

Team Selene

Software Design Document

Web Visualization of High Dimensionality Spatial Data

February 9th, 2017

Project Sponsor: Dr. Jay Laura, USGS Astrogeology

Faculty Mentor: Dr. Palmer

Team Lead: Daniel Ohn

Team: Zowie Haugaard, Christopher Philabaum, Kelvin Rodriguez,

Makayla Shepherd

1

Table of Contents 1

Introduction 2

Implementation Overview 4

Architectural Overview 5

Module and Interface Descriptions 7

Client 7

Geoserver 8

Database Design 9

Implementation Plan 15

Conclusion 17

2

 1. Introduction
Planetary scientists study the planets, moons, and planetary systems of our

universe, as well as their origins, formation, and processes of these bodies. Through the

study of their composition, formation, and dynamics, these scientists use geophysics,

atmospheric science, astrobiology, and other physical sciences to gain a better

understanding of our solar system and celestial bodies, as well as our own planet Earth.

Thanks to the relatively high number of observational spacecrafts currently exploring

our solar system, planetary scientists have today access to a great deal of data collected

from various planets and moons within our solar system, and the rate new discoveries

today is very high. Yet there remain many unanswered questions within the discipline of

planetary science, and in order to continue the progress of these discoveries these

scientists require technologies that can assist in the analysis and exploration of often

very large and complex data and problem sets.

 The United States Geological Survey Astrogeology Science Center (USGS) in

Flagstaff, AZ was founded to assist in the training of astronauts embarking on missions

to Earth’s moon, and to survey and map the lunar surface. Today they are doing

important research into the geology and composition of the Moon, and employ a team of

geologists, planetary scientists, volcanologists, software engineers, and others to further

discoveries in this area. Recently, the USGS has been given access to a data set

containing hyperspectral observation data collected by the Japanese Aerospace

Exploration Agency through their Kaguya lunar orbiter, also known as the SELENE

lunar orbiter. This data, which in entirety is 1.4 TB in size, can through its analysis

provide novel insights into the geologic makeup and composition of Earth’s moon, as

well as its origins.

 In order to analyze this data, planetary scientists use several tools in their study.

To receive this hyperspectral data, scientists first query the database by providing the

specific geographical coordinates of their predetermined region of interest. They must

then download the resulting data in its entirety, and load it into a Geographical

Information System (GIS) for plotting and analysis. Through this process, scientists are

able to access and analyze this data and make new discoveries pertaining the geology of

Earth’s moon.

To assist the study of this dataset, Team Selene is designing and implementing a

web application for the access, visualization, exploration, and analysis of the high

dimensionality spatial data captured by the Kaguya lunar orbiter. This system will

greatly improve and streamline the current methodologies used in the access and

analysis of this dataset, and will provide key tools to assist planetary scientists in making

discoveries. Specific key features this system will implement include:

3

● Generate a global plot of the distribution of observations

● Generate graph of observation data for each geographical point

● Allow users to explore the entire data set using tools such as pan and zoom

 This document is intended to outline the approach of Team Selene in designing

and implementing this application, including overviews of the system architecture and

interfaces. We are confident that the solution we envision will meet the requirements of

the USGS, and will be of assistance in the important work that planetary scientists are

performing every day.

4

 2. Implementation Overview

Team Selene’s focus is on designing on a web application meant to visualize and

explore Kaguya’s large scale datasets. This web application will be based around the

classic server-client pattern. Where part of the solution stems on, however, is a pipeline

on the backend. By using a pipeline, Team Selene can take advantage of pre-existing

technologies and frameworks with as little customization needed.

The server will be composed of several long-standing frameworks. One such

framework, MongoDB1, will be the database used to store the point and image data.

Point queries will be made from and passed through to GeoServer. GeoServer2 is an

open-source web server that will help to serve and process geospatial data, in this case

Moon-spatial data. Using RESTful commands, GeoServer will gather the hyperspectral

and spatial data from the database.

The client, in turn, will be based on Web 2.0 technologies. For instance, HTML5

and ES2015+-compliant JavaScript are examples of modern technologies to be used.

Relating to JavaScript frameworks, Leaflet will be used. Leaflet3 is a framework that

displays map data akin to Google Maps and Bing Maps; this will be the main interface

for the client, allowing the user to appropriately zoom in/out, move, etc.

The large crux of solving the large dataset problem will be to customize these

frameworks to selectively display only the necessary data dependent upon the right

zoom level. At higher zoom levels, that is viewing a more zoomed out map, the

GeoServer will serve rasterized map images utilizing the Python library Datashader4 to

generate raster images from points in real time. When zoomed further in, Team Selene’s

customized pipeline will instead serve the individualized point data as vectors as

opposed to the higher level rasterized data. This will allow the client to retrieve only the

data it needs to manipulate when a user is reasonably able to to interact with individual

points on the map.

1 MongoDB <https://www.mongodb.com/>
2 GeoServer <http://geoserver.org/>
3 Leaflet <http://leafletjs.com/>
4 Datashader <https://github.com/bokeh/datashader>

https://www.mongodb.com/
http://geoserver.org/
http://leafletjs.com/
https://github.com/bokeh/datashader

5

 3. Architectural Overview

 Fig 1 high level communication between the client-server architecture of Team Selene’s system.

In order to produce a system that will satisfy the needs of our client, a carefully

crafted system architecture must be implemented. As this application will be served as a

web app, the overall architecture follows the client-server paradigm, as illustrated in Fig

1. The base of the architecture is a MongoDB system used to store and access the Kaguya

observation data. Directly communicating with this database will be a GeoServer

instance, which will act as the server in the client-server architecture. This server will be

the intermediary between the client and the database, processing queries and serving

the results. Finally, the client represents the software which will render the

hyperspectral and spatial data provided by the server.

The client is a Web 2.0 HTML5 JavaScript frontend using Leaflet to read map

tiles and interface with the map. The key responsibilities of the client are to provide a

user interface that allows for panning and zooming, and to connect to GeoServer that is

used for querying and serving raster data over the network.

GeoServer is a tile server that utilizes Web Map Service (WMS) to bridge the gap

between the client and the database and serve the map data. GeoServer will receive and

process tile requests from the client, translate the tile request into points request. Then

GeoServer will query the database, rasterize the points that the database returns into

tiles and serve them back to the client. The process of rasterizing the data to return to

the client will take place in a micro pipe-and-filter architecture.

6

The database is a MongoDB database that will store the points and their

respective metadata and serve the points when they are requested.

The communication protocol used between the OpenLayers client and GeoServer

will be WMS as it is an industry standard format. In between the database and

GeoServer Team Selene will use the GeoServer REST API. The overall architecture of the

system is client-server, however GeoServer will contain a small pipe-and-filter system in

order to transform the point data into tiles for the client.

7

 4. Module and Interface Descriptions

 4.1 Client

 4.1.1 Overview

The client module represents the web page running on the user’s browser. The

client based software will render the geospatial and hyperspectral data, and allow for

users to interact with the data set in the context of a map based application. Our map

interface will be built using Leaflet, an open source library for the creation of dynamic

and interactive maps using JavaScript. Leaflet is our choice for this project over other

mapping libraries primarily due to its lightweight nature (37KB), ease of use, and

flexibility. Our application will use the Leaflet map and layer objects to produce a highly

interactive map to visualize the Kaguya observation data as produced by the GeoServer

instance.

4.1.2 Map

 The Leaflet map object is created via the definition of two parameters: target and

options. The target parameter specifies the HTML element that the map object will be

rendered within, while the options parameter accepts a dictionary containing a series of

optional parameters and their defined values. For this application, the necessary options

that must be defined are Coordinate Reference System (CRS), ‘center’, and ‘zoom’. The

CRS attribute defines the coordinate system the geospatial data will be mapped to,

which in our case is EPSG:4326, or latitude and longitude. The center attribute defines

the coordinates that the center of the map will be set to when the application is loaded,

and zoom defines the zoom level of the map at load, with a zoom level of 1 being the

most global view.

4.1.3 Layer

The layer object defines the visible map data which shall be rendered within the

map object. The geospatial data shall be served as map tiles, and so a TileLayer will be

used. The TileLayer requires a source attribute which defines the source of the tile

service (the GeoServer instance) and a dictionary of optional parameters.

8

 4.2 GeoServer

GeoServer acts the intermediary between the database and the front-end client.

GeoServer enables use of the widely adopted OGC Web Mapping Service (WMS) and

Web Feature Service (WFS) standards. Because these are widely accepted standards, it

will allow us to serve data to the widest possible user base. Our browser based web client

will be on top of GeoServer and receive or data using the standard protocols. Below,

there is the geospatial database containing the observation data. Utilizing GeoServer

Representational State Transfer (REST) API, we can dynamically query for points which

in turn are used to generate tiles. Raster tiles and vector tiles are served through WMS

and WFS respectively.

 Fig 2 Diagram demonstrating the overall dataflow through GeoServer.

GeoServer will perform queries as the user interacts with the client while

dynamically serving tiles using OGC standard protocols. Frequently accessed tiles are to

be cached within the server to reduce the need for re-generating tiles. As shown in Fig 2,

The GeoServer instance will act as the interface by which clients can access the services

provided by the application. It acts as an intermediary, performing queries upon the

data set within the distributed database and serving the resulting data to clients as map

tiles across the WMS and WFS standards.

9

 4.3 Database Design

 4.3.1 Overview

A key component of the work is the development and deployment of a spatially

enabled, point database containing the entirety of the available SP data, approximately

46 million individual spot observations. Two broad database solutions exist to efficiently

store, query, and serve the spatially enabled data. These are traditional Relational

Database Management System (RDBMS) that utilize the Structured Query Language

(SQL) and more recently developed NoSQL databases that utilize a document based

approach. Typically, a PostGreSQL + PostGIS solution is used for serving map data.

Although originally a strong contender, for this project, we were looking for a solution

that allows for rapid deployment and easy scalability. There is no expectation of

additional observations as the mission has long since concluded, so any additional data

is expected to be derived. By extension, the dataset needs to be scaled after initial

deployment in order to accommodate the addition of derived data. Therefore, we

decided upon the NoSQL DBMS MongoDB. MongoDB offers better horizontal

scalability compared to most other DBMS based solutions and free failure protection

through built in replica-set support. MongoDB is outperformed by PostgreSQL when it

comes to complex join operations. This can be offset by implementing redundancy in the

schema, sacrificing drive space for faster query execution time. As the data is already

set, and derived data is not expected continuously grow, typically desirable database

characteristics such as fast writes, ACID support or atomicity are not primary objectives.

The key virtue behind our database design is highly responsive server which supports

many concurrent reads.

4.3.2 Schema Design

The original data specification consists of two collections: Images and Spots.

Images consists of image meta which encapsulate a ~100 element vector of Spots

collected in lines. The Spots collection contains individual points representing all 46

million spot observations. Among the fields in Spots there exists four ~300 element

parallel vectors for reflectance (see Fig 3), quality and two reference measures calibrated

for dark and light areas on the moon at different wavelengths along with miscellaneous

metadata.

10

 Fig 3 A graph of the ~300 element array for a single point. Wavelength is in nanometers and reflectance is almost always in the

range [0, 1.0]. Quality goes down as wavelength goes up. You can notice an outlier near 2500 nanometers.

In order reduce the problem size, we encapsulated the points into Image

collections. An image based can collection help aggregate ~100 points into a single

document (exact number of points per image vary) which works as an intermediate

structure and aids in reducing the problem size by a factor of about 100 (~460,000

documents). A spatially enabled index is still possible by indexing on centroids. Spot

observations which make up the image are stored in an array structure. This array of

spots contains the reflectance, radiance and quality arrays. As the wavelengths do not

differ between points, wavelengths can be factored out and stored in a single document

within the database. Two other important metrics are incident and emission angle for

particular spots. To minimize query times, there are different representations optimized

for different queries.

Spatial queries are on longitude/latitude location and angle range queries are on

incidence angles and emission angles. MongoDB does not support multiple spatial

indexes, so to optimize query time, these are split into their own collections: image_pos,

image_angle that are keyed on (longitude, latitude) position and on (incidence angle,

emission angle) respectively. By treating incidence angle and emission angle as 2D

coordinates with added redundancy allows us to distribute the data more evenly over a

cluster for the different documents while maintaining O(1) time complexity at the cost of

using extra drive space.

11

 Fig 4 A diagram of the three collections and their fields.

As depicted in Fig 4, longitude and latitude values for images are the centroid of the line.

Incidence and emission values are averages derived from the points contained in the

image. The averages are used to perform queries on the intermediate image collections.

The POINTS document represents data contained among points.

4.3.3 Sharding Strategy

Because of the large size of the dataset, all 46 million spot observations cannot be

contained in a single machine but rather must be spread evenly across nodes composing

a cluster. MongoDB aids us in this with built-in automatic sharding capabilities which

gives us easy horizontal scaling distributing database shards over cluster nodes. The

challenge is in choosing the correct shard key to ensure an even distribution of data

among shards. A poor sharding strategy leads to uneven distribution of points which

causes uneven loads across shards. Another challenge is guaranteeing that each shard

contains contiguous data. MongoDB performs best when a query is isolated to a small

number of shards and MongoDB can determine a priori which shards to route the query

through if a shard has values in a known range. Range based sharding is the simplest

form of sharding MongoDB offers. However, MongoDB does not support sharding on

the 2D spatial indices. Therefore, a scalar must be derived that partitions the data into

equal sized clusters and an insertion method must be used to guarantee contiguous

ranged indices within a particular shard.

Our team has decided on using simple K-means clustering technique to divide

images into clusters. K-means is one of the simplest algorithms that solve the well-

known clustering problem.

12

 Fig 5 An example of k-means clustering on a randomly generated point distribution. This effectively lumps points into voronoi

cells. Images are expected to divided in a similar fashion where each cluster represents a shard.

The objective of the K-means algorithm is to partition observations into k-

clusters while minimizing within cluster sum of squares. That is, K-means attempts to

find:

Where || x - μi ||2 is the Euclidean distance between image centroid x and the centroid

of all images in cluster Si, μi.

With this method, we can easily classify images using k clusters fixed a priori and

assign contiguous shard keys to images which belong to the same cluster. Images

contained within one point cluster can be expected to be mapped to one shard on the

MongoDB cluster. To maximize effectiveness of this strategy, the number of shards must

be known a priori as well. Since the dataset is complete and no new images are expected

to inserted after initial sharding, this won’t pose a meaningful setback for our use case.

13

4.3.4 Database Hardware Layout

 Fig 6 High level overview of cluster setup. Shards are contained in nodes and each have access to their own datastore. Each shard is

assumed to be a replica set and each node can potentially contain multiple shards.

Taking advantage of resources made available to us by the USGS, we plan to set

up the database on ASC’s AstroVM cluster. AstroVM gives us access to about 2 dozen

nodes with a few dozen CPUs, 128 GB of ram and several terabytes of parallel disk

access for each node. We will utilize the mini VM service Docker to deploy MongoDB

shards. Scheduling is provided via Slurm. Below is a listing of technologies and

definitions that are used in this section.

● Mongod – the primary MongoDB server process/service that provides the

database storage and indexing logic along with simple configuration capabilities

for managing a single instance or a cluster. All shards are Mongod instances.

● Mongos – the routing and coordination process/service that abstracts individual

cluster components from a client application. Mongos makes the distributed

components appear as a single system.

● Mongo – administration client application for managing a large or small

MongoDB deployment.

14

● Config server – Mongod instance which stores metadata for a sharded

MongoDB database, used by Mongos for action guidance.

● Docker – Mini VM service, simplifies deployment of database services and

allows for allocating resources from cluster nodes for each Mongod instance

when deploying multiple shards on a single node.

With the database service dockerized, it will make it easy for us to schedule time

on the cluster to run the database service. Each shard is dockerized individually and one

more container is used to host both Mongos and the Config Server which will all

communicate using Docker’s DNS service. Mongos, GeoServer and other MongoDB

database drivers will connect to this datastore via the Mongos instance which will have a

public facing static IP.

15

 5. Implementation Plan

Fig 7 Gantt Chart of what the team will be working on for the semester.

Fig. 7 above displays how Team Selene will be spending its following semester

working on its Capstone project. Currently, the team is working on the first section of

Fig. 7 Prototype.

‘Prototype’ should be a very basic implementation of the project which covers the

three major components: Front-End, GeoServer, and MongoDB. Front-end client will

be the web design and user interface which will display the map and allow the user to

interact with it by panning, zooming, etc. GeoServer will be the tile server that connects

the Mongo database to the front-end client. Database will be designed during this

section then implemented to store points and metadata, along with serving any points

that are requested from the client.

The ‘Production’ portion of the project will take place immediately after the

‘Prototype’. This portion will involve finalizing major decisions with each section of the

project, along fixing any major bugs or adding important features to each section.

Front-end client will include new features that involve iterating through the data with

more attributes to filter. GeoServer will be placed on a cluster making it more scalable

and more responsive. The design of the MongoDB will be finalized during this stage.

16

‘Finalizing Project’ within Fig. 7 will be where Team Selene should be finished

with all the major portions of the capstone project and have the functionality working

for each section. This portion will be fixing minor bugs within the code and adding any

features that could improve the project.

17

 6. Conclusion

Team Selene’s design approach on serving such large scale spatial and spectral

data places focus on previously established technologies (e.g. GeoServer) along with

newly innovative technologies (like Datashader). Architecturally, the solution is based

on a server-client pattern, where the server pipelines the database directly into

Datashader and GeoServer. The server can then send the client a vector-based data set

vs. a raster based on how zoomed in or out the user is. GeoServer can serve the tiles to

Leaflet, allowing for an intuitive map interface not unlike Google Maps.

In database design, an aggregating structure is chosen. By collecting every

roughly 100 points into an Image document, the 46 million observations can be reduced

to around 460,000 documents: far more manageable for MongoDB to handle. Even

then, a sharding strategy must be used to allow for better horizontal scalability. By using

a K-means clustering algorithm, the shards are ensured a more reasonably even

distribution amongst clusters of the 46 million data points.

By intelligently using individual points only when a user can effectively select it

allows scalability to solve USGS’s problem. Overall, not only will it grant the

Astrogeology department to properly and reasonably serve the Kaguya’s hyperspectral

data of the Moon to likewise scientists, but other projects and departments may be able

to use a similar design approach for other future large scale problems.

