

Software Testing Plan
March 28​th​ 2017

Five Pixels

Sponsor:

Joy Knudsen

Faculty Mentor:
Dr. Mohamed Elwakil

Team Members:
Brandon Garling

Xiangzhi Cao
Matthew Nielsen

Mohammad Alsobhi
Clarissa Calderon

Rev 1.0

1. Introduction 2

1.1. Purpose 2

1.2. Project Overview 2

2. Unit Testing 3

2.1. Overview 3

2.2. Frontend 4

2.2.1. BackendCommunicatorService 4

2.3. Backend 5

2.3.1. Serializer 6

3. Integration Testing 7

3.1. Overview 7

3.2. Frontend 7

3.2.1. ConfigService 8

3.3. Backend 9

3.3.1. Database Integration 9

3.3.2. Notifications Integration 9

4. Usability Testing 10

4.1. Overview 10

4.2. End to End Testing 10

4.3. Use Case 1​1

5. Conclusion 11

1

1. Introduction

1.1. Purpose

This test plan describes the testing approach and overall framework that will drive the
testing of Groupwise, the group matching application for FlagFriends. This document
introduces:

● Unit Testing: Testing small independent pieces of the application in order to
ensure overall functionality

● Integration Testing: Testing the integration between all the small independent
pieces of the application

● Usability Testing: Testing the usability of the application as a whole, interacting
with the application and ensuring that all functionality works as intended

1.2. Project Overview

5 Pixels is creating a web application called Groupwise for a local Flagstaff non-profit
organization named FlagFriends. With this program, we will bring the public the opportunity
to take part in the experience of hosting foreign students with the intentions of having the
students and hosts both learn about the experiences of each other. FlagFriends is currently
running a program where incoming international students and Flagstaff hosts can connect
and share experiences as well as orient the student with campus and the surrounding area.
Currently, FlagFriends is running at minimum efficiency due to its completely manual
process. Groupwise will change that by allowing students and hosts to create an account
on the FlagFriends.org website and have the users create profiles and start the
self-matching service that the webapp will provide. Students and hosts should be able to
match themselves by viewing profiles and by chatting with each other. When they match
themselves, the administrator will see the matches. He or she can still see how the program
operates but she will not have to get involved with the matching process the way she used
to. In the past, the administrator had to manually receive and manage paperwork to create
matches with students and hosts, the web application for FlagFriends will allow him or her
to monitor the program and will allow her to focus on other tasks such as marketing. The
resulting applications for FlagFriends should make everyone’s lives easier, students and
hosts can pair up with whenever they want instead of trusting an administrator to create a
good match, and the administrator will be saved days of work.

2

We will be testing the entire Groupwise application. The most important part of the service
are accounts and the matching process. We have to make sure that anyone that opens our
website can view the website in whichever browser they are using. We have to make sure
and test that users are able to create accounts and use every function of the website that
they are given. Different account types have different privileges, the admin account which
will be given to the administrator(s) should be tested so that it can completely modify the
service. Admin account holders should be able to modify questions students and hosts
need to fill out to create their profile. Host and student accounts should be tested to make
sure they can create a profile, view other profiles, and message other users. Hosts should
be able to message students and students should be able to message hosts. The team has
to make sure the matching process is running and working properly, the webapp doesn’t
create a match, the hosts and students match themselves after interacting with other users.
Hosts and students should be able to look through profiles by using filters. The filter should
be working to show specific profiles to users that ask for specific details about hosts or
students. The upload image process in user accounts needs to be working along with the
fields that allow users to enter information when answering their profile details.

The ultimate, unattainable goal of software testing is to provide a perfect product to its
users. With software testing programmers can save hours of work that would have been
needed had a user encountered an error. If a user finds an error that impedes what they
are wanting to do when using a program, they can sometimes stop using the program;
Errors or bugs in programs cause users to leave the service and possibly rate the program
badly. Then that same user that left the service can spread information about the program
being badly constructed. Software testing can make sure nothing goes wrong when users
use the program they are using and in some cases software testing can even save lives,
such as in programs that are used in space or any security program. The reason 5 Pixels is
implementing tests is so that we make sure we deliver a quality service and so that users
are able to properly use FlagFriends to create friendships that will last lifetimes.

2. Unit Testing

2.1. Overview

In order to unit test our software, we need to split our testing into two sections: frontend and
backend unit tests. In our case, both our frontend and our backend use Javascript, we can
leverage this so we only have to learn how to test with a few different testing libraries. To
ensure that our software is well tested, we plan to unit test as many independent parts of
the project as we can by carefully going through the project and identifying key components
of our system that are prone to error and could be detrimental if they were to fail. We will be

3

using Jasmine and the Karma test runner to run our testing to facilitate both our frontend
and backend testing. Karma has many plugins which help in gathering relevant testing
information such as code coverage that we can leverage to better assess how good our
testing is.

2.2. Frontend

First focusing on the frontend; Using the Jasmine and Karma libraries we can test our code
by importing our different components and testing independent functionality of each
component.

Angular 2 can be split into a few different distinct building blocks: components, directives,
pipes, services, and guards. A NPM package we leverage generates blueprints for each
one of these distinct building blocks and creates sample test harnesses for each one which
we can build our actual tests into. This makes it exceedingly simple to start testing our
frontend Angular 2 code.

Quickly identifying some main pieces of our frontend application code, we can pick out
some main services we would want to test thoroughly.

2.2.1. BackendCommunicatorService

Overall Functionality
● This service is extended in all other services that implement any kind of backend

communication. It is responsible for extracting data from a payload response
from the server, processing the data, and returning the result. This also handles
creating and responding to errors appropriately.

Function - ​extractData(model: any, res: Response)

Extracts data from a response from the server.
● Boundary Values

○ Null, undefined, JSON without any keys, JSON with random keys
○ An HTTP response status of something other than 200

● Equivalence Partitions
○ JSON with an Error key and some value
○ JSON with an Error key and a Payload key with some values
○ JSON with a Payload key and some value
○ Null, undefined
○ Empty JSON
○ JSON with random keys

4

● Selected Test Cases
○ {“Error”: null}, HTTP: 200
○ {“Payload”: null}, HTTP: 200
○ {“Error”: [], “Payload”: null}, HTTP: 200
○ {“Error”: [“Some value”], “Payload”: {...}}, HTTP: 200
○ {“RandomKey”: {...}, “Payload”: {...}}, HTTP: 200
○ {“Error”: [], “Payload”: {...}}, HTTP: 200
○ {“Error”: [], “Payload”: {...}}, HTTP: 500

Function - ​parseError(res: Response)

Checks a response for errors and wraps them in a RestError container class if
any exist, otherwise returns null.
● Boundary Values

○ Null, undefined, JSON without any keys, JSON with random keys
○ An HTTP response status of something other than 200

● Equivalence Partitions
○ JSON with an Error key and some value
○ JSON with an Error key and a Payload key with some values
○ JSON with a Payload key and some value
○ Null, undefined
○ Empty JSON
○ JSON with random keys

● Selected Test Cases
○ {“Error”: null}, HTTP: 200
○ {“Payload”: null}, HTTP: 200
○ {“Error”: [], “Payload”: null}, HTTP: 200
○ {“Error”: [“Some value”], “Payload”: {...}}, HTTP: 200
○ {“RandomKey”: {...}, “Payload”: {...}}, HTTP: 200
○ {“Error”: [], “Payload”: {...}}, HTTP: 200
○ {“Error”: [], “Payload”: {...}}, HTTP: 500

2.3. Backend

Next focusing on the backend; Because we broke our implementation out into different
modules we can import our different modules and test the functionality of each function
(where applicable) and ensure that they respond correctly to different inputs. We may also
employ mocking to ensure that we are indeed only testing one independent piece of the
application that doesn’t depend on another piece of the application. We can create
separate test files for each one of our custom modules and create tests for each one, and
finally create a master Karma config file that loads each test file and runs them.

5

Delving further into this we can focus our testing on the most important pieces of the
backend and expand as time allows. Following the backend workflow, we can test the
different pieces which each request from the frontend must follow, specifically each request
follows a route to service workflow. Routes simply provide endpoints for the frontend to
communicate with and pass all relevant parameters of a request to the correct service. In
this case, we can focus our testing on the services layer of our workflow. In addition,
because our backend service is almost entirely REST based we can focus on the custom
functions we implemented to help facilitate this communication that are common to all
services. We can also perform some simple testing on some of our other user made
modules such as the mailer, encryption, logging, notifications, socket, and setup modules.

2.3.1. Serializer

Overall Functionality
● This module enables converting Data Transfer Objects (DTOs) to models and

vice versa.

Function - ​serialzeModel(model: SequelizeModel)

Converts a Sequelize model to a simple JSON object, stripping out any keys
which are not specified as serializable in the DTO map.

● Boundary Values
○ A model with no values

● Equivalence Partitions
○ Null, undefined
○ Something other than a Sequelize model
○ A Sequelize model
○ A Sequelize model that does not contain DTO mapping directions

● Selected Test Cases
○ A model with no values
○ Something other than a Sequelize model
○ A Sequelize model
○ A Sequelize model that does not contain DTO mapping directions

Function - ​serializeModels(models: SequelizeModel [])

Converts an array of Sequelize models to a simple JSON array containing JSON
objects, stripping out any keys which are not specified as serializable in the DTO
map.
● Boundary Values

○ An empty array
○ An array containing a model with no values
○ An array containing multiple different models

6

○ An array containing a single Sequelize model
● Equivalence Partitions

○ Null, undefined
○ An array containing something other than a Sequelize model
○ An array of containing a multiple Sequelize models

● Selected Test Cases
○ An empty array
○ An array containing a model with no values
○ An array containing multiple different models
○ An array containing a single Sequelize model
○ Null, undefined
○ An array containing something other than a Sequelize model
○ An array of containing a multiple Sequelize models

3. Integration Testing

3.1. Overview

Our major piece of integration testing will be testing the connectivity between the client and
server and ensuring that communication is stable. Once again, we can leverage Jasmine
and Karma test runner. This client server communication involves websockets as well as
REST API calls and testing socket communications.

3.2. Frontend

In addition to testing the communication between client and server we can leverage another
feature of the Angular 2 CLI package which is e2e (end-to-end) testing. This comes
preconfigured for our project and allows us to use a package called Protractor to interact
with the page and ensure that events are fired and routes are followed correctly.

Some tests we will conduct include:

● Testing going to pages which are guarded and ensuring that we are correctly redirected
to the login page when appropriate

● Ensuring that each page can be rendered without any errors
● Ensuring that specific elements are present on rendered pages
● Ensuring that routing works for each of our different routes, including our page not found

(404) route

7

● Ensuring that backend data is correctly loaded and displayed

3.2.1. ConfigService

Overall Functionality
● This service is responsible for retrieving and setting custom configuration fields

on the server.

Function - ​getValue(key: string)

Retrieves a configuration value from the server given a specified
configuration key.
● Boundary Values

○ Key: “”
○ Key: A key which does not exist on the server
○ Key: An exceedingly long key (>1024 characters)
○ Key: A key with spaces

● Equivalence Partitions
○ Key: Null, undefined
○ Key: A normal string

● Selected Test Cases
○ Key: “”
○ Key: A key with 1024 characters
○ Key: A key which does not exist on the server
○ Key: A key which does exist on the server

Function - ​setValue(key: string, value: any)

Sets a configuration value on the server given a specified configuration key and
value.
● Boundary Values

○ Key: “”
○ Key: A key which does not exist on the server
○ Key: An exceedingly long key (>1024 characters)
○ Key: A key with spaces

● Equivalence Partitions
○ Key: Null, undefined
○ Key: A normal string

● Selected Test Cases
○ Key: “”
○ Key: A key with 1024 characters
○ Key: A key which does not exist on the server
○ Key: A key which does exist on the server

8

3.3. Backend

Our backend can also benefit from further integration testing between the different services
and modules ensuring that data is passed correctly between modules, and errors are
caught and handled correctly in all cases. In addition, we can further test our integration
with external services such as our mail service and database directly.

Some testing we will conduct include:

3.3.1. Database Integration

Data Mapping
Test whether the data that is being sent back and forth from the UI to the

database.
● Boundary Values

○ Data is misplaced
○ Data is not communicated
○ Data cannot be retrieved
○ Data is too big

● Selected Test Cases
○ Data is too big

ACID - ​Atomicity, Consistency, Isolation, Durability

Ensure the data follows the rules of ACID; pass or fail, state of the
database is always valid, simultaneous requests to the database work as if done one
at a time, and the system will endure events like power loss after a transaction is
completed.
● Boundary Values

○ Data is stored with corrupted elements
○ Some reason to break consistency
○ Multiple requests to store/retrieve data to/from database
○ System reboot or crash for any reason

● Selected Test Cases
○ Multiple requests to store, retrieve data from database
○ System reboot or crash for any reason

9

3.3.2. Notifications Integration

Scheduled Tasks
Ensure that all scheduled tasks and notification checks occur on time and

emit the correct events.
● Boundary Values

○ No notifications found
○ One notification found

● Selected Test Cases
○ No notifications found
○ One notification found
○ Many notifications found

4. Usability Testing

4.1. Overview

Usability testing is used to make sure users get the experience intended for them when
using the service. For example, usability tests we will carry out will check if users can load
the service in their browser. We will also test if the pages and text uses sizes that are well
displayed on computer screens and phone screens. Users from different backgrounds will
be using the software and everyone needs to be able to get the web application working as
not everyone has technical knowledge to fix errors that may be encountered. Usability tests
check if the software can run and be used.

4.2. End to End Testing

We will use Protractor for usability testing, which is an end-to-end test framework for
Angular 2 applications, and it can run tests against our application running in a real
browser, interacting with it as a user would.

In addition to using Protractor we will also be employing actual user testing by working with
our sponsor and selecting a small group of testers for the application who we can work with
and gather feedback for working and not working functions.

10

4.3. Use Case
We will release an alpha of the program and enlist people that are already registered with
FlagFriends to try it out. At the same time, we will conduct a Google Forms survey and
send it out to the users. We hope to recruit a large enough number of testers to give us a
good idea of last minute UI/UX bugs and improvements.

We will also use this opportunity to test the web socket communication we have
implemented for users to talk to each other through the application. This will help us
improve a vital function of the application, as the biggest tool users will have to
communicate with each other pre-match is our chat system.

This is the test we hope most carries out since getting a number of individuals to help who
will actually be using the software when the software is released, will cause the frontend be
restructured based on user feedback.

5. Conclusion

5 Pixels is working day and night to bring FlagFriends the software it deserves. It will unite
participants of the program by making the process more efficient for individuals to make
friends and help orient some NAU students who would have a harder time finding their way
in the city. Groupwise will eliminate the need for the paper applications and the archaic
filing system used by FlagFriends currently.

In our development of Groupwise, 5 Pixels will be using unit tests, integration tests, and
usability tests to eliminate possible errors that could arise. 5 Pixels is using unit tests to test
small pieces of the software. Integration testing tests the conjunction of the small pieces to
ensure they work together. Usability testing is used to make sure different types of people
can use the software. Testing is a very important part of software development as it
guarantees the software will operate as it should. 5 Pixels will give the software to the
administrator by May and with the use of testing, everything that the program needs to
function will work. We are thankful for working on this project and we look forward to make
sure it works properly.

11

