

Team Selene

Software Testing Plan
Visualization of High Dimensionality Spatial Data

March 28, 2017

Project Sponsor: Dr Jay Laura, USGS Astrogeology

Faculty Mentor: Dr Palmer

Team Lead: Daniel Ohn

Team: Zowie Haugaard, Christopher Philabaum, Kelvin Rodriguez, Makayla
Shepherd

1

1. Introduction 2

2. Unit Testing 3
2.1 RESTful API 6
2.2 Client Javascript Application 9
2.3 MongoDB 9
2.4 GeoServer 10

3. Integration Testing 11
3.1 Database Test Configuration 11
3.2 MongoDB-to-GeoServer 12
3.3 GeoServer-to-Middleware 13
3.4 Middleware-to-Client 14

4. Usability Testing 16
4.1 Expert Reviews 16
4.2 User Studies 18

5. Conclusion 20

2

1. Introduction
Team Selene is a group of undergraduate students at Northern Arizona University designing and

developing a web application for the United States Geological Survey to improve the access and analysis
of the Kaguya Lunar Orbiter’s spectral profiler dataset. This dataset, which consists of some 68 million
points with associated reflectance and metadata, is 1.4 terabytes in size, captures important spectral
image data from the lunar surface at a broad spectral coverage from visible to near-infrared light
spectrum. This hyperspectral reflectance data can be utilized by planetary scientists and geologists to
study the composition of the lunar surface, as well as our moon’s and even Earth’s origins and formation.
The current methods for accessing this dataset, mainly through the downloading of individual images
from a online archive and manually plotting the data through a geographical information system (GIS),
are time consuming, involve a high amount of manual overhead, and do not support in any way
exploratory analysis of the data. In order to make the Kaguya Spectral Profiler dataset highly accessible
and to improve the way in which scientists may interact with and explore the data, Team Selene is
designing and implementing a novel web based application to deliver the spectral profiler dataset and to
provide tools to allow for its analysis and exploration.

The purpose of this document is to outline Team Selene’s plan for ensuring the functionality of
our application, here forward referred to as the Kaguya Spectral Profiler Explorer (Kasper), satisfies the
specific requirements of this system. This will be done through the testing of functional and nonfunctional
requirements of the system, resulting in quantifiable results. This document will outline these tests, which
are spread between three distinct sections: unit testing, which will describe the tests aimed at specific
methods within our application’s implementation; integration testing, which outlines the methods used to
test the interfaces between the separate components of the application; and usability testing, which
describes the testing used to ensure the end user’s ability to properly interact with and access all necessary
functionality of the system.

Unit testing of the system will focus primarily on two components of the Kasper application: the
RESTful API used to serve specific point and hyperspectral data, and the client-side static application
interface which both makes requests to the API and renders the results and provides the user interface for
the application. Integration testing will test the application’s major interfaces: that between the database
and geoserver, which generates a spatial visualization of the dataset; between the client application and
geoserver, which delivers the spatial visualization to the client; and between the client and the RESTful
API, which delivers specific point and hyperspectral data. Finally, through usability testing we will
determine quantitatively the user’s ability to access and interact with the application through the client
side front-end web application.

2. Unit Testing

2.1 RESTful API

The RESTful API service, which responds to requests from the client with geospatial point and
hyperspectral data, will require unit testing of the services it provides. The two API services provided are
GET requests for Points and Image, which return JSON data used to render visualizations in the client’s

3

browser. Unit testing of these services will be as follows.The tests will be carried out by use of assertions,
specifically based on the assertion library Chai. These assertions will be tested using the javascript based
Mocha testing framework for Node.js, and will be performed from the server.

2.1.1 GET Points
The GET Points service returns a JSON object containing an error code and an array of Image

objects containing the point data of some 1500 observations. If the request fails, an error code and error
message should be returned. The unit testing of this API service will be performed through the checking
of these properties through assertions. Two tests will be performed: one simulating an API call using a
http GET request, and the other will test the points method itself.

1. GET Points Test
a. request.should.have.status(‘200’)
b. request.should.be.a(‘object’)
c. request.should.have.property(‘error’).eql(0)
d. request.should.have.property(‘Images’).be.a(‘array’)
e. request.should.have.property(‘Images’).len(1560)

2. Points test
a. assert.isNotNull(points)
b. assert.isNotNull(data)
c. assert.isEqual(data.error, 0)
d. assert.isArray(data.Images

2.1.2 GET Image
Like the Get Points service, the GET Image service should also return an array, however this

array will contain a single JSON object holding the hyperspectral data associated with a specific point.
Unlike the Points service, a GET Image request requires two parameters: an ID, which specifies the
Image ID for the requested observation, and an index, which specifies the index of the requested point in
the image observation list.

1. GET Test
a. request.should.have.status(‘200’)
b. request.should.be.a(‘object’)
c. request.should.have.property(‘error’).eql(0)
d. request.should.have.property(‘Image’).be.a(‘array’)
e. request.should.have.property(‘Image’).len(1)

2. GET Index Out of Bounds Test

a. request.should.have.status(‘200’)

4

b. request.should.be.a(‘object’)
c. request.should.have.property(‘error’).eql(1)
d. request.should.have.property(‘Image’).be.a(‘string’)
e. request.should.have.property(‘Image’).eql(‘No Image Found’)

3. GET Invalid ID Test

a. request.should.have.status(‘200’)
b. request.should.be.a(‘object’)
c. request.should.have.property(‘error’).eql(1)
d. request.should.have.property(‘Image’).be.a(‘string’)
e. request.should.have.property(‘Image’).eql(‘No Image Found’)

4. Image Test

a. assert.isNotNull(images)
b. assert.isNotNull(data)
c. assert.isEqual(data.error, 0)
d. assert.isArray(data.Images)

2.2 Client Javascript Application
The Client Javascript Application is made up of two major components: a map generated with the

mapping library leaflet used to render geospatial data and graphs created using the Chart.js visualization
library for displaying hyperspectral data. The application contains several helper methods used to create
these visualizations, but the high level of abstraction that the libraries being used afford has reduced the
amount of testing necessary for the client application. The testing for this module will be split
conceptually into two general sections: methods used to support the Leaflet map and those used to
generate the Chart.js visualizations. As before, these tests will use the assertion library Chai and will run
in the Mocha Javascript testing framework.

2.2.1 Leaflet helpers
The methods used to display data and provide interaction with the map are part of the conceptual

leaflet helpers section. The first of these methods is PlotPoints, which is used to generate a GeoJSON
layer from data returned by an API call. The other main helper method in this section is the
onEachFeature method, which is used to attach a click event to each GeoJSON feature in a layer and to
call methods for generating a Chart.js visualization.

1. PlotPoints
When supplied a data object from a GET Points request to the RESTful API and a leaflet

GeoJSON layer, this method will populate the layer with geometries from the point data. The
points data object is referred to here as simply data, while the Layer object is referenced by the
variable geoJSONLayer. The following three tests will be applied to this method.

5

a. PlotPoints Test
i. assert.isNotNull(data)

ii. assert.isNotNull(geoJSONLayer)
iii. assert.isDefined(geoDataPoints)

b. PlotPoints null geoJSONLayer Test

i. assert.isNull(geoJSONLayer)
ii. assert.isUndefined(geoDataPoints)

c. PlotPoints null data Test

i. assert.isNull(data)
ii. assert.isUndefined(geoDataPoints)

2. onEachFeature

This method is defined and attached to a geoJSON layer as a callback associated with the
layer’s onEachFeature option. The method is used to attach a click event to each feature in the
geoJSON layer, which when triggered uses the Chart.js helper methods to generate a graph
showing reflectance values at the selected point. This method takes two parameters: point, being
the individual feature, and layer, being the geoJSON layer object. The method also sets the center
of the map to the coordinates of the point that has been selected.

a. onEachFeature Test
i. assert.isNotNull(point)

ii. assert.isNotNull(layer)
iii. assert.isDefined(chdata)
iv. assert.isNotNull(refGraph)
v. assert.isEqual(point.coordinates, map.center)

b. onEachFeature null point Test

i. assert.isNull(point)
ii. assert.isUndefined(chdata)

6

c. onEachFeature null layer Test
i. assert.isNull(layer)

ii. assert.isUndefined(chdata)

2.2.2 Chart.js helpers
The chart.js helper methods perform the task of requesting and modifying reflectance data and

creating their visualizations using Chart.js. This is done through two primary helper methods:
createRefData and newChart. createRefData is a method that when given a point performs a Image API
call and returns a new Chart.js data layer using the returned reflectance data. When this is complete, the
newChart helper method is used to create a new Chart.js line chart when supplied a HTML canvas
element and a data layer.

1. createRefData
The createRefData method takes one argument: a point object representing a geoJSON

feature. Method uses the id and index values associated with the point object to create a API call,
the result of which is passed into a Chart.js data layer and returned. The method should return a
new data layer if the API request executes properly and null if not.

a. createRefData Test
i. assert.isNotNull(point)

ii. assert.isNotNull(‘hdata)
iii. assert.isNotNull(ref)
iv. assert.isArray(ref)

b. createRefData null point Test

i. assert.isNull(point)
ii. assert.isUndefined(chdata)

iii. assert.isUndefined(ref)

2. newChart
This method is used to create a new Chart.js chart using a data layer produced by the

createRefData method and to render the chart within a HTML canvas on the page. The method
requires one argument: the data layer generated by the createRefData method, chdata. newChart
will then get a reference to the HTML canvas element in which the chart will be rendered(ctx),
and then creates a new Chart.js chart. This chart object takes the reference to the canvas element
and the chdata data layer, which on creation will be returned. If the creation of the chart fails, the
newChart method will return null.

7

a. newChart Test
i. assert.isNotNull(chdata)

ii. assert.isNotNull(ctx)
iii. assert.isNotNull(chart)
iv. assert.isInstanceOf(chart, Chart)

b. newChart null chdata Test

i. assert.isNull(chdata)
ii. assert.isUndefined(ctx)

iii. assert.isUndefined(chart)

c. newChart Canvas Element Does Not Exist Test
i. assert.isNull(ctx)

ii. assert.isUndefined(chart)

2.3 MongoDB
The codebase is expected to contain function that are used as syntactic sugar for common

database actions. The Spectral Profiler (SP) dataset is from a mission that has long since ended so we do
not expect for new data to be inserted into the database after initialization. It is also unlikely that we will
be deriving new data after initialization. We will, however, want to test our functions and any new
functions that interact directly with the database. The team will write an initial set of tests which will be
helpful to see that the database in a valid state and because of the immutable nature of the collections,
these will be read calls exclusively against a live database.

The functions used to interact directly in the database will be written in Python. Our team will
write these tests with the pytest library and the tests will focus on accuracy of data returned. This includes
both result size (assertEqual(query_results.count(), 500)) and datum accuracy given an epsilon for
floating point numbers. Tolerance will be contextual to the datum being tested (some SP data was
originally stored as float64 and others from float32, therefore, different expectations for accuracy).

Example tests:

Res = some_query()
asseertEqual(len(res), expected_len)
assertAlmostEqual(res[“longitude”], expected_longitude)
…

8

2.4 GeoServer

2.4.1 Client Requests
The process for client requests is to first set up a dummy datastore and connect it to GeoServer.

Once the datastore is set up we must test that we can successfully request and get the feature, assert that
the feature was returned correctly, and then post that feature.

1. String request = "request=GetFeature&metaData=topp:states&....";

2. json response = getAsJSON(request)
a. assert.isNotNull(response)

3. String request = "<wfs:GetFeature latitude="topp:states"/>";

4. json response = postAsJSON(request);
a. assert.isNotNull(response)

2.4.2 Live GeoServer Instance
This type of testing requires a live GeoServer instance to access components inside of a datastore.

First we need to get the data component, and then get the GeoServer component.
1. position data = (Data) images.getLatLon("pt")

a. assert.isNotNull(data)
b. assert.isValid(data)

2. GeoServer geoServer = (GeoServer) images.getLatLon("geoServer");
a. assert.isNotNull(geoServer)
b. assert.isValid(geoServer)

3. Integration Testing
Integration testing will be implemented directly in our repository for Python code. Using

Travis-CI for continuous integration testing (CIT) in conjunction with Coveralls for measuring code test
coverage, every PR will now trigger the two services to begin running tests on the PR, if any CI test fails
or if negative change in coverage falls below a threshold (0.1%), the PR will be rejected until the PR
author makes the appropriate changes. Travic-CI will ensure that no broken code is introduced and
Coveralls insures that anybody introducing new code will also write unit-tests for the new features. Tests
should cover every possible branch of the codebase. Peer reviews will reveal whether or not the tests
written for some new feature are satisfactory.

3.1 Database Test Configuration
In order to test the integration of the components, there needs to be static test data. For the test

database, a set of images with desirable testing features (e.g. one perfect image, one image with out of
range lat/lon pairs for given projection, one image with out of range emission and incidence angles, one

9

image which wraps on the poles, etc.). This will remain unchanging for the project’s test suite. Travis-CI
will allow us the prop up this static database for every PR to test against. This gives us consistent test data
that everyone can use for most test cases. The format will be documented in the GitHub Wiki for
reference.

3.2 MongoDB-to-GeoServer
The connection between MongoDB and GeoServer is the foundation for the remaining

components to function correctly. Thus, it is important to test that both the MongoDB and GeoServer
endpoints are both accessible and can communicate with each other.

1. MongoDB
MongoDB provides a native Node.JS module, allowing one to use queries within Node itself. By

using MongoDB’s this more direct interface, JavaScript scripting can be used in conjunction with the
testing framework chosen. This gives an automated process of verifying that the test MongoDB instance
is public and accessible (at least within the local machine).

2. GeoServer
GeoServer has an established convention to test if WMS is properly listening and available to

requests. The United States Geoscience Information Network Commons suggests adding a layer pointing
to an Arizona Geological Survey provided service. 1

3.3 GeoServer-to-Middleware
This is where most of the CIT will occur. Our middleware is a Python app that interacts directly

with the server and performs a variety of queries to satisfy the user request. Satisfying the request mostly
involves interacting with GeoServer with the database results and use it to generate new Web Map
Service (WMS) layers. These combinations are two of the biggest technical challenges: how do we
intelligently query the database for the new results and then serve it over a network? The middleware will
contain the common interface for MongoDB queries and the logic to cache user for later lookup.

The tests in the GeoServer to middleware interaction will focus on valid results for compound
queries (similar to the general GeoServer testing mentioned above), but to also test the caching algorithms
to ensure they are functioning correctly. More specifically, test the integrity of the data (is data missing or
inaccurate? Is the correct query mapped to the correct image?) to the robustness of the caching algorithm
(does the data stick around for too long creating a bloat in disk usage? Are we handling collisions
correctly and not sending the wrong data?).

1 USGin Lab
<http://lab.usgin.org/groups/best-practices-aasg-web-service-hosting/validating-your-wfs-and-wms-services>

http://lab.usgin.org/groups/best-practices-aasg-web-service-hosting/validating-your-wfs-and-wms-services

10

3.4 Middleware-to-Client
Since all communication of points or images to client are to be passed by middleware, mock tests

will need to be used. SuperTest is one such module that can test the HTTP end-points without having the
server having to be run. While likely a testing framework such as Mocha will be used, an abstract test
language is used here.

1. GET Points
a. Point(s) Found Test

i. Expect Content-Type to be of JSON
ii. Expect Content-Length header to equal actual data in number of octects.

iii. Expect HTTP 200 Status Code
b. Point(s) Not Found Test

i. Expect HTTP 404 Status Code
ii.

2. GET Images
a. Image(s) Found Test

i. Expect Content-Type to be of JSON
ii. Expect Content-Length header to equal actual data in number of octects.

iii. Expect HTTP 200 Status Code
b. Point(s) Not Found Test

i. Expect HTTP 404 Status Code

4. Usability Testing
The goals of usability testing include establishing a baseline of user performance and identifying

potential design concerns to be addressed in order to improve the efficiency, productivity, and end-user
satisfaction. This section will test the user’s experience with the website and allow the team to get
feedback from developers that have experience in developing geospatial websites.

In the context of this project, there are three obvious types of usability tests: focus groups, expert
reviews, and user studies. We will be using expert reviews and user studies to test the usability of the
website. We are not using focus groups because our clients, Jay and Trent, have already done this and
they already have comments from scientist about the current workflow and how it can be improved. Jay
has written a proposal based on this problem and we do not believe that holding focus groups would
contribute anything that Jay and Trent could not. We are using expert reviews because we have experts,
Jay and Trent, at our disposal and they can help us not only with the look and feel of the website but also
the mechanics behind the website. Finally, we are using user studies because they will allow us to model
user behaviors and get real users’ opinions about our website. From these user studies, we will be able to
improve the user’s experience and make the website smoother from a user standpoint.

11

4.1 Expert Reviews
Expert reviews allows us to collect feedback live from developers who have experience in

designing, developing, and maintaining a geospatial website that is close to our own.
Our clients, Trent Hare, and Jay Laura have the expertise that we are looking for. This type of

review is already implemented in an informal way already, as we get critiques and tips from Jay and Trent
every time the team shows the client a prototype.

Expert review objectives are the following:

1. Get criticism and feedback on the design and performance of the front-end.
a. This type of feedback (ie change the color of the background, move this button, etc) will

allow us to make changes to the front end that will allow for a more inviting website to
the user, and it may also bring the website closer to an industry standard of design and
performance, if one exists.

b. It will allow us to learn from the experts about the pitfalls and difficult sections of the
website.

c. It will allow us to make changes and fix bugs that we never knew about before a user
ever sees it.

2. Get criticism and feedback on the flow of the website.
a. This feedback will guide us to look at bottlenecks, or slow downs, in our website. This

mainly means when to switch mapping data formats, from vector to raster.
b. It will also help us with determining what information is needed at what time. For

example, Jay and Trent told us that when looking at a global view of the maps the user
will most likely not care about the metadata, or ancillary data of individual points. This
feedback allowed us to speed up the loading of points as we now load the point location
data first, and then the ancillary data asynchronously so that we can load more points
faster.

The expert reviews that we are conducting are partially in place already. They allow the team to learn
about what the user wants in a broad way, as well as tips that help us implement those goals more
efficiently.

4.2 User Studies
User studies involve recording users following a set of instructions to accomplish goals in our

system. The goal of these studies is to identify areas that confuse a user, or slow a user down, which could
be caused by a difference in user expectation and the actual performance of the website, confusing or
unclear naming, or an actual slowdown of the website. These studies will illustrate where we can improve
the user experience. In addition to pointing out flaws or weaknesses in the system, it will also allow us to
draw conclusions about behaviour patterns of the user, which can help us speed up the system from a
user’s point of view because we can predict what the user will probably do next.

12

The audience we are trying to reach are astrogeologists, and volcanologists, we will ask for
volunteers to test our system at the USGS. These people are in that field, and they have experience with
the existing workflow and the pitfalls, and slowdowns therein.

User study objectives are the following:

1. Determine design inconsistencies and usability problems within the user interface.
a. Navigation Errors: Failure to locate certain coordinates and excessive keystrokes to

complete a function.
b. Presentation Errors: Failure to locate and properly act upon desired information in

screens, selection errors due to incorrect or confusing labeling.
c. Control Usage Problems: Improper usage of the entry fields and buttons.

2. Exercise the web application under controlled test conditions with representative users. The data
will be used to determine whether usability goals regarding an effective, efficient, and
well-received user interface have been achieved.

3. Establish behaviour patterns.
a. Determine the zoom levels in which the user is most likely move too quickly or most

often. Using this data, if possible, the team could pre-prepare the image layers at certain
zoom levels, if a user tends to zoom quickly to a level.

b. Determine most used pan ranges. For example, once a user picks a point, they are most
likely to pan within 100 pixels, so the team would prepare all points within 100 pixels of
the point the user picked. This would allow for a faster and more seamless transition to
the user.

4.1.1 Methodology

1) Participants
a) The participant’s responsibility will be to attempt to complete a list of tasks presented to

them in as efficient and timely a manner as possible, and to provide feedback regarding
the usability and layout of the user interface. The participants will be directed to provide
honest opinions regarding the usability of the web application.

2) Procedure
a) A computer with the web application will be used in a typical office environment. The

participant’s interaction with the web application will be monitored by the team
supervising the procedure. The team will monitor the sessions and each session should
be recording data that they observe from the participant.

b) The team will brief the participants on the web application and instruct the participant
that they are evaluating the application, then explain that the amount of time taken to
complete the tasks assigned will be measured and that exploratory behavior outside the
task flow should be saved until after the task is completed. The team will ask the
participant if there are any questions, and then inform them to think out loud during the
test.

c) During each task, the team will observe and record user behavior and comments. After
every task, the participant will be instructed to complete a post-test survey asking for any
user feedback and satisfaction regarding the web application.

13

d) After all tasks are completed the user will be encouraged by the team to perform
exploratory data analysis. The team will observe this behavior, and note any consistent
behaviour.

3) Roles
a) The roles involved in a usability test are as follows. An individual may play multiple

roles.
b) The team

i) Creates the tasks and instructions.
ii) Sets up the testing environment.

iii) Provides overview of study to participants.
iv) Defines usability and purpose of usability testing to participants.
v) Responds to participant’s requests for assistance.

vi) Records participant’s behavior and comments.
c) Participants

i) Volunteers to participate in the test.
ii) Attempts to complete the assigned tasks for test.

iii) Explores the website and performs exploratory data analysis after all tasks are
completed.

iv) Provides honest feedback about the usability of the interface.
4) Usability Metrics

a) Task Completion
i) Each task will require that the participant obtains or inputs specific data that

would be used in course of a typical task. Each task is completed when the
participant obtains the task’s goals (whether successfully or unsuccessfully) or
the participant requests and receives sufficient guidance as to warrant scoring the
task as a critical error.

b) Critical Errors
i) Critical errors are deviations at completion of an assigned task. Reporting of the

wrong data value due to participant workflow is a critical error. Participants may
or may not be aware that the task goal is incorrect. Obtaining help from a
facilitator will result in a critical error as well. Any unresolved errors during the
process of completing the task or produce an incorrect result is a critical error.

c) Non-critical errors
i) Non-critical errors are errors that are recovered from by the participant, or do not

result in processing problems or unexpected results. These errors can be
procedural, or errors of confusion, but non-critical errors can always be recovered
from during the process of completing the task.

d) Subjective Evaluations
i) Participant’s subject evaluation regarding the web application’s ease of use and

satisfaction will be collected during the post-test section of the session. The
surveys will use free-form responses.

e) Task Completion Time

14

i) Time to complete each task assigned during the test. Doesn’t include any
feedback or post-test survey.

5) Usability Goals
a) Completion Rate

i) Percentage of test participants who successfully complete the task without critical
errors.

ii) A completion rate of 90% is the goal for each task in this usability test.
b) Error-Free Rate

i) The percentage of test participants who complete the task without any errors
(critical and noncritical). Non-critical errors don’t impact the final output, but
would result in the completion of a task being less efficient.

ii) Error-Free Rate of 80% and above is the goal for each task in this usability test.
c) Subjective Measures

i) Subjective opinions about specific tasks, time to perform each task, features, and
functionality will be surveyed. At the end of the test, participants will provide
feedback on their satisfaction with the web application.

d) Time on Task (TOT)
i) Time to complete a task is measured from the time the participant begins the

assigned task to the time they signal completion.
e) Establish Behaviour Patterns

i) Establish behaviour patterns based on user’s exploratory use of the website.

Usability tests are directed at making the user experience better. The team will take the data, and

feedback from these tests and improve the system and if time permits perform the usability studies again.

5. Conclusion
The purpose of these tests are to identify errors in the system and model user behaviour to

improve overall user experience and workflow. Each kind of test will help us improve different aspects of
the website and user experience. Our unit tests will find errors within each component of our code
independent of other components. Our integration tests will find the errors in the interactions between the
modules and in the workflow. Our usability tests will test the user’s experience. The usability tests will be
the most important because they will not only point out errors in the website, but they will also allow us
to model user behaviour so that we can speed up the user’s experience. All of these tests will improve our
overall product and deliver a better user experience.

