the door owner is not in their office and they will have to make time to

come back later.

1.1 Solution Overview

To combat the previously detailed problems our team, in conjunction with our sponsors have

detailed a solution to combat communication issues in academia. Our solution is a web 2.0

application that functions as a virtual office door, which would allow the user to customize their

door with widgets that can display different information to their auidence.

In addition to that our software enables working environments to communicate information that

would conventionally be transmitted physically to communicate that information through the

internet. This allows any person to receive the information put out by another person regardless

of where the two are located on the planet.

We have also designed this application so that it complements other channels of communication

rather than competes with them.

For example, our application provides basic messaging, social interactions as well as

professional announcements in a way that focuses on content directed to specific known

recipients and making our application’s content visible to visitors of the office door whether they

are known or unknown.

1.2 Requirements Overview

Once we had successfully outlined a solution we needed to generate base requirements for our

application. The following list are a few of the user domain requirements for our project:

 Ease of Use

o A door owner should be able to edit information on their door easily and in a

timely manner. This also entails presenting information to a guest of the door in a

clean and concise manner.

 Notification System

o This component would take the form of a simple email communication sent to

subscribed users of an office door. At the same time this same system would

allow updates to be sent to users on a given time frame.

 Cloud based architecture

o Not only should the system boast ease of use but it should also boast speed. That

is why a constraint on the solution is that is is hosted in the cloud and thus can

easily be deployed anywhere, and it can run at speeds not normally attainable

when hosted on a school server.

 5

This document however is not specifically about what the requirements of our solution are, but

this document is here to serve the purpose of HOW we are implementing out solution. Coupled

with high level architectural design sections as well as the structure of individual components,

this document will convey how we are implementing our solution to the above problems. This

document will also outline major project milestones and the timeline in which those milestones

are expected to be complete.

2. Implementation Overview
When coming up with our implementation, our primary objective was to identify

functions and packages that other people have already created for other people to use that would

help streamline our entire development process. We knew that the more time we could save

using publicly available packages and frameworks, the higher the likelihood that we could finish

a quality website that works as desired by our clients.

The Django Web Framework will allow us to build a scalable, secure web service that

will allow for faster development of the components of our application. Django includes an

HTML templating system to allow multiple pages to inherit from a base HTML file, and allows

conditional and iterative content display based on information passed through its Model-View-

Controller system. There is also the ability to specify url patterns through Django, allowing us as

the developers of our application to control what urls users can access to view specific

functionalities. We will be using the Django-filter package to easily re-use filters on querysets in

a controlled manner to minimize the data being passed around between different Django data

queries and page renders. Using Markdown, we will be able to write HTML plaintext through

python functions within our Django .py files and functions.

To speed up content updating and delivery, we will be utilizing Django REST framework

to implement RESTfulness (REpresentational State Transfer) to communicate information

regardless of the end-user's sate through API calls. Using such technology with Django will

allow door owners to securely update their doors without reloading a web page, allowing for

faster content management.

To utilize the API calls, we will be using jQuery to dynamically send calls to post and get

data from the serializers. To display the content on a user's virtual door, we will be utilizing

Webix, a JavaScript and styling tool, to create displays for individual door widget contents. To

organize these widgets, we will be using Gridstack.js so that a door owner may organize their

door widgets on a grid and the display will be consistent regardless of browser size.

To host this website, we will be using Amazon Web Services which allows a free tier of

web hosting that we can deploy our website to. To add a strong layer of security, we will be

 6

utilizing Google's login API to ensure that our website's user login is as secure as possible for our

application.

These different technologies provide a significant level of abstraction to make our

development of this application timely and efficient. Additionally, these tools will allow us to

make the application both fast and secure so that content is delivered quickly, and the database is

accessed and updated securely. Our goal is not to reinvent the wheel, but to create a good

website that works properly, and the use of these different JavaScript libraries, python libraries,

and online services will enable us to do so quickly.

3. Architectural Overview
To continue the process of detailing our applications architecture, we now need to go into a

broad architectural overview that encompasses basically how our applications parts interface.

The following diagram is the applications workflow:

Figure 2: Architectural schematic detailing the flow of a request through the Virtual Door architecture.

Our system design closely relates to a multi-tiered client-server architecture. The flow of a

request is as follows (Figure 2):

1. The user's system, via web browser, makes a request for either a webpage or a structured

REST API data request [User Request].

2. Then the request is routed to the Amazon Web Services (AWS) Cloud platform where a

virtual machine running our application/backend is being hosted [Cloud Compute layer].

 7

3. The Django REST API analyzes the request and figures out what needs to be done to

handle it appropriately [Application Services I].

4. The Django system then accesses data storage (for either reading or writing data based on

the type of request) via a SQLite database file being stored on the virtual machine [Data

Storage].

5. If the original request required the sending of specific data back to the client system, the

Django system will package up this data and send it off; or if the original request was for

one of the site’s pages, Django will template the page with applicable information (based

on user permissions or other factors) and send the page to the client [Application Services

II].

6. The Presentation layer handles page population and structuring, script initiation (ex:

scripts will handle AJAX calls from this layer to the application layer), data unpacking

from returned server requests, and all user interaction on the client system [Presentation].

This system flows full circle, meaning after the user has requested a door page the presentation

layer can then make API requests cycling the process over again. Essentially our architecture

represents the conventional three-tier client-server relationship many systems use today. We

decided to attempt a version of this architecture because of its well know success and modularity

in modern page development.

4. Module and Interface Descriptions
From the six major components of our architecture, detailed in the previous section, we can

identify three specific components of our application:

1. Presentation: jQuery, bootstrap, JavaScript, and Webix

2. Application: Django and Python

3. Data storage: SQLight

It should be noted that the Application and Data Storage are in the same section. This is because

our database tables are extracted away by Django and are never directly interacted with, thus the

two are grouped together. In the following sections the different components are detailed along

with their functionality and setup.

4.1 Presentation
Our first major component of our architecture is the Presentation, or the customer facing

application. This component has major significance in our system because it is what the user will

see when visiting our webpage. The Presentation component is broken down into two sub-

components, the Google Login API /User Profile System and the actual virtual office door itself,

both of which are detailed in the following sections.

 8

4.1.1 Google Login API and User Profile System

The responsibilities of the login-api is to allow door owners to login in with a secured account so

they and only they can edit their own personal door. In addition to this the login api

distinguishes the difference between door owners and door viewers by looking at the currently

logged in account and comparing it to the owner of the door being viewed by the current

account.

The login api will let users with Google/NAU accounts to create a user account on our

website. Once logged into the website, the user will be asked questions such as what is their

preferred name, the preferred url of their door, and similar pieces of information. Once this

information is acquired from the users, the login api’s secondary purpose is to then send this

information to the back end Django database for storage and future reference.

The figure below shows the rough layout of how the profile aspect of the website will

function. First a Django Python server will be run on a virtual machine. Whenever someone

visits our site they will first arrive at the Django Python server as demonstrated in the

figure. Upon logging into a google account, the Django Python server queries the Google+ API

Cloud and returns with verification on whether or not the attempted logon is a valid Google

account or not. If the Google+ API Cloud returns with positive verification, the python server

then reroutes the user to a new HTML page to edit their profile information unique to our

website. As shown by the figure, once this profile information that is unique to our website is

submitted, it is sent to the Django Database backend.

Figure 3: Login/User Profile design

 9

From the perspective of the users of our website, the login Google+ API provides a literal

window that the user can safely and securely login to a pre existing Google account. Designing

around a preexisting login technology creates peace of mind for users of our website.

4.1.2 The Virtual Office Door

This specific component of our overall architectural design is the meat of the product. When the

user logins in to their account they will be directed to their personal office door so they can

customize it and add widgets to the page. Aside from that this component directly interfaces with

the Application and Data Storage components the most, as it requires direct communication with

both. The Virtual Office door is also where the complex UI elements, the widgets, reside. Each

widget represents a sub-component of the Presentation component, with each having specific

functionality and ways to interface with the Application component. Below is the UML diagram

for this component:

For this specific component, the main public interfaces are outlined in the diagram above, to

reiterate these are: Sticky Note, Picture, Calendar, and Notification. All four of these interfaces

Figure 4: Virtual Door UML

 10

represent what the user is going to see on their page as well as what visitors to the office door

will see. We go into further detail about each specific widget below:

 Sticky Note

Service Provided: convey short messages to visitors of the office door

Workflow: User initializes the widget on their page, then click a button/edits a text

field/etc. and the content in the read only text field is updated with the new message. The

old message is replaced by the new text and cannot be recovered. Guests should only be

able to see the widget contents.

 Calendar

Service Provided: event planner and organizer

Workflow: User initializes the widget on their page, once initialized events can be added

to the widget by typing in an event and date. The events appear in a list that is easily

stored in JSON format. When an event has passed, the user can remove the event.

 Picture

Service Provided: display an uploaded picture to guests of an office door

Workflow: User initializes the widget on their page, then the user can then upload a

picture to the widget that fits within certain size constraints. The picture is displayed to

guest users and does not allow guest users to upload photos.

 Notification

Service Provided: communications between door owner and guest about door updates

Workflow: After the user initializes the widget, it simply displays a form to the guest

users that takes in an email, filters it, then sends the email to the database. Once in the

database the email is used to send communications via email. Minimal setup is needed

from the door owner.

The virtual door component of the Presentation is what utilizes most the technologies listed in

the Presentation description. Each widget is a Webix widget that has underlying JavaScript

functions implemented, this also applies to the structure of the actual door itself. The door

utilizes bootstrap technologies as well as JavaScript and Gridstack (containers for the widgets) to

organize whichever widgets the door owner wants. Aside from the door itself, the Google Login

API and the User Profile editing utilizes JavaScript to communicate information through the

Application component and into the Data Storage component. The next main component that we

will discuss is the Application component, which serves at the communication between the

Presentation and Data Storage component.

4.2 Application and Data Storage
In this section, we go into further detail about the structure of the Application and Data Storage

components, both of which directly interface with each other. The main technologies used in

these components are Django, Python and SQLite, all of which are used to facilitate storage of

user data that is received from the front end. Application and Data Storage are further broken

 11

down into 4 subsections that cover how the backend application and database work in

conjunction, all of which are detailed below.

4.2.1 Models

The models are primarily a template of how the database stores data. Each defined model serves

as a type of object stored in the database. These objects are necessary to interface with the

database by different components of our Django application, and the models provide a means to

extrapolate information from individual objects as necessary and on demand.

Figure 5: Model Layout

 12

Each model in figure 5 is public, and functions inherited from the Django Models in each Model

permit datasets of each model to be queried, filtered, and ordered by other modules used in the

Django application. In figure 5:

 Layout model is where the information to display the location and type of corresponding

widget denoted by the content type field. By using this multiple instances of this model,

the location where a door owner has placed different kinds of widgets can be saved,

edited, and retrieved.

 The NotificationWD model stores what door it belongs to, the email a user has entered,

and a Boolean to determine whether they are subscribed for notifications on the door.

This will permit sending email notifications to someone who signs up for them on a door,

or not if they are unsubscribed.

 StickyWD is a basic widget that contains text specified by the door owner in the field

noteData, and what door this information corresponds to: the foreign key to profile.

 ImageWD operates similarly, but instead of text, it stores the url of the image uploaded

by the door owner to display on their virtual office door.

 CalendarWD is used by a door owner to store the date of an event in its own field, with a

message field of what that event entails. There is also a link to the corresponding door

that this record will be displayed on.

 The Profile model serves as a glue between the user's account and their door, and

determines what is displayed on their door page that is not contained in a widget. It stores

a reference to the profile's corresponding user, a firstname and lastname the door owner

can choose, the url suffix that their door will be displayed at, a background image for

their door that they can choose, and a Boolean that determines whether they own a door.

By using these models together, our implementation will offer users a large amount of control

over what is displayed on their office door page.

4.2.2 Serializers

The serializers inherit from Django rest framework's model serializer, and base their keys for

JSON key-value pairs off specified variables in a specified model.

Serializers specify how to format data associated with a model through specific fields of that

model. Used in a corresponding view, serializers are public methods that tell a serializing view

which fields to display and which fields to hide when turning a queryset into JSON or JSON into

data in the database. In figure 6, the LayoutSerializer class specifies what model it is serializing

(Layout), and the different fields of layout that it needs to serialize.

By using serializers, Getting and posting data is significantly trivialized to the point where

creating an instance of a defined serializer and saving that reference or returning the instance's

data makes the necessary selection or update in the database. The process is the same for

 13

NotificationSerializer but for accessing the NotificationWD model, StickySerializer for

StickyWD, CalendarSerializer for CalendarWD, and PictureSerializer for PictureWD.

Figure 6: Serializer UML

4.2.3 Views

Views in Django are what handle specific requests made to urls. Specifically, they are the

methods and classes that are called when a certain url is requested by a user. Views allow us as

the developers to control what happens depending on the type of request a user makes (e.g. GET,

POST) and return a response or call to render a page as we see fit.

The access of a specific url pattern specified in urls.py will call a view it is coupled with. For this

reason, all views are public as they are used in the urls module of Django to display or return

specific information. Our API views will handle serialization using Django REST framework's

serializers, and the serializers outlined in the previous section. These API views include:

 The LayoutAPI inherits from Django REST framework's APIView, and handle

specifically handles GET and POST requests. Upon a POST request, it is passed in JSON

data, parses it with the LayoutSerializer, and saves the posted data into the Layout model.

It returns either a success or failure depending on whether the data was valid and by the

corresponding door's owner. For GET requests, it returns the Layout model entry of the

page for the corresponding door owner, serialized as JSON through the LayoutSerializer.

 14

 NotificationAPI also inherits from Django REST framework's APIView, and additionally

only handles GET and POST requests. When this view receives a POST request, it takes

the requester's POSTed email and checks to see if there is already an entry for them in the

NotificationWD model entries for that specific door. If there is and the person is already

subscribed for that door's notifications, it does nothing because nothing is necessary. If

there isn't, an entry for that email data and the corresponding door is created in the

NotificationWD model's entries. Upon a GET, all the NotificationWD entries for the door

are returned, but only if the requester is the door's owner.

 PictureAPI inherits from the same class and handles the same request types as the above.

When it receives a POST request by the door's owner, it updates the corresponding entry

with the associated picture or creates a new one if none exists and returns a success or

failure if the uploaded file was valid. When it receives a GET request, it returns the image

data for the associated door in the associated door's PictureWD entry.

 StickyAPI behaves the same as the PictureAPI view, but passes around text instead of an

image.

 CalendarAPI has the same inheritance and request types as all the above views. When a

POST request is made to this view, a new entry for the associated door is made in the

CalendarWD entries with the date and message passed in through the CalendarSerializer,

but only if the associated door's owner made the request. When this view receives a GET

request, it retrieves, serialized, and returns all CalendwarWD entries beyond the current

date for the associated door.

Figure 7: Django framework diagram

 15

Additionally, there are more views to display the web pages’ profile and home, as well as the

createprofile and editprofile pages.

 The home view renders the home page of the website, which has a link to login. The

context is JSON data that we pass into the page as it is being rendered.

 The profile view renders the profile html page of the website, and its relevant profile

information for the user (that is logged in) is passed in through as JSON.

 The createprofile view renders the profile creation page, and is passed in a Django form

that the same view handles if the request made to the view is a POST. If this request is a

POST, it takes all the posted data and creates a profile entry in the database for the user

with all of the input fields, then redirects the user to the profile view's page.

 The editprofile view renders similar content to the createprofile view, but the form passed

in has the default values of the user's profile information. When this view is POSTed to,

it updates the corresponding Profile model entry in the database.

These views provide the functionality of both our APIs for use in RESTfulness as well as

displaying each page, allowing data to be passed into the views and the database to be updated.

4.2.4 Urls

We can specify what urls perform what functionality (through a class/method in views) by

setting up an url pattern stored in a list in urls.py. An url pattern can either perform just that

function, or it can send data (e.g. A primary key) through the url to the view class or method it is

calling. This allows us to have significant control over what we show users where, and how we

can control what we show them. In our application, this is done through these url patterns calling

the corresponding views:

 "^$", views.home

 "^profile/$", views.profile

 "^profile/create$", views.createprofile

 "^profile/edit$", views.editprofile

 "^api/layout$", views.LayoutAPI

 "^api/notification$", views.NotificationAPI

 "^api/sticky$", views.StickyAPI

 "^api/calendar$", views.CalendarAPI

 "^api/picture$", views.PictureAPI

 "^soc/" – access to the social_django package which handles information routed between

the django application and google's login API, allowing for Google authentication

 16

5. Implementation Plan
After we had laid out the foundation of our architecture we began creating milestones that

culminated to all the functionality of our application being complete roughly by mid-March. The

following Gantt chart outlines our development cycle for this semester:

Figure 8: Current Dev Gantt

For our main development cycle this semester, which includes everything between the 2nd week

and 10th week of development, we are on track and making constant progress. We have

successfully finalized the main functionality of the login API and front page as well as creating a

functional backend application and setting up a database.

As of today, the widgets are still undergoing development, while at the same time research into

how the Login API/front page is being completed (not shown on Gantt). In addition to that we

are in the process of integrating the Application component with the Virtual Door part of the

Presentation component. This consists of making sure the virtual door is ready for templating

with Django, and verifying that widgets can send and receive data from the Application/DB.

Once we are certain that milestone is achievable we are then going to integrate all components of

our architecture with each other to make a working demo by week 10 in March. After week 10

there is a gap because of spring break, but as soon as we return from that we plan to dive into

user testing immediately. User testing will only be conducted for about a week, which after

gaining feedback, we will do bug fixing and refinement. That section, overlapping with

documentation, consists of taking user feedback and improving upon our current design, and

implementing any lower priority features.

Then come the beginning of May we will be prepping for release of the application, which will

be a stable version of our vision. The Gantt chart does also consider slippage during the

development time, hence why bug fixing and refinement is a larger segment. Our main goal is to

 17

have a stable and functional release come the 1st week of March; however, if need be we will still

be on schedule if development is pushed back into week 10.

6. Conclusion
In academia, professors rely on their office door to communicate sometimes urgent messages to

their students, such as “Back in 15 minutes”, “Office hours cancelled”, etc. These messages can

sometimes be lost in translation or even go unnoticed for extended periods of time, which leads

to a waste of time and loss of productivity. In our current virtual world, there is no application

that serves as a medium of virtual communication between the owner of an office door and

persons that wish to view the door. The main problem that our clients are specifically facing is:

time is literally money. When someone posts urgent or critical messages on an office door these

usually get overlooked, or are not seen at all. This leads to a lack of communication and

organization which then leads to time being lost trying to find a fellow professional even if they

are just away for 5 minutes. Our solution to this problem is to create a web application that

serves as a virtual office door, where a user can post quick notes, their calendar, or whatever else

they deem necessary.

To implement such a solution, we are utilizing a multitude of new technologies, ranging from

Django and Python for the backend application to JavaScript and several libraries for the

frontend UI. Taking those technologies, we are going to develop a web 2.0 application that

contains the following features:

 A configurable virtual office door that boasts ease of use and speed

 Customizable widgets that allow for effective communication between door owners and

guests

 Simple notifications, for guest users who opt in, that alert a guest on door updates

 A user friendly and clean UI that will promote effective communication

 A backend application that facilitates fast loading times and reliable data

Some challenges we might run in to when implementing such an application can range from time

constraints to the limits of our current technologies. Specifically, if development is not

completed by the end of March it will be significantly more challenging to deploy a ready to use

application. In addition to that, if one of our current technologies turns out to have been the

wrong choice, that can set our development back weeks to find a replacement. This also leads

into the concern that our application might not even see maintenance and use after deployment;

however, these are all concerns that we will address when and if they arise.

The Virtual Office door is on track with development and should have a functional application

created by the beginning of March. Once the functional application is created we can focus our

efforts on refining the application and implementing user suggestions. Team Conquistadoors is

very optimistic that the project will be completed and ready for deployment by the beginning of

May as scheduled.

