[image: image1.png]Listing students

Nome Ema Major Language
Bubba bubba@example.com Math German Show Edit Destroy.
Chris chris@example.com Physics French Show Edit Destroy
Sordan jordansesample.com ST Gorman St £t
Hecrrical
e iancaerample.com NS cronch 5oy g
atrick patick@example.com Phyeice Japanese Shov Ed
Wolly mollyBexemplecom SEMP Spanish Show i pest
Harry harry@example.com Math Spanish Show Edit Destroy.

New Student

CS 476

Requirements Engineering

Fall 2012

Instructor: Dr. Georgas

Table of Contents

Introduction
3
Technology Overview
4
Technology Integration
13
Proof of Feasibility
14
Introduction
This document is meant to present the results of our technology research. The goal is to show that every piece of technology we want to use will work well with the other pieces and that the technologies will fulfill the requirements of the project. We want to avoid the situation where we get started on a project and find out that the technologies we picked will not work together or don’t have the functionality required for the project. We discuss why we picked these technologies, how the technologies work together, and why we ultimately rejected other technologies.

We have broken down this document into several sections. The technology overview gives detailed description of each technology and the need it fulfills. This overview also includes a discussion of the alternative technologies that were rejected. The technology integration section explains how each of the technologies is connected to other technologies. The proof of feasibility section outlines the structure of our feasibility demo. The evidence for this last section includes code and screenshots of the working demo.

The main types of technologies that we needed to consider for this type of web application include web application framework, database management system, front-end libraries, hosting service, APIs. The technologies we ultimately chose for these technology types are listed below.

Web application framework – Ruby on Rails
Database management system – PostgreSQL
Front-end libraries – Google Chart, jQuery
Hosting service - Heroku
APIs – Facebook API
technology Overview
This section explains the main types of technologies that we will be working with in our project. For each technology type, we describe the technology we ultimately decided upon and the need it fulfills. We also provide a description of the alternative technologies and why we rejected them. The technology types we discuss here are framework, database management system, front-end libraries, hosting service, and APIs
Framework
Choosing a proper framework was a major focus of our technology research. A framework combines several different types of technologies in a way that makes provides support for all of them to work together. This is very important to the development process because the framework can make the coding process more efficient and improve organization. We decided to pick a framework as a first priority rather than deciding on a programming/scripting language first because we want to pick the collection of technologies that will work best for us, not just the language.

There are many different types of frameworks available for web development. Some of these frameworks can do a few things very well while others do many things pretty well. We considered several newer, cutting-edge frameworks along with more stable and established frameworks.

Derby
Derby is a web framework that we considered for use in constructing Group Wrangler. Derby abstracts away a lot of the synchronization work between client and server in order to make easy to build web pages that are fast to load and very interactive at the same time.
Pros:
· Runs the same code in servers and browsers, syncing data automatically.
· Takes care of template rendering.
· Takes care of packaging.
· Takes care of model view controlling.
· No code duplication necessary.
· Takes care of database management.
Cons:
· Still in Alpha Stage (0.3.12)
· Very little documentation.
· Documentation describes 'what' Derby can do, not 'how' to do it.
· No 'hello world' tutorials.
· No screencasts.

Unfortunately, it turned out that Derby had its fair share of problems. We knew right off the bat that documentation for Derby would be limited, but upon further research we found the documentation was very general, and that there were virtually no tutorials for it. Derby was also still in its alpha stage (0.3.12 as of this document). This meant that many bugs could still be present, but equally important was the problem that Derby would likely see frequent updates with how new it is, and that could present many problems for Group Wrangler, both during development and after.

meteor
Meteor is a framework for developing web apps at a rapid development rate. This framework was considered for use in Group Wrangler because of its rapid and easy to implement features. It uses many features to create a streamlined app creation for its users.

Pros:

· Rapid Development
· Simple Integration of Packages
· Auto updates changes on web page after save
· Apply updates as uses use the system with now down time
· No database management
· Simple file system
· Same code develops for client and server
Cons:

· Must use Mongo database
· High abstraction
· Still being developed
· Little tutorials and documentation
In the end, Meteor (0.5.0 as of this document) does not have enough documentation on it to easily create advanced features. Meteor has the ability create one web page applications with little effort from the developer. This causes issues when trying to create multiple webpages or tabs for different functionality. While Meteor is a powerful and fast development framework it is too early in its development for use with Group Wrangler.
ruby on rails
Ruby on Rails is an open source web application framework. It is a full-stack framework, which means that it includes a combination of technologies that are necessary for developing a web application, such as an operating system, web server, database, and programming language. Ruby is the general-purpose programming language associated with the Ruby on Rails framework. Ruby on Rails emphasizes several useful software engineering patterns and principles: Active record pattern, Convention over Configuration, Don’t Repeat Yourself, and Model-View Controller. It also focuses on fat models and skinny clients, which means that most of the application logic is in the model instead of the controller.
Ruby on Rails includes a set of software systems that are needed in web development. It is meant to simplify the process of working with a framework to develop a web application. Programmer happiness and sustainable productivity are some of the main focuses of the framework. This is made possible through certain principles like Convention over Configuration.
Ruby on Rails Technologies:
· Platform – cross platform
· Web Server – WEBrick for development; also runs on Lighttpd, Apache, Cherokee, and others
· Programming language – Ruby
· Front-end libraries – jQuery, Prototype, Script.aculo.us
· Compilers – CoffeeScript
· Server side web template system – Embedded Ruby; also supports HAML and Mustache
· Database management system – SQLite for development; also works with many others
· Web hosting service – Heroku, Engine Yard, TextDrive
Pros
· Reduces some of the boiler-plate code associated with other frameworks
· Proper level of abstraction so that code is clear – not too obscured by detail and not too mysterious
· Useful software engineering patterns
· Easy to set up and deploy
· Widely adopted
· Great documentation and community support
· Helpful written and video tutorials
· Vibrant ecosystem in terms of hosting, tools, editors, training, consulting, etc.
· Built-in testing framework
· Built-in support for AJAX
· Ruby is a very readable language
Cons
· Significant learning curve, like many other frameworks
· Scalability issues have been reported
· Scaffolding is too basic for real applications
· Hard to manage for large applications
· Can be difficult to debug
Ruby on Rails looks to be a good choice for the application we are trying to develop. It looks like it will accomplish exactly what we want in an efficient manner. It will make the experience of coding more enjoyable than with other frameworks because of the engineering principles and practices it puts to use. There is also great documentation and support for the framework. Our application will not be so large that we have to be concerned too much with scalability issues. We believe that the time necessary to fully learn to use Ruby on Rails will save us a significant amount of time and effort in the long run.
Ultimate framework choice
We ultimately decide to go with Ruby on Rails as our framework. We believe that the engineering principles and practices that come with the framework, the documentation, and the community support will be very helpful for developing our project. In the end, the other technologies that we investigated are too abstract and mysterious or do not have all of the functionality that we are looking for.
Database Management System
Group Wrangler’s database system needs to be easy to use and have the ability to handle around 500 people easily but also be scalable for even larger group management systems. It also needs to be cheap or free for anyone to set up their own system for Group Wrangler.
PostgreSQL- Easy to implement and compatible with Ruby on Rails and Heroku.
MySQL- Widely used easy to implement and find information about.
Oracle- Works well with large databases and is more than what we will need for Group Wrangler.
MongoDB- NoSQL database, free to use works, well with JSON data.
Group Wrangler will use PostgreSQL for its easy to uses features and integration with Ruby on Rails and Heroku. This will also allow users to set up their Group Wrangler website for free on Heroku along with their database.
Front-End Libraries
The front-end libraries are another important part of web application. These libraries are useful for conceptually organizing code for the client side of the application. For this project, we are required to graph data on various groups. We considered several options JavaScript libraries before ultimately deciding on one that would work best. We also considered several JavaScript frameworks to use with manipulating DOM objects and handling AJAX.
Graphing
In order to satisfy a site requirement to generate graphical representations of statistical data collected stored for groups and users, we researched several possible premade libraries and toolsets for generating web graphs that could be adapted for easy use on-site for Group Wrangler. The options considered were the Flotr2 JavaScript libraries, the JpGraph libraries for generating graphs in PHP, as well as the graphing toolset provided by Google by the name of Google Chart. Deeper looks at these toolsets and purposes for their employment or their rejection are as follows:
Flotr2 (Rejected) Originally considered due to its compatibility with HTML5, Flotr2 is a JavaScript library that acts as a graph generation system utilizing and deploying a readable graph in HTML5’s Canvas tool. The toolset gained interest at initial research as it was easy to comprehend from a programmer’s perspective and would have offered an easy one-time installation into the system’s deployment without need to consider dynamically updating the toolset within the system. As a minor point of interest, Flotr2 offered previews of graphs that the library could generate in using HTML5’s Canvas that displayed very high quality in aesthetics. However, upon further research into the client’s requirements of the graphing feature it became evident that Flotr2 would not offer a user an easy-to-use toolset to generate graphs on-site in Group Wrangler. The only viable solution to this issue was to create a layer of metaprogramming that would need to be assembled by the team that would translate simple input from the user into the tools the library defines in order to generate the graphs. Due to the already advanced graph-generating toolsets offered on the web, and the cumbersome nature of the overall issue at hand, Flotr2 was rejected as our final choice of a graphing toolset.

JpGraph (Rejected): JpGraph was investigated as another potential graphing toolset to employ in the Group Wrangler system, originally a promising prospect due to the fact that the library is built around PHP and it possessed a powerful ability to interact with SQL. Upon further insight, JpGraph boasted a plethora of promising features with powerful tools to generate advanced graphs whilst effectively utilizing both visual and memory space. In addition, JpGraph offers substantial documentation to the libraries and their use; a feature which the previous choice did not. In terms of aesthetics, neither JpGraph nor Flotr2 surpassed the other’s capabilities. The reasons JpGraph was rejected as our choice of library were twofold. First, it presented a similar complication which Flotr2 had in translating the employment of the library to a simple-to-use tool in an environment with an enigmatic dataset. Second, the use of the full feature set of JpGraph would have a large scaling monetary cost for the number of installations on multiple servers; a cost we decided against imposing upon the team, client, mentor, or potential users in the future.
Google’s JS libraries Google Charts (Accepted): The team ultimately settled upon using Google’s JavaScript libraries for generating graphs, known as Google Charts. The tools that are included offer advanced capabilities that easily satisfy the graphing requirements of GroupWrangler, while allowing for the future addition of further charting capabilities should the system need the full capabilities of Google Charts later on. Google Charts promises an easy-to-install library (which is a feature that explicitly pertains to the client’s requirements) and easily deployable set of tools that neither JpGraph nor Flotr2 offered in the same capacity. Google Charts works in the favor of the development time of the Group Wrangler system in that the library abstracts away much of the complexities the other libraries presented between the high level language of the application and the user level of interaction. In other words, the layer of translation between the user and the employment of Google Charts is significantly smaller and easier to manage than the challenging layers presented with JpGraph and Flotr2.

Javascript frameworks
Upon discussing the projected workload for the Group Wrangler system once our initial requirements were gathered from the client, our team unanimously opted to research JavaScript Frameworks to lighten the development time by abstracting away the implementation of simple pieces of code. After numerous discussions with a knowledgeable source on web development and JavaScript frameworks, Team Lasso had settled upon three primary, potential JavaScript frameworks to be employed in the development of GroupWrangler: jQuery, Backbone, and Angular. A brief look at each of these frameworks gave us the following findings:
Backbone (Rejected): The primary advantage to Backbone was the amount of support that the framework received due to its large community following. Since our team has had little exposure to JavaScript frameworks, our original attraction to Backbone was a result of its support and documentation. However, Backbone did not offer the higher levels of abstraction that we were looking for in the development of Group Wrangler. The employment of Backbone would have cumulatively cost us more time to utilize than the other frameworks, for different reasons.
Angular (Rejected): The downside of the Angular framework was quite simple, and its rejection was due to how it could potentially violate a requirement of the system. The Angular framework is designed such that there is less overhead in development than would have consequently ensued the use of Backbone. However, the design of the framework does not easily cater to modular development. In light of the fact that Group Wrangler’s design must be very modular in order to cater to future expansion, the team decided against the use of Angular to avoid the risk of convoluting that design requirement in later implementation.
jQuery (Accepted): The only significant disadvantage to the use of the jQuery framework in the implementation of this system is the overall cost of the code’s execution in the machine itself. In contrast to the other systems, the most notable advantage is the significantly reduced overhead time cost in learning and application time of the toolset. The jQuery framework also has the advantage of providing extensive support, and a wide base of community produced plug-ins for additional toolsets that may be needed in the development of JavaScript with jQuery. The framework additionally satisfies a customer requirement of cross-platform compatibility in terms of web browsing software; an issue that the other framework options to not address as adequately.
Hosting Service
We are considering a hosting service for our project because we would like our project to be easily deployed. Rather than have a user set up his or her own server to set up a Group Wrangler site, we would like to give the user the ability to easily put the site up on the cloud. Heroku and EngineYard were the two main hosting services that we considered.
Heroku
For hosting services for our website, we didn’t really have to look too hard. As we began working our way through the Ruby on Rails tutorials, we were quickly introduced to a web hosting service called Heroku. Hearing that Heroku gives us free web hosting, we were very interested and decided to look more into what it offered.
Pros:
· Free (for smaller projects)
· Very easy to setup
· More is abstracted away from developers/administrators.
· Built more for hobbyists.
Cons:
· Must use PostgreSQL
· More is abstracted away from developers/administrators.
· More being abstracted away from the developers and administrators seemed like it could be considered both a pro and a con, and would depend on the needs of the project to determine which it turns out to be.
engine yard
Another hosting service we looked at was EngineYard, which, from our research, looked to be pretty similar to Heroku in that it also provided free web hosting.
Pros:
· Free (only for trail period)
· Less is abstracted away from developers/administrators.
Cons:
· Less is abstracted away from developers/administrators.
· Built more for large companies.
After looking through the pros and cons of each hosting service, it seemed pretty obvious that EngineYard was not going to work for us. With EngineYard being built more for large companies it resulted in it being harder to use by your average user whereas Heroku was built with smaller development teams in mind and designed to be easier to manage.
overall hosting service choice
In the end, we ended up choosing to work with Heroku, as there was already support and instructions on getting our Ruby on Rails applications set up with it, which coupled with it being designed for smaller development teams, really made it ideal for us. With that and the ease of getting a website up using it(it only takes one line of code), while the only major drawback seemed to be that Heroku required us using PostgreSQL, we decided on using Heroku for our web hosting needs.
APIs
In order to address Group Wrangler’s requirement to integrate Facebook login features and user information associated with Facebook accounts, we will be utilizing the Facebook API for Facebook Developers to facilitate its integration to Group Wrangler. The application of the Facebook API will ultimately simplify the users’ experience with Group Wrangler, by allowing them to use a preexisting login associated with their Facebook account. In addition, Group Wrangler will use information existing in a Facebook user account to fill out, and update critical user information automatically as their information evolves in the Facebook system. Ultimately, the application of this API is a necessity for the system. However, as Facebook’s developer tools are widely popular and frequently used by major sites and applications, the support and documentation associated with this API are optimal.
technology integration
For our project, there are quite a few technologies that we will be using. Making sure that they all work together is then obviously very important. At the very center of our application will be our database, storing all of our data on groups and our users. We chose PostgreSQL as Heroku, the web hosting service that we have selected to use, required it. Fortunately for us, Heroku works with Ruby on Rails, and therefore Ruby on Rails will work with PostgreSQL.

Another big part of our technology is the model view controller. The controller acts as a liaison between the user and the rest of the application. It takes requests from the browser and then grabs the necessary information from the database, and then passes the information along to the view. The view then utilizes Ruby to render the page as HTML, before finally returning the HTML result to the browser.

Another group of technologies we will be incorporating will come from APIs and libraries. For our project, we will be using the Facebook API to allow users to at the very minimum log in with their Facebook details. The Facebook API is very flexible in what it works with, so grabbing the information we need through Rails and storing it onto our database will be very simple to accomplish.

Finally, JavaScript may be used for some parts of our project, so we thought it important to decide on a library to use for those needs should they arise. We chose to work with jQuery. Using this will allow us to move more of our project to working on the client side, which will result in more features of the site being synchronous.
proof of feasibility
We have several procedures in mind for handling the many documents involved in our project. These procedures concern the tools, version control system, issue tracking system, formatting, and composition and review we will use.
Our technology feasibility demo shows many of the technologies that we will be using in our project. We are showing a small example project that we have deployed to the Heroku web hosting service. The example includes a collection of student profile information and messages that the students post. We have tried to incorporate examples of the framework, database management system, front-end libraries, and hosting service.
Framework
We decide to focus on the model-view-controller aspect of Ruby on Rails for the purposes of our demo. When a user connects to site, the Rails router contacts the controller. The controller takes a certain action based on the URL. The action can pull model information from the database and return it to the controller. The controller captures model information in variables and passes the information onto the view. Finally, the embedded ruby in each view translates the Ruby code and variables into HTML that is passed back to the user.
controller
There is a controller for each of the three main parts of the site: home, students, and messages. Based on the URL that a user visits, the controller takes an action. A typical controller looks like
class StudentsController < ApplicationController

 # GET /students

 # GET /students.json

 def index

 @students = Student.all

 respond_to do |format|

 format.html # index.html.erb

 format.json { render json: @students }

 end

 end

.

.

.

end

If the user visits /students, then the index action is taken. The other actions are for other pages in the /students folder. The index action makes a call to the Student model to get all students in the database.
model
There are only two models in this demo: a student model and a message model. All of the record information for the models is grabbed from the database, PostgreSQL in this case. The code for each model is very short here. The code shows that there is an inheritance relationship with the ActiveRecord class. We can also look at the code to see the relationship between the student model and the message model. There are many messages for each student, where the primary key of the student shows up as a foreign key in the attributes for the message table.
class Student < ActiveRecord::Base

 has_many :messages

end

class Message < ActiveRecord::Base

 belongs_to :student

 validates :content, :length => { :maximum => 140 }

end

view
There are many different views used for this demo, one for each page in the application. Part of the student view looks like
<% @students.each do |student| %>

 <tr>

 <td><%= student.name %></td>

 <td><%= student.email %></td>

 <td class = "major"><%= student.major %></td>

 <td class = "language"><%= student.language %></td>

 <td><%= link_to 'Show', student %></td>

 <td><%= link_to 'Edit', edit_student_path(student) %></td>

 <td><%= link_to 'Destroy', student, confirm: 'Are you sure?', method: :delete %></td>

 </tr>

<% end %>

The code in the <% %> symbols is embedded Ruby code. The view executes the script to render HTML. Here we see that the student view goes through the students variable that was filled with the help of the controller and the model. For each student, we print out the student name, email, major, language, and other links.

The final student table information that the user sees looks like
[image: image4.png]TEAM LASSO

Framework
Ruby on Rails is convenient because it hides away all of the code necessary to communicate with the database. You simply set up a configuration file to set up the framework to work with a certain database. As such, this makes it difficult to see exactly what is going on behind the scenes. The database we use in this demo is PostgreSQL. Since the site is being hosted on Heroku, we cannot query the database to see what is going on. However, we can show the Ruby file that is used to setup the table schemas.
ActiveRecord::Schema.define(:version => 20121024210347) do

 create_table "messages", :force => true do |t|

 t.string "content"

 t.integer "student_id"

 t.datetime "created_at", :null => false

 t.datetime "updated_at", :null => false

 end

 create_table "students", :force => true do |t|

 t.string "name"

 t.string "email"

 t.string "major"

 t.string "language"

 t.datetime "created_at", :null => false

 t.datetime "updated_at", :null => false

 end

end

Front-End Libraries
Here we only show one front-end library for the demo. The Google Chart library is a set of JavaScript classes that can be used to show a variety of charts based on input data. This will be helpful for analyzing the information on groups in our project.
In our application we use this library to graph the breakdown of students by major and by language. We grab this information from the td tags in the “major” and “language” classes in the table above. As records are updated, these tables automatically change. Below is the typical view of the pie chart breakdown before and after we add a student with a major of physics and language of Spanish.
 Before After

 [image: image2.png]Language Breakdown

W Hechanical
Engincering

W Computer
Science

W vatn
W Prysics

Language Breakdown

W spanish
W German
W Japanese
W French

 [image: image3.png]Language Breakdown

W vechanical
Engincering

W Computer
Science

W vatn
W Prysics

Language Breakdown

M Spanish
M German
W Japanese
W French

Hosting Service
Our demo is currently being hosted on Heroku. Heroku is a free hosting site that works with Ruby on Rails applications. Heroku simply requires a GIT repository in order to operate. We simply pushed the master branch of our application to Heroku. Our demo site is at

http://stormy-savannah-4962.herokuapp.com/static_pages/home.
Technology feasibility

Version Date: 10.25.12

Greg Andolshek

Alex Koch

Michael McCormick

Shane Russell

Page 2

