

Software Design Document

Christian Buskirk
Peter Bellagh
Chris Blazer
Jorden Kreps
Curtis Rose

Faculty Mentor/Project Sponsor Viacheslav “Slava” Fofanov, PhD

Glossary 2

Introduction 3
Who we are 3
Our Client 3
Big Data 4
Leveraging of High Performance Computing 4
The Problem 5
The Solution: Orchard 5

Implementation Overview 6

Architectural Overview 7
Architecture Diagram 7
Architecture Discussion 8

Key responsibilities and features 8
Main communication mechanisms and information flows 9
Architectural Influence 10

Module and Interface Description 10
Overall UML Diagram 10
Driver Module 10
Setup Module 11
Input Files 11
Input File Formats 12
Luigi Generator 13
Branching 14
Running 15

Implementation Plan 16
Implementation Schedule 16

Conclusion 17

1

1. Glossary

Configuration File​ - A file that contains data about a specific user, program, computer, or other
file. They are generally read at startup by the operating system and other applications in order
to customize the environment for the user.

FASTA ​- The standard text-based file format used in bioinformatics, where each nucleotide or
amino acid is represented using an alphabet of ‘A’, ‘C’, ‘G’, and ‘T’.

FASTQ ​- A merging of the FASTA format with the read quality data given by the sequencing
machine, both still using single characters per base.

HPC Cluster​ - A “High-Performance Computing Cluster”; a set of connected computers that
work together such that they can viewed as a single high performance system or
“supercomputer”.

Luigi​ - A Python module that helps build complex pipelines for batch jobs. It handles
dependency resolution, workflow management, and visualizations. This is the pipeline
management tool that we have selected for this project.

Orchard ​- A pipeline creation tool with a command-line interface. Assists in creating proper
branches and file structures across multiple runs of the same dataset.

Pipeline - ​A pipeline consists of a chain of processing elements arranged so that the output of
each element is the input of the next.

Read Set ​- Genetic information pulled from a biological sample, produced by High Throughput
Sequencing Platform(s). Here this is data in FASTQ format, produced by Illumina brand
machines ​(http://www.illumina.com/)​. This will serve as the primary set of ‘queries’ for
metagenomic analysis that is at the core of this project.

Reference Database​ - A database that holds a large number of genetically classified
organisms. Read sets are queried against these to identify organisms in biological samples.
This will serve as the primary ‘subject’ set for metagenomic analysis.

Scheduling System​ - Software that assigns processes to resources on HPC clusters, such as
time (known as walltime), RAM, and CPU’s. The software can terminate processes that use too
much of any given resource.

2

http://www.illumina.com/

SLURM​ - An open source HPC cluster management and job scheduling system. SLURM
allocates resources to users interested in using a computing cluster, so that many parties can
have access to its cores and computing power.

State System - ​A system/program that can be in one of a finite number of states. The
system/program can transition from one state to another. In our case, the system can transition,
linearly, from one state to another while saving the output of those states into files.

Taxonomic Classification ​- Classification of reads (biological sample data) into the species
they belong to.

UML​ - Unified Modeling Language, a general-purpose modeling language used to provide a
standard way of visualizing the design of a system.

Walltime​ - The amount of time allocated to a process by a scheduler in which the process must
be completed. It the process does not finish before the walltime is reached, the process will be
terminated.

2. Introduction
2.1. Who we are
We, the AGTC Genetic Taxonomic Consultants capstone team, are a team of
undergraduate students at Northern Arizona University tasked with creating a pipeline
management system to handle the massive amount of data generated and analyzed
during the taxonomic classification of metagenomic samples. We are:

● Christian Buskirk - Team Lead
● Peter Bellagh - Administrative Assistant
● Chris Blazer - Chief Communication Officer
● Jorden Kreps - Computing Cluster Specialist
● Curtis Rose - Luigi Specialist

2.2. Our Client
The Fofanov Bioinformatics Lab is part of the School of Informatics, Computing, and
Cyber Systems at Northern Arizona University. The lab has a focus on the identification
of microbes and other life forms in a given sample through the use of High Throughput
Sequencing technologies that allow for the determination of all genomes present in a
sample simultaneously instead of checking for each potential pathogen individually. This
process generates a tremendous amount of data per sample and ​the problems inherent
in the processing of large amounts of data led to them contacting us through Dr.
Viacheslav “Slava” Fofanov and the Northern Arizona University Capstone program in
search of a potential solution.

3

2.3. Big Data
Bioinformatics is the science of collecting and analyzing complex biological data. Recent
advances in Genomics, particularly in the area of High Throughput Sequencing, have
produced machines capable of producing billions of bases (characters) of genetic code
in a matter of days (see Figure 2.1). Thus, even a single small sample can contain
genetic information well in excess of a terabyte, after which that data must be queried
against reference databases of several hundred gigabytes in order to match the
individual genetic strings present in the sample with their matching references for
identification, and to correctly classify the sequence. This process can be made
manageable mainly through the leveraging of HPC clusters to process the terabytes of
data present at any given point in time. Through this analysis, newer fields, such as
pathogen tracking, are able to make greater progress than ever before, allowing for a
level of tracking specific variants of diseases that was previously not possible.

Figure 2.1: Illumina MiSeq, NextSeq, and HiSeq Sequencing Systems.

2.4. Leveraging of High Performance Computing
A common approach in dealing with the large data sets found in Bioinformatics is to
leverage larger HPC clusters to aid in processing the terabytes of data that need to be
handled. These computers can have hundreds of individual cores present, with several
terabytes of RAM available. However these clusters come with another issue of their
own: that of scheduling. Due to the large demand for the power of these HPC clusters to
be applied to many different potential research topics, advanced scheduling systems are

4

utilized to run smaller tasks as space becomes available. Each task is allocated a
certain number of cores, amount of memory, and amount of walltime, after which the
process will be released from memory and another begins. Any research that is done by
our client in this HPC cluster context, therefore, must be able to address the issues
caused by dealing with the scheduling program itself as well as any issues created by
limitations such as wall time and potential losses that may be caused if violated.

2.5. The Problem
The client has a set of modules that are used to analyze DNA data. The running of
these modules can take up to three weeks on a HPC cluster. If the run does not
complete in the time allotted, valuable resources are wasted. This system need to be
managed in such a way to save these resources. It needs to be able to pick up where it
left off if the run does not complete. It needs to be able to run sets of modules without
rerunning all of them if certain parameters are changed. And finally, it needs to be easily
usable and maintainable. In its current form, the system is a set of individual modules
with no central manager.

2.6. The Solution: Orchard
The solution to this set of problems is to create a pipeline manager that controls the
execution, branching, and state saving for the existing system while making it easy to
use and easily maintainable. We will be using Luigi, a 3rd party pipeline manager, to
control the execution of the modules. We will design our solution, ​Orchard​, to take in
configuration and link files that contain details about the modules and the current run of
the system, and then generate a set of Luigi files accordingly. Orchard will automatically
branch when necessary based on changes made to the configuration file. The
branching will be handled using an intuitive folder structure, configuring “branched” Luigi
files with appropriate paths that ensure it will not execute redundant modules. Luigi
intrinsically solves the state saving problem, it does not run tasks if the their output file
already exists in the working directory. While Luigi is the pipeline manager, Orchard is
the Luigi file generator. It will dynamically create Luigi files to manage the pipeline
efficiently and effectively.

In short, though we are using the third party branch manager Luigi, Luigi does not meet
all the requirements for this project. Our solution, ​Orchard​, will meet the following
requirements that are not met by Luigi:

● Branch management
● Easy configuration of runs
● Modularity at a pipeline level
● Tracking of previous runs
● Easy to use documentation

5

3. Implementation Overview
Orchard is a pipeline creation tool that creates a Luigi pipeline that then runs our client’s
project. Luigi is a pipeline management system developed by Spotify that is used in
various applications and controls the flow of a project by handling the inputs, outputs and
dependencies between different modules. Our pipeline creation tool will take, as input, a
configuration file and a link file that it uses to create the Luigi pipeline. The configuration
file defines the inputs and outputs of every module in the project while the link file
defines the dependences between the modules. These two files define a Luigi pipeline
and our project will interpret these files to create the correct Luigi pipeline. It is important
to note that our pipeline creation tool will be able to be used for any project, not just our
mentor’s project.

Figure 3.1: Overview of a pipeline linking, showing how each module depends on

another

Our client runs his project on the Northern Arizona University’s HPC cluster called
Monsoon. Monsoon uses a scheduling system called SLURM to handle the allocation of
resources to different projects that are being ran at the same time. Some of these
resources are memory, time, and number of CPUs. The time limit is known as the
“walltime” and it is something we will need to handle. If a module is halfway through
writing a file when it reaches the walltime, it will be removed from the HPC cluster and
the file is now useless. We will need to implement a way to recognize the difference
between a module ending under normal conditions and when one gets stopped because
of wall time, out-of-memory issues, or bad configuration files, which result in corrupted
outputs. This file will need to be deleted or renamed and moved so that if our pipeline is
run at a later date it does not see that the incomplete file exists and determines that it
does not need to rerun that module.

6

4. Architectural Overview
4.1. Architecture Diagram

Figure 4.1: Architectural Diagram

7

4.2. Architecture Discussion

4.2.1. Key responsibilities and features
4.2.1.1. Parse configuration and link files

Our system will parse through configuration and link files that will
determine how the pipeline runs. Our system wraps around the already
existing modules used by the client. The configuration file will contain
information such as source and output paths for each module, as well as
sets of options that pertain to each module. The link file will contain all
the information regarding module dependencies, and therefore the order
in which the modules must be executed.

4.2.1.2. Track branches/manage file structure

Our branch tracking systems main purpose is to dynamically track the
state of the pipeline. This will be useful for situations when the user
wants to pause a particular run of the pipeline and change one or several
arguments in the configuration files. The user will then be able to run this
new version of the pipeline and if any of the previously completed
modules were created using the same arguments then they will not have
to rerun. If the branch tracking system finds a module that used different
arguments to run, it will create a branch at this point and start running
from there.

To keep track of the different branches, the branch tracking system will
create a log file that stores the entire configuration file that resulted in the
branch to occur. The log file will also contain useful information including:
the time of completion of modules, error messages, and, in general, any
information that might be useful to the user.

The main organizational technique that will be utilized is in the directory
structure that will be created during a run of the pipeline. There will be a
root directory that everything else will be children of. Two completely
unique runs of the pipeline will result in two separate directories in the
root. If a third run branches off of either of the previous two, a new
directory will be added in that previous directory. The newly created
directory is where the log file will be stored.

8

Figure 4.2: File Structure Example

4.2.1.3. Luigi file generation

Our system will create a Luigi file that manages the execution of all
modules. The Luigi file will use the information from the parser and
branch manager to set up the modules to run in the required order and
with the necessary files. Luigi will then handle the execution of all
modules.

4.2.2. Main communication mechanisms and information flows

Communication within the system will be based on configuration/link files,
directory structure/file paths, and filenames. The configuration and link
files contain all the information about how the modules are connected and
how they will run, and that informs how the rest of the workflow operates.
Luigi uses filenames to determine whether tasks should be run or not. If
the output file for a task already exists, Luigi will not run that task. This, in
combination with directory structure, will be used to communicate
branching in the system. When a new branch is created, a new
subdirectory and Luigi file will be generated. The new Luigi file will have a
link to the parent directory’s files for all modules that do not need to be
rerun in the new branch. Then Luigi will look within the subdirectory for
the files that pertain the to tasks that need to be run, not find them, and
execute the required modules in the new branch.

9

4.2.3. Architectural Influence
Our system is influenced by the pipe and filter software architecture style. The
output from each component in the system is used to inform the use of the
component that follows it. Starting with the configuration/link files, our system will
follow procedures step by step that eventually lead to the creation of a Luigi file
that manages the pipeline. Luigi then manages the pipeline in a pipe and filter
style as well, with the output from each module being used as input for the next.

5. Module and Interface Description
5.1. Overall UML Diagram

5.2. Driver Module
The primary means of interaction with this software will be through the command line
because most of the functionality directed at the HPC cluster that do not have graphical
user interfaces. This will be handled through the use of the Python library Click, the
“Command Line Interface Creation Kit,” which makes setting up advanced command line
tools relatively straightforward. The command line interface will expect two arguments

10

which are the filepaths of the configuration file and link file. This module will kick off the
other modules of the project, acting as the ‘main’ module.

Figure 5.1 UML for the Driver Module

5.3. Setup Module
The Setup module will use the arguments passed into the Driver Module module and
parse through them and store them into memory in a custom data structure for each.
This information will be used by the Luigi Generator module (Section 5.3) to create the
appropriate Luigi file. The input files and their formats are described below.

Figure 5.2: UML for the Setup module

5.3.1. Input Files
Orchard will utilize two different input files. The first file is a configuration file that
contains the input arguments for each of the modules in the user's pipeline. The
second file is a link file that contains the dependency information of the user's
pipeline modules. These two files together define a pipelines structure, the
arguments necessary to run the modules, and the order in which the modules
must be run. Both of these files are created by the user but must follow the
format that we define, in detail, below (Section 5.2.2).

The link file will be stored on the cluster, in the user’s allotted application support
directory, which Click has a built-in method to retrieve the location of, dependent

11

on the platform. From there it will be accessed upon running the build process,
which will be discussed later on in this document. The link file will have both the
current API of the Bioinformatics pipeline used by Dr. Fofanov, and the
relationships between the modules, declaring that pipeline module X will need
module Y ran beforehand, and to use those generated resources. This file will
drastically reduce any manual configuration required by the end-user in declaring
dependencies between their modules.

If the API changes or a dependency is added or dropped there will be methods to
retrieve the current configuration, edit it however the user desires, and another
command to read in the updated configuration and store it as the new link file to
be used on each build.

5.3.2. Input File Formats
5.3.2.1. Configuration File

The configuration file will contain a list of keyword-value pairs that
represent the input arguments for the modules and will be organized by
module name. The format will be YAML which is a human readable data
serialization language. Python has libraries that we can implement that
read this file format easily.

Figure 5.3: Example configuration file

5.3.2.2. Link File

12

The link file will also be a YAML format file with keyword-value pairs.
These keyword-value pairs will be organized by module and will list the
dependency information that Luigi requires to create a pipeline. From this
data Orchard will not only know how to generate a proper Luigi file, it will
be able to validate a user's configuration file and let them know if
something is incorrect.

Figure 5.4: Example link file

5.4. Luigi Generator
After the configuration and link files are read into memory by the Setup module, the Luigi
Generator will create the Luigi file. During the generation of this file, the generator will
call the Branching module (Section 5.4) as many times as there are modules in the link
files. This module determines if a particular module is a branching location or not.
Having determined if a particular module is a branching location, a new directory in the
proper location that will be used to store the output files for this branch of the pipeline. It
will also be necessary to create a new config file that represents this branch and new file
locations. This requires that the file paths that are given in the configuration file be
altered to point to this new directory as applicable. This is an easy way to keep the
output files for different branches separated and organized as best as possible while
also preserving Luigi's ability to determine if a file exists or not.

13

Figure 5.5: UML for the Luigi Generator

Figure 5.6: Example file structure with branching folders

5.5. Branching
The Branching module will be used to determine whether or not a specific input module
is a branching location. If it is a branching location, this module returns the filepath of
the branching location and the Luigi Generator will create a new directory in that location
to store all of the files this run of the pipeline generates. This method determines if a
specific module in the pipeline is a branching location by looking at all of the existing
configuration files. Each configuration file defines it’s own pipeline structure and
argument inputs. It looks for exact copies of modules from beginning to end; the first
module that is different is the branching location. If the first module is different then the

14

entire pipeline will be ran. If all modules are the same then the entire pipeline will not be
ran.
There will be some information in the configuration files that might be different than
another configuration file but should not result in a branch. This data will be demarcated
by a symbol to represent this fact. Examples of data that will not result in a branch are
the number of CPU’s, the number of threads, and the amount of walltime allocated for
use on Monsoon. Any data that is not demarcated in this way can result in a branch.

Figure 5.7: UML for the Branching module

5.6. Running
There will be a module that, after the Luigi file is generated, will run that file. This is
important because we do not want the user to ever deal with Luigi themselves. With that
being said, a Luigi file is being created and will be deleted after the pipeline has finished
running. Orchard will take a boolean input that allows the user to specify whether or not
the file is deleted at the end or not. The argument defaults to false meaning the file is
deleted if the user does not specify otherwise. This can be used for debugging purposes
or any other purpose the user finds.

Figure 5.8: UML for the Running module

15

6. Implementation Plan
6.1. Implementation Schedule
In order to ensure that the project reaches the desired implementation goals, the
following schedule, seen in Figure 6.1, was decided upon.

Figure 6.1: Project Schedule Chart

Under the current schedule the majority of our work will be able to be accomplished in
two week long sprints, located on the 20th of February and the 20th of March. During
the first sprint we hope to be able to accomplish the total completion of the parsing
module complete with the command line calls as well as the majority of work required for
the branch analysis module to be functional. Over the following two weeks we plan to
finish work on the branch analysis module, beginning work on the Luigi generation
module prior to breaking for a week during spring break. After spring break the second
week-long development sprint will occur, during which time the Luigi generation module

16

will be completed and the majority of final integration work with the SLURM system can
be performed. At this point the system will be relatively finalized, moving into only the
testing and bug fixing stage over the last few weeks while the documentation is created
and reworked until determined sufficient.

During this period several other milestones will also be occurring, notably the Design
Review Presentations 2 and 3 on March 9th and April 6th respectively, as well as the
final UGRADS Conference on April 28th. These will be accomplished during lighter
periods in the implementation schedule that revolves around the two week-long
development sprints.

7. Conclusion
Our client works in the field of bioinformatics and is in need of a pipeline management system
that can aid him and his lab while trying to sequence biological samples. This system must be
able to perform a multitude of specific tasks in respect to data flow and management to meet
the requirements for our final product. These tasks include saving the state of runs, the ability
to go back and rerun tasks as branches, the ability to track these branches, and to have a file
management system that tracks and saves all of the data generated by the all of these runs.
The pipeline management tool that we will be using for the core of our system is called Luigi; a
Python module that helps build a complex pipeline of batch jobs. This core then handles the
dependency resolution, workflow management, and visualizations for the wrapped pipeline,
while our system, Orchard, works as a Python wrapper around it to provide handling of
branching and state saving. As the modules currently stand, we as a group are confident that
our systems can be implemented successfully, and in their implementation, achieve a solution
to our client’s problems in sequencing biological samples.

17

