
Rapid Storage Reporting Tool Project

Technology Feasibility

October 22, 2013

Chad Dulake

Nakai McCarty

Forrest Townsend

2

Table of Contents

Introduction ... 3

Technology Overview ... 3

Technology Integration ... 3

Proof of Feasibility ... 4

3

Introduction
This document provides a brief overview of our approach to the project. This

includes various technologies which we anticipate will be either necessary or
potentially useful in the course of production. A brief discussion of how these
technologies will be integrated follows this listing. Finally, the document concludes
with a GUI mockup for the report generation interface and a two architectural
diagrams illustrating data and control flow in the system respectively. These diagrams
serve as proof of concept for the project.

Technology Overview
Languages: C#, CSS, HTML, Javascript, Linq, XML, XSLT

Libraries: ASP.NET MVC5, Entity Framework, JQuery, KnockoutJS, Node.js, Typescript,
Windows Authentication

Graphical Libraries: d3.js, Twitter Bootstrap
System-Type: Centralized system; Local intranet
Data-Transfer Protocols: SOAP for exchanging information, since we are using XML
this works great.
Database Systems: Microsoft SQL Server

Browsers: Internet Explorer 10, Chrome, Firefox, and Safari

Technology Integration
Inputs handled by the tool will consist of formatting and content request

instructions given by the user, query results from Microsoft SQL Servers, and the
results from other input modules which may be developed at a later date or by a third
party. The tool will process input data and produce XML output which will be further
processed by various output modules into more human readable formats like HTML or
Excel data. Final outputs can be downloaded and HTML outputs can be previewed once
a report has been generated. The users will interact with a single web interface. This
interface allows the user to select which data sources they would like to aggregate into
a report. Stylistically, the interface will be compatible with the four major browsers:
Internet Explorer, Chrome, Firefox and Safari.

The libraries that are listed above, will help us functionally reach completion as
well as to provide us a “niceness” sense to our tool. The graphical libraries that we are
going to explore include the Twitter Bootstrap and d3.js library. Twitter Bootstrap is a
way to give your site a common looking sense of completeness. The d3.js library is used
to model data is a graphical and creative way. Node.js may be used if we want to do
JavaScript processing on the server side.

One of the key data communication languages we are using is XML. For our
output formats, we will use XML to prepare each result. Both outputs that we intend in

4

using, Microsoft Excel and HTML, both translate from XML incredibly well. A great
feature of using XML throughout is that we can manually generate test XML data to
throw into each module individually for testing.

Proof of Feasibility
 These are quick design mockups of the graphical user interface in our web
application.

5

This is a draft of our architecture for this project; it is an MVC (Model-View-
Control) architecture with an addition of event busses to add modularity and
anonymity between the system and its inputs & outputs. Each input module registers
itself with the input bus via the input API while providing its available fields and
tables (and/or subfields and subtables). Likewise the output generators register
themselves with the output bus via the output API and thus introduce themselves to
the interface controller for use. Only the control API does not provide a method for
registering a listener, instead it’s a simple web API that any system (but in this case
our website) could interact with.

All the data passed throughout the system is in an XML format due to the heavy
use of Microsoft’s products and their excellent built in XML processing libraries. It
was only natural to choose SOAP as our protocol for all application interfaces due to it
being lightweight, well defined protocol for transmitting XML over HTTP.

While other languages and forms of data are used throughout the system, the
only data interchange is done with XML.

