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    1. Introduction 
Planetary scientists study the planets, moons, and planetary systems of our 

universe, as well as their origins, formation, and processes of these bodies. Through the 

study of their composition, formation, and dynamics, these scientists use geophysics, 

atmospheric science, astrobiology, and other physical sciences to gain a better 

understanding of our solar system and celestial bodies, as well as our own planet Earth. 

Thanks to the relatively high number of observational spacecrafts currently exploring 

our solar system, planetary scientists have today access to a great deal of data collected 

from various planets and moons within our solar system, and the rate new discoveries 

today is very high. Yet there remain many unanswered questions within the discipline of 

planetary science, and in order to continue the progress of these discoveries these 

scientists require technologies that can assist in the analysis and exploration of often 

very large and complex data and problem sets. 

         The United States Geological Survey Astrogeology Science Center (USGS) in 

Flagstaff, AZ was founded to assist in the training of astronauts embarking on missions 

to Earth’s moon, and to survey and map the lunar surface. Today they are doing 

important research into the geology and composition of the Moon, and employ a team of 

geologists, planetary scientists, volcanologists, software engineers, and others to further 

discoveries in this area. Recently, the USGS has been given access to a data set 

containing hyperspectral observation data collected by the Japanese Aerospace 

Exploration Agency through their Kaguya lunar orbiter, also known as the SELENE 

lunar orbiter. This data, which in entirety is 1.4 TB in size, can through its analysis 

provide novel insights into the geologic makeup and composition of Earth’s moon, as 

well as its origins. 

         In order to analyze this data, planetary scientists use several tools in their study. 

To receive this hyperspectral data, scientists first query the database by providing the 

specific geographical coordinates of their predetermined region of interest. They must 

then download the resulting data in its entirety, and load it into a Geographical 

Information System (GIS) for plotting and analysis. Through this process, scientists are 

able to access and analyze this data and make new discoveries pertaining the geology of 

Earth’s moon. 

To assist the study of this dataset, Team Selene is designing and implementing a 

web application for the access, visualization, exploration, and analysis of the high 

dimensionality spatial data captured by the Kaguya lunar orbiter. This system will 

greatly improve and streamline the current methodologies used in the access and 

analysis of this dataset, and will provide key tools to assist planetary scientists in making 

discoveries. Specific key features this system will implement include: 
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●  Generate a global plot of the distribution of observations 

●  Generate graph of observation data for each geographical point 

●  Allow users to explore the entire data set using tools such as pan and zoom 

 

 This document is intended to outline the approach of Team Selene in designing 

and implementing this application, including overviews of the system architecture and 

interfaces. We are confident that the solution we envision will meet the requirements of 

the USGS, and will be of assistance in the important work that planetary scientists are 

performing every day. 

 

 

   
  



 
 

4 
 

 

    2. Implementation Overview 

Team Selene’s focus is on designing on a web application meant to visualize and 

explore Kaguya’s large scale datasets. This web application will be based around the 

classic server-client pattern. Where part of the solution stems on, however, is a pipeline 

on the backend. By using a pipeline, Team Selene can take advantage of pre-existing 

technologies and frameworks with as little customization needed. 

The server will be composed of several long-standing frameworks. One such 

framework, MongoDB1, will be the database used to store the point and image data. 

Point queries will be made from and passed through to GeoServer. GeoServer2 is an 

open-source web server that will help to serve and process geospatial data, in this case 

Moon-spatial data. Using RESTful commands, GeoServer will gather the hyperspectral 

and spatial data from the database. 

The client, in turn, will be based on Web 2.0 technologies. For instance, HTML5 

and ES2015+-compliant JavaScript are examples of modern technologies to be used. 

Relating to JavaScript frameworks, Leaflet will be used. Leaflet3 is a framework that 

displays map data akin to Google Maps and Bing Maps; this will be the main interface 

for the client, allowing the user to appropriately zoom in/out, move, etc. 

The large crux of solving the large dataset problem will be to customize these 

frameworks to selectively display only the necessary data dependent upon the right 

zoom level. At higher zoom levels, that is viewing a more zoomed out map, the 

GeoServer will serve rasterized map images utilizing the Python library Datashader4 to 

generate raster images from points in real time. When zoomed further in, Team Selene’s 

customized pipeline will instead serve the individualized point data as vectors as 

opposed to the higher level rasterized data. This will allow the client to retrieve only the 

data it needs to manipulate when a user is reasonably able to to interact with individual 

points on the map. 

  

                                                         
1 MongoDB <https://www.mongodb.com/> 
2 GeoServer <http://geoserver.org/> 
3 Leaflet <http://leafletjs.com/> 
4 Datashader <https://github.com/bokeh/datashader> 

https://www.mongodb.com/
http://geoserver.org/
http://leafletjs.com/
https://github.com/bokeh/datashader
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    3. Architectural Overview 

  
 Fig 1 high level communication between the client-server architecture of Team Selene’s system. 

In order to produce a system that will satisfy the needs of our client, a carefully 

crafted system architecture must be implemented. As this application will be served as a 

web app, the overall architecture follows the client-server paradigm, as illustrated in Fig 

1. The base of the architecture is a MongoDB system used to store and access the Kaguya 

observation data. Directly communicating with this database will be a GeoServer 

instance, which will act as the server in the client-server architecture. This server will be 

the intermediary between the client and the database, processing queries and serving 

the results. Finally, the client represents the software which will render the 

hyperspectral and spatial data provided by the server.  

The client is a Web 2.0 HTML5 JavaScript frontend using Leaflet to read map 

tiles and interface with the map. The key responsibilities of the client are to provide a 

user interface that allows for panning and zooming, and to connect to GeoServer that is 

used for querying and serving raster data over the network. 

GeoServer is a tile server that utilizes Web Map Service (WMS) to bridge the gap 

between the client and the database and serve the map data. GeoServer will receive and 

process tile requests from the client, translate the tile request into points request. Then 

GeoServer will query the database, rasterize the points that the database returns into 

tiles and serve them back to the client. The process of rasterizing the data to return to 

the client will take place in a micro pipe-and-filter architecture. 
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The database is a MongoDB database that will store the points and their 

respective metadata and serve the points when they are requested. 

The communication protocol used between the OpenLayers client and GeoServer 

will be WMS as it is an industry standard format. In between the database and 

GeoServer Team Selene will use the GeoServer REST API. The overall architecture of the 

system is client-server, however GeoServer will contain a small pipe-and-filter system in 

order to transform the point data into tiles for the client. 
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    4. Module and Interface Descriptions 

    4.1 Client 

           4.1.1 Overview 

The client module represents the web page running on the user’s browser. The 

client based software will render the geospatial and hyperspectral data, and allow for 

users to interact with the data set in the context of a map based application. Our map 

interface will be built using Leaflet, an open source library for the creation of dynamic 

and interactive maps using JavaScript. Leaflet is our choice for this project over other 

mapping libraries primarily due to its lightweight nature (37KB), ease of use, and 

flexibility. Our application will use the Leaflet map and layer objects to produce a highly 

interactive map to visualize the Kaguya observation data as produced by the GeoServer 

instance.  

4.1.2 Map 

 The Leaflet map object is created via the definition of two parameters: target and 

options. The target parameter specifies the HTML element that the map object will be 

rendered within, while the options parameter accepts a dictionary containing a series of 

optional parameters and their defined values. For this application, the necessary options 

that must be defined are Coordinate Reference System (CRS), ‘center’, and ‘zoom’. The 

CRS attribute defines the coordinate system the geospatial data will be mapped to, 

which in our case is EPSG:4326, or latitude and longitude. The center attribute defines 

the coordinates that the center of the map will be set to when the application is loaded, 

and zoom defines the zoom level of the map at load, with a zoom level of 1 being the 

most global view.  

4.1.3 Layer 

The layer object defines the visible map data which shall be rendered within the 

map object. The geospatial data shall be served as map tiles, and so a TileLayer will be 

used. The TileLayer requires a source attribute which defines the source of the tile 

service (the GeoServer instance) and a dictionary of optional parameters. 
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    4.2 GeoServer 

GeoServer acts the intermediary between the database and the front-end client. 

GeoServer enables use of the widely adopted OGC Web Mapping Service (WMS) and 

Web Feature Service (WFS) standards. Because these are widely accepted standards, it 

will allow us to serve data to the widest possible user base. Our browser based web client 

will be on top of GeoServer and receive or data using the standard protocols. Below, 

there is the geospatial database containing the observation data. Utilizing GeoServer 

Representational State Transfer (REST) API, we can dynamically query for points which 

in turn are used to generate tiles. Raster tiles and vector tiles are served through WMS 

and WFS respectively.  

     

  

 

 
 Fig 2 Diagram demonstrating the overall dataflow through GeoServer.  

 

GeoServer will perform queries as the user interacts with the client while 

dynamically serving tiles using OGC standard protocols. Frequently accessed tiles are to 

be cached within the server to reduce the need for re-generating tiles. As shown in Fig 2, 

The GeoServer instance will act as the interface by which clients can access the services 

provided by the application. It acts as an intermediary, performing queries upon the 

data set within the distributed database and serving the resulting data to clients as map 

tiles across the WMS and WFS standards.  
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    4.3 Database Design 

 4.3.1 Overview 

A key component of the work is the development and deployment of a spatially 

enabled, point database containing the entirety of the available SP data, approximately 

46 million individual spot observations. Two broad database solutions exist to efficiently 

store, query, and serve the spatially enabled data. These are traditional Relational 

Database Management System (RDBMS) that utilize the Structured Query Language 

(SQL) and more recently developed NoSQL databases that utilize a document based 

approach. Typically, a PostGreSQL + PostGIS solution is used for serving map data. 

Although originally a strong contender, for this project, we were looking for a solution 

that allows for rapid deployment and easy scalability. There is no expectation of 

additional observations as the mission has long since concluded, so any additional data 

is expected to be derived. By extension, the dataset needs to be scaled after initial 

deployment in order to accommodate the addition of derived data. Therefore, we 

decided upon the NoSQL DBMS MongoDB. MongoDB offers better horizontal 

scalability compared to most other DBMS based solutions and free failure protection 

through built in replica-set support.  MongoDB is outperformed by PostgreSQL when it 

comes to complex join operations. This can be offset by implementing redundancy in the 

schema, sacrificing drive space for faster query execution time. As the data is already 

set, and derived data is not expected continuously grow, typically desirable database 

characteristics such as fast writes, ACID support or atomicity are not primary objectives. 

The key virtue behind our database design is highly responsive server which supports 

many concurrent reads. 

4.3.2 Schema Design 

The original data specification consists of two collections: Images and Spots. 

Images consists of image meta which encapsulate a ~100 element vector of Spots 

collected in lines. The Spots collection contains individual points representing all 46 

million spot observations. Among the fields in Spots there exists four ~300 element 

parallel vectors for reflectance (see Fig 3), quality and two reference measures calibrated 

for dark and light areas on the moon at different wavelengths along with miscellaneous 

metadata.  
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 Fig 3 A graph of the ~300 element array for a single point. Wavelength is in nanometers and reflectance is almost always in the 

range [0, 1.0]. Quality goes down as wavelength goes up. You can notice an outlier near 2500 nanometers.  
 

In order reduce the problem size, we encapsulated the points into Image 

collections. An image based can collection help aggregate ~100 points into a single 

document (exact number of points per image vary) which works as an intermediate 

structure and aids in reducing the problem size by a factor of about 100 (~460,000 

documents). A spatially enabled index is still possible by indexing on centroids. Spot 

observations which make up the image are stored in an array structure. This array of 

spots contains the reflectance, radiance and quality arrays. As the wavelengths do not 

differ between points, wavelengths can be factored out and stored in a single document 

within the database. Two other important metrics are incident and emission angle for 

particular spots. To minimize query times, there are different representations optimized 

for different queries.  

 

Spatial queries are on longitude/latitude location and angle range queries are on 

incidence angles and emission angles. MongoDB does not support multiple spatial 

indexes, so to optimize query time, these are split into their own collections: image_pos, 

image_angle that are keyed on (longitude, latitude) position and on (incidence angle, 

emission angle) respectively. By treating incidence angle and emission angle as 2D 

coordinates with added redundancy allows us to distribute the data more evenly over a 

cluster for the different documents while maintaining O(1) time complexity at the cost of 

using extra drive space.   
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 Fig 4 A diagram of the three collections and their fields. 

 

As depicted in Fig 4, longitude and latitude values for images are the centroid of the line. 

Incidence and emission values are averages derived from the points contained in the 

image. The averages are used to perform queries on the intermediate image collections. 

The POINTS document represents data contained among points.  

4.3.3 Sharding Strategy 

Because of the large size of the dataset, all 46 million spot observations cannot be 

contained in a single machine but rather must be spread evenly across nodes composing 

a cluster. MongoDB aids us in this with built-in automatic sharding capabilities which 

gives us easy horizontal scaling distributing database shards over cluster nodes. The 

challenge is in choosing the correct shard key to ensure an even distribution of data 

among shards. A poor sharding strategy leads to uneven distribution of points which 

causes uneven loads across shards. Another challenge is guaranteeing that each shard 

contains contiguous data. MongoDB performs best when a query is isolated to a small 

number of shards and MongoDB can determine a priori which shards to route the query 

through if a shard has values in a known range. Range based sharding is the simplest 

form of sharding MongoDB offers. However, MongoDB does not support sharding on 

the 2D spatial indices. Therefore, a scalar must be derived that partitions the data into 

equal sized clusters and an insertion method must be used to guarantee contiguous 

ranged indices within a particular shard.  

 

Our team has decided on using simple K-means clustering technique to divide 

images into clusters. K-means is one of the simplest algorithms that solve the well-

known clustering problem. 
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 Fig 5 An example of k-means clustering on a randomly generated point distribution. This effectively lumps points into voronoi 

cells. Images are expected to divided in a similar fashion where each cluster represents a shard.  

 

The objective of the K-means algorithm is to partition observations into k-

clusters while minimizing within cluster sum of squares. That is, K-means attempts to 

find: 

 

 
 

Where || x - μi ||2 is the Euclidean distance between image centroid x and the centroid 

of all images in cluster Si, μi.  

 

With this method, we can easily classify images using k clusters fixed a priori and 

assign contiguous shard keys to images which belong to the same cluster. Images 

contained within one point cluster can be expected to be mapped to one shard on the 

MongoDB cluster. To maximize effectiveness of this strategy, the number of shards must 

be known a priori as well. Since the dataset is complete and no new images are expected 

to inserted after initial sharding, this won’t pose a meaningful setback for our use case.  
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4.3.4 Database Hardware Layout 

 
 Fig 6 High level overview of cluster setup. Shards are contained in nodes and each have access to their own datastore. Each shard is 

assumed to be a replica set and each node can potentially contain multiple shards.  
 

Taking advantage of resources made available to us by the USGS, we plan to set 

up the database on ASC’s AstroVM cluster. AstroVM gives us access to about 2 dozen 

nodes with a few dozen CPUs, 128 GB of ram and several terabytes of parallel disk 

access for each node. We will utilize the mini VM service Docker to deploy MongoDB 

shards. Scheduling is provided via Slurm. Below is a listing of technologies and 

definitions that are used in this section. 

  

● Mongod – the primary MongoDB server process/service that provides the 

database storage and indexing logic along with simple configuration capabilities 

for managing a single instance or a cluster. All shards are Mongod instances. 

● Mongos – the routing and coordination process/service that abstracts individual 

cluster components from a client application. Mongos makes the distributed 

components appear as a single system.  

● Mongo – administration client application for managing a large or small 

MongoDB deployment. 
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● Config server – Mongod instance which stores metadata for a sharded 

MongoDB database, used by Mongos for action guidance.  

● Docker – Mini VM service, simplifies deployment of database services and 

allows for allocating resources from cluster nodes for each Mongod instance 

when deploying multiple shards on a single node.   

 

With the database service dockerized, it will make it easy for us to schedule time 

on the cluster to run the database service. Each shard is dockerized individually and one 

more container is used to host both Mongos and the Config Server which will all 

communicate using Docker’s DNS service. Mongos, GeoServer and other MongoDB 

database drivers will connect to this datastore via the Mongos instance which will have a 

public facing static IP.  
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    5. Implementation Plan  

 

 
Fig 7 Gantt Chart of what the team will be working on for the semester. 

 

Fig. 7 above displays how Team Selene will be spending its following semester 

working on its Capstone project.  Currently, the team is working on the first section of 

Fig. 7 Prototype. 

‘Prototype’ should be a very basic implementation of the project which covers the 

three major components: Front-End, GeoServer, and MongoDB.  Front-end client will 

be the web design and user interface which will display the map and allow the user to 

interact with it by panning, zooming, etc. GeoServer will be the tile server that connects 

the Mongo database to the front-end client.  Database will be designed during this 

section then implemented to store points and metadata, along with serving any points 

that are requested from the client. 

The ‘Production’ portion of the project will take place immediately after the 

‘Prototype’. This portion will involve finalizing major decisions with each section of the 

project, along fixing any major bugs or adding important features to each section.  

Front-end client will include new features that involve iterating through the data with 

more attributes to filter. GeoServer will be placed on a cluster making it more scalable 

and more responsive.  The design of the MongoDB will be finalized during this stage. 
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‘Finalizing Project’ within Fig. 7 will be where Team Selene should be finished 

with all the major portions of the capstone project and have the functionality working 

for each section.  This portion will be fixing minor bugs within the code and adding any 

features that could improve the project. 
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    6. Conclusion  

Team Selene’s design approach on serving such large scale spatial and spectral 

data places focus on previously established technologies (e.g. GeoServer) along with 

newly innovative technologies (like Datashader). Architecturally, the solution is based 

on a server-client pattern, where the server pipelines the database directly into 

Datashader and GeoServer. The server can then send the client a vector-based data set 

vs. a raster based on how zoomed in or out the user is. GeoServer can serve the tiles to 

Leaflet, allowing for an intuitive map interface not unlike Google Maps. 

In database design, an aggregating structure is chosen. By collecting every 

roughly 100 points into an Image document, the 46 million observations can be reduced 

to around 460,000 documents: far more manageable for MongoDB to handle. Even 

then, a sharding strategy must be used to allow for better horizontal scalability. By using 

a K-means clustering algorithm, the shards are ensured a more reasonably even 

distribution amongst clusters of the 46 million data points. 

By intelligently using individual points only when a user can effectively select it 

allows scalability to solve USGS’s problem. Overall, not only will it grant the 

Astrogeology department to properly and reasonably serve the Kaguya’s hyperspectral 

data of the Moon to likewise scientists, but other projects and departments may be able 

to use a similar design approach for other future large scale problems. 

 


