Northern Arizona University
Capstone Team Project
Designh Document
Bit Tag
Temitope Alaga, John Dance, Joshua Frampton, Jun Rao
CS 486¢
Version 1.3

2/12/2016

Table of Contents:

Introduction:
Architectural Overview:
Module and Interface Descriptions:

Login View:

Repository View:

Browser View:
Implementation Plan:
References:

Introduction:

Bit Tag Technologies has sponsored our team to develop a mobile app in order to
extend their current functionality of a web site tagging system to further platforms to link website
content like Facebook “tags” photos. Their current platform is limited to a Chrome extension and
so they are trying to build out their platform to include a wider audience. Building the Bit Tag
application into a mobile app will allow for more people to easily access the technology. Since
the current desktop application is built into an extension, it is not currently easy or possible to
use the application outside of Chrome. This mobile application will show that it is possible to
port this technology to a variety of platforms and show that the technology can be viable.

This document will outline the design of the Bit Tag mobile application architecture. The
Bit Tag mobile application aims to extend the uses of the online webapp into the mobile
environment. It will take the high-level concept of Bit Tag tagging and apply it in a format that is
relevant to the mobile platform. There are two core parts needed for the application to work
correctly. The first part is the ability to pull from and review the Bit Tag "tag repository” which
hosts all of the tag data in a central location. The "tag repository" will be accessed via an API.
This information should be pulled into the application and displayed in such a way that is
comparable to the web version of Bit Tag. The second portion of the application should be able
to accurately display the tags on the tagged content where it is formally hosted.

The ability to perform this task natively on a mobile platform is very limited so this will be
solved by implementing a web browser within the application itself. The "tag repository" of the
application should be able to send the data that was pulled from the Bit Tag servers through to
the web browser side of the application, the web browser side should then place visual tags on

the content where it is appropriate. To ensure portability of the application, the application will

be developed in a WebView context. A WebView object is effectively a web viewer built into an
app. To achieve this, we will be using Apache Cordova to wrap the application into a target
platform native application. The system will primarily be built in web languages such as HTML,
CSS, and JavaScript because of this. The primary messaging architecture of the application will
be designed around the Model View Controller (MVC) architecture. The MVC architecture allows
us to abstract a level of communication in the app and separate these lines of communication
into three core portions, ie. the Model, the View, and the Controller. Using this architecture will
allow us to more effectively and efficiently create and destroy views as it is applicable while
maintaining a good level of organization in workflow and data. The application will also be
designed in such a way that it does not violate the terms and conditions of mobile application

stores such as Google Play and the iOS App Store.

Architectural Overview:

Figure 1 represents the internal architecture of the mobile app. This architecture

represents a Model View

Controller pattern. The / Mobile App
core logic of the

Browser View

application is done on the

Bit Tag
:I
controller level. This
means that as the
application is interacted

with, the controller is able K

to react to these

Model vy

Figure 1: Architecture Diagram

interactions controlling

the flow of the application. The interactive portion of the application is handled by the views.
Each of the views defined in Figure 1 show the core portions of interactivity. The views
themselves will be reasonably lightweight and focus primarily on displaying the desired data at
the desired time. Finally the model is the datastore of the application. This will handle the
on-board storage of data along with the accessing of data from the Bit Tag servers. The Bit Tag
server’s job is to contain and store every tag that has ever been created and uploaded to Bit
Tag’s server, this is known as the "tag repository". This will allow our app to gather and save

tags to upload to the server. Thus, the app will have the access to tags on every device.

Metworked:

Compasition: ——

Legend:

f

L

Mobile App Bit Tag Server

Apache Cordova

_ _ inAppBrowser
Bit Tag Tag Senda iog info to d?;pﬁay tagged
Repository Viewer content

Figure 2: System Level Diagram

As we abstract up a layer we have the larger technology interaction stack. This can be
seen in Figure 2. As we are developing the application using a mobile WebView, we have the
ability to use a mobile development framework called Apache Cordova. This allows us to target
multiple mobile platforms with one source. At a high level, the app will consist of two key parts,

the "tag repository" viewer, and a browser to view these tags. The repository viewer will be built

from the ground up. The browser however will be using a Cordova plugin called inAppBrowser
that supports a variety of popular browser features along with code injection which is critical for

displaying tags.

Module and Interface Descriptions:

Open Application li
e .

Login View:

We will authenticate each

login attempt by sending an Ajax |
Enitar "
usemame/password [

request to the Bit Tag server in

order to check the credentials with

o~

their database. The server will //
A Ihen‘.lf_até\\\
. . < with Bit Tag Fail?

then generate an authentication _\ Sarvar

o
",

token and send that along with the
sign in information back to the Successiul?

application. After authenticating

. . Redireci user fo
the user, the Bit Tag server will Repository View

send a response back to our

application which will redirect the Figure 3: Login View

user to the Repository view. By

having our login view (Fig. 3), we will be able to allow users to create and manage their own

tags within the entire application and when going to the in-app browser.

-=..|(Account Creaied

Nao | Pleais Regivier l

Inirtiad

Pleais Login

X

(" User_Name and Password Entered]

Mo |Please Emter User_Name and Password Agai

Correct User_Mame and Password

¥es | Redirected wser o Repository wiewe

Repository Yiewed
Finalftate
L=

Figure 4: Repository View

Repository View:

The repository view (Fig. 4) will contain many of the information which has been already
created or stored through the Chrome Extension onto the Bit Tag server. This will include tags
and content that the users create while using the software. We will pull the entire repository from
the Bit Tag server using the Bit Tag APIs and then display each tag on the mobile app’s
repository view. The user will then be able to modify, delete, and share tags they have created
in the past through this view which will immediately reflect on Bit Tag’s servers. Modifying tags
will consist of organizing and commenting. As a user you can organize your tags and other tags

by category in order to help you sort them, this will reflect on the repository view and will help

the user sort and organize the content more efficiently. Most of the methods needed for this
functionality has already been created on Bit Tag’'s end so using their libraries and the Bit Tag

APl we will be able to implement this rather easily into the mobile app.

o .

l,l/.-‘:_ Craate tag or -:nr|;:r\\| Browser VieW:

% The browser view’s (Fig. 5) responsibility will be

to ensure that the user can easily create and

¥/

) Siore tags and contant
1l

\\x _I// view tags from the repository in a separate in

app web browser. By allowing the user to do

—, this, we are giving them the ability to have full
/— 5 Build AP “-\.\'I
- __// functionality of Bit Tag’s services from within the

Y wincludes

N,
% I/iﬁrrrs*::n'mrl-,-m

Software Developer

mobile application. When the user clicks on a

specific tag from the repository view, it will take

/
\

them to their in app browser and will show the

in which th ill
- .ruaﬁi\ page in which the tag was created on and wi

_l/f/ display the portion of that page with the tag and

the comment left by the previous user. When

% P A— -n'nlﬁ creating the tag, the user will have an option to
i — create a tag for most content while in the in app

Figure 5. Browser View browser.
In the browser view, we will be using
Apache Cordova'’s InAppBrowser, which is a web browser that affords many of the same

features that users are used to in their normal web browsers. By using inAppBrowser’s

executeScript and addEventListener we will inject our JavaScript code into the browser window

which will allow the user to view and create new tags which will then immediately reflect into our
repository view and then will allow the user to manage and organize their specific tags within
that view. In order to create the specific actions for the tags, we will need to use JavaScript to

manipulate the DOM elements by adding elements in order to create and view tags easily.

: End_User 5 Repository T Browser in Phone

— & Click Tag
>JL|—L| ", Send Information 1o Browser in Phon

@ Display Informatior

% Create A Tag

==

<

% Send Information 1o Repositor

w------1

'b Save Informabon

Figure 6: Sequence Diagram

Implementation Plan:

At a high level, the work will be broken down into two key sections:
1. The development of the "tag repository" portion
2. The development of the tag viewer portion
The breakdown of work within this can be viewed as the following:
e "tag repository”
o Ul design
m Core Ul - includes login
m Repository Ul
o Core Ul implementation
o Login Ul implementation
o Pulling and formatting data from Bit Tag API
o "tag repository" Ul implementation
e Tag Viewer
o Integrate inAppBrowser plugin
o Implement browser navigation
o Implement browser injection

o Implement Bit Tag tag library

To start with, the work will be split up into the two main groups as described. The "tag
repository" portion will be worked on by Jun Rao and Temitope Alaga. The tag viewer portion
will be worked on by Josh Frampton and John Dance. By splitting the work like this we can
effectively work in parallel without having conflicting workflows. The subteams themselves will

be responsible for splitting their sub-workloads.

10

@GANTT
profect

Begin date

2016

I T T T T I I T T

Weekd WeekS WeekS Week7 Wieek8 WeekD Week1D Week 11 Week12 Week13 Week14 Week15 Wieek 15 Week17 Week18

End date |umie weas uows arne anens cowie amens omie anais omons sois 4ms snuds annie ansi

© o 9 © 6 e 00800006 0 00

Integrate inAppBrowser
Implement inAppBrowser Navigation
Implement inAppBrowser Injection
Core Ul Desian

Repository Ul Design

Desian Document Final

Login Ul Implementation

Pull Data From Bit Tag

Core Ul Implementation
Implement Bit Tag tag Library
Final Prototype Due

Taa Repository Ul Implementation
Design Review Il

Testing

Design Review IlI

Test Plan Due

UGRADS

Final Delieverable Due

Jun and Al: Gray

1/18/16
1/18/16
1/18/16
1/26/16
2/2/16
2/9/16
2/16/16
2/16/16
2/16/16
2/22/16
3/3/16
3/1/16
3/8/16
2/16/16
4/5/16
4/14/16
4/29/16
5/5/16

Josh and Keevan: Green

Entire Team: Red

1/24/16
1/24/16
1/24/16
2/29/16
3/7/16
2/9/16
2/22/16
2/22/16
3/21/16
3/27/16
3/3/16
3/28/16
3/8/16
4/25/16
4/5/16
4/14/16
4/29/16
5/5/16

[Design Document Final Final Prototype puelew i [Design Review 1]t Pian Duel usrans]Fina

Wieek 18
siue

| |
*
+*

Figure 7: Gantt Chart

11

References:

Apache Cordova:

https://cordova.apache.org/

Bit Tag:

http://www.bittagbox.com/

inAppBrowser:

https://www.npmijs.com/package/cordova-plugin-inappbrowser\

WebView:

http://developer.android.com/reference/android/webkit/\WWebView.html

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView Class/

Diagram Tool:

https://www.draw.io/

12

https://cordova.apache.org/
http://www.bittagbox.com/
https://www.npmjs.com/package/cordova-plugin-inappbrowser/
http://developer.android.com/reference/android/webkit/WebView.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://www.draw.io/

