
Making 
Money 
Simple

Team Saon
Arthur Pang - Joshua Conner - Nicholas Pallares
April 27, 2012

1



Our Client

2

Joshua Cross
CEO, Hermes Commerce
Ph.D., Applied Physics, Cornell

Received grant from NSF to develop 
a mobile payments platform.

Dr. Cross recieved a grant from the NSF to develop an easy-to-use, secure and fee-free 
mobile payments platform.



Our Task

3

• Consumer-facing mobile 
apps for iPhone and Android

- Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he 
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but 
what makes a really great, transformative app?



Our Task

3

• Consumer-facing mobile 
apps for iPhone and Android

• Overcome inertia

- Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he 
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but 
what makes a really great, transformative app?



Our Task

3

• Consumer-facing mobile 
apps for iPhone and Android

• Overcome inertia

• Be a compelling alternative 
to credit cards

- Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he 
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but 
what makes a really great, transformative app?



Our Task

3

• Consumer-facing mobile 
apps for iPhone and Android

• Overcome inertia

• Be a compelling alternative 
to credit cards

...but how?

- Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he 
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but 
what makes a really great, transformative app?



Smart lists

4

Let’s consider some other apps that have done a good job at replacing their tangible 
counterparts...

Todo list vs. iPhone “Reminders” app”
- can not only set off reminder at particular time
- but at particular PLACE



Smart lists

4

vs.

Let’s consider some other apps that have done a good job at replacing their tangible 
counterparts...

Todo list vs. iPhone “Reminders” app”
- can not only set off reminder at particular time
- but at particular PLACE



Smart maps

5

Dumb map (they’re lost! how do you orient?) 
vs. 
iPhone or Android "Maps" app
 - uses GPS chip to figure out where you are and give you turn-by-turn directions
- directions take into account the traffic on the roads you'd take to give you the fastest route 
at that exact moment in time.
- don’t need to know an address at all! can type in “target” to get nearest “Target” store



Smart maps

5

vs.

Dumb map (they’re lost! how do you orient?) 
vs. 
iPhone or Android "Maps" app
 - uses GPS chip to figure out where you are and give you turn-by-turn directions
- directions take into account the traffic on the roads you'd take to give you the fastest route 
at that exact moment in time.
- don’t need to know an address at all! can type in “target” to get nearest “Target” store



Smart cards?

6

- CC’s are “dumb” - can’t even simple things like checking balance from card
- Merchants paid $48 billion in swipe fees in 2011
- Losing CC on vacation -> mega bummer



Smart cards?

6

• Not smart

• Can’t pay peer-to-peer

• Fees and interest

• Tied to hardware

• Poor user experience

- CC’s are “dumb” - can’t even simple things like checking balance from card
- Merchants paid $48 billion in swipe fees in 2011
- Losing CC on vacation -> mega bummer



There’s an app for that?

Square, Paypal Here

• No value added for 
consumers

• Still uses credit cards

• Still pay swipe fees

• No peer-to-peer

7

Credit card-based:

Square: Fees! Still CC based
 - Great for small merchants who wouldn’t otherwise be able to accept CC’s
 - but little value-added for consumers

Google Wallet: blocked by Verizon, who is only carrier of only phone that can use GW.



There’s an app for that?

Google Wallet
• Link from phone to CC 

account 
• Still hardware-based!

• Still pay swipe fees

• No peer-to-peer

• Android-only: 44% of 
market

8

Credit card-based:



There’s an app for that?

9

“Vanilla” Paypal, Dwolla

• Lower fees if ACH-funded

• No consumer-to-
merchant payments

Smartphone-based:

These are closer:
- Less fees if using ACH
- Not hardware-based: can use from any smartphone
- BUT can’t do consumer-to-merchant payments



We can do better

10



We can do better
• No merchant fees

10



We can do better
• No merchant fees

• Peer-to-peer AND merchant payments

10



We can do better
• No merchant fees

• Peer-to-peer AND merchant payments

• Fast and easy: scan a QR code, pay in 
seconds
(or peer-to-peer pay w/Address Book integration)

10



We can do better
• No merchant fees

• Peer-to-peer AND merchant payments

• Fast and easy: scan a QR code, pay in 
seconds
(or peer-to-peer pay w/Address Book integration)

• View balance and transaction history

10



We can do better
• No merchant fees

• Peer-to-peer AND merchant payments

• Fast and easy: scan a QR code, pay in 
seconds
(or peer-to-peer pay w/Address Book integration)

• View balance and transaction history

• Be the “smartest” smart money app

10



Recommendations

• Great value-add for 
merchants AND consumers

• Location-aware: encourages 
users to “shop local”

11

- big money in online shopping
- location aware: shows distance, and has “view on map” button



Loyalty Programs

• Normally require expensive 
POS or tracking systems

• Encourages user adoption 
and customer loyalty

12

instead of carrying around punch card, what if it were automatic?



13

Design Process

1) Analyze competition

Competitor interaction patterns

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



13

Design Process

1) Analyze competition

2) Develop initial spec

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



13

Design Process

1) Analyze competition

2) Develop initial spec

3) Prototype and iterate

Early SimpleMoney prototypes

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



14

Technology Stack

Since we only had one semester to implement the backend architecture, AND the iOS and 
Android client applications, we had to take advantage of a lot of open source software. Using 
open source software allowed us to skip the process of reinventing the wheel, and let us to 
focus on adding features that define our product. At the core of our system is our server, 
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system 
called Devise to handle user authentication and authorization. The core of our client 
applications are based on the Android and iOS SDKs. They communicate with our server 
through a REST API, using the help of GSON and RESTKit for object mapping and data 
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help 
us read and decode QR codes.



Architecture

15

SQLite

SimpleMoney
Server

iPhone / Android 
Application

Web Interface

PostgreSQL

Client Application Server

Today, our application is deployed on the web, and interfaces with several cloud services to 
bring users some powerful features. We're using a push notification service called PubNub to 
notify our users of transaction events in real time. We're also using Amazon S3 to store our 
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation 
emails, password reset tokens, and transaction receipts. I won't walk you through the entire 
application here, instead I'll show you some of the views we've implemented to illustrate how 
our application works in practice.



Architecture

15

PubNub

SQLite

SimpleMoney
Server

iPhone / Android 
Application

Web Interface

PostgreSQL

Client Application Server

Today, our application is deployed on the web, and interfaces with several cloud services to 
bring users some powerful features. We're using a push notification service called PubNub to 
notify our users of transaction events in real time. We're also using Amazon S3 to store our 
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation 
emails, password reset tokens, and transaction receipts. I won't walk you through the entire 
application here, instead I'll show you some of the views we've implemented to illustrate how 
our application works in practice.



Architecture

15

PubNub

Amazon 
S3SQLite

SimpleMoney
Server

iPhone / Android 
Application

Web Interface

PostgreSQL

Client Application Server

Today, our application is deployed on the web, and interfaces with several cloud services to 
bring users some powerful features. We're using a push notification service called PubNub to 
notify our users of transaction events in real time. We're also using Amazon S3 to store our 
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation 
emails, password reset tokens, and transaction receipts. I won't walk you through the entire 
application here, instead I'll show you some of the views we've implemented to illustrate how 
our application works in practice.



Architecture

15

PubNub

Amazon 
S3 MailgunSQLite

SimpleMoney
Server

iPhone / Android 
Application

Web Interface

PostgreSQL

Client Application Server

Today, our application is deployed on the web, and interfaces with several cloud services to 
bring users some powerful features. We're using a push notification service called PubNub to 
notify our users of transaction events in real time. We're also using Amazon S3 to store our 
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation 
emails, password reset tokens, and transaction receipts. I won't walk you through the entire 
application here, instead I'll show you some of the views we've implemented to illustrate how 
our application works in practice.



Sign Up

16

DB

User
- id : int
- name : string
- email : string
- password : string
- balance : int
- currency : string
- created_at : string
- updated_at : string

SimpleMoney
Server

Response

user : { … }
200 OK

1 2

3

The first thing a user will want to do is sign up. First we populate the required parameters 
such as the user's name, email address and password, along with an optional user avatar. 
Users can take a photo with their camera, or choose an existing one from their library. When 
we're done filling out the form, the application sends a POST request, and the server validates 
the uniqueness of the email address, along with the length of the name and password. If the 
user is saved to the database, our server sends back the newly created object so the 
application can save the user and their transaction data to a local database on the phone.

The first thing a user will want to do is sign up. First we populate the required parameters 
such as the user's name, email address and password, along with an optional user avatar. 
Users can take a photo with their camera, or choose an existing one from their library. When 
we're done filling out the form, RESTkit's object manager sends a POST request to our server's 
user resource, the server validates the uniqueness of the email address along with the length 
of the name and password. Once the user is saved, our server sends the newly created user 
object back to the client app as serialized JSON, where RESTKit can map it to an objective-c 
object for local storage.

# Sign Up 
- Let's look at the sign up view.
- First we populate the necessary parameters such as the email address and password, along 
with any optional ones like a user avatar. Users can take a photo with their camera, or choose 
an existing one from their library.
- When we're done filling out the form, we send a POST request to our server's USER resource. 
Our server will validate the format of the email address and also validate that the email 
address is unique. If the user model validates and saves to the database, the server sends a 
200 response along with a JSON representation of the newly created user. 
- Once our client app receives the response and user object, we display a successful 
confirmation dialog, and push the homeViewController.



Home Screen

17

• View account balance

• Pay by scanning a QR code

• Send and request money

• View transactions

• View local deals

After a user signs up or signs in, they're taken to the home screen where they can view their 
account balance, make a quick payment, send or request money, view their transaction 
history, or view local deals around them.



Quick Pay

18

1. QR Code is scanned

2. App uses info from QR to 
create a transaction

3. Sends a POST request to
simplemoney.dev/transactions/

Transaction
- id : int
- recipient_id : int
- sender_id : int
- recipient_email : string
- sender_email : string
- description : string
- amount : int
- currency : string
- complete : string
- created_at : string
- updated_at : string

ZBar
(QR Code
Reader) 

Image
          SimpleMoney

Server

1 2 3

We wanted to make payments as fast and easy as possible. To do that, we're using ZBar's 
camera controller to recognize a SimpleMoney QR Code. Once a QR Code is recognized, the 
camera automatically dismisses itself, grabs the merchant ID, builds a new transaction locally 
on the device, and POSTS it to the server. The transaction model has a boolean complete flag 
that determines if the transaction is paid for or not. Similar to the process of authorizing a 
charge on a credit card, a user can scan a QR Code to authorize a merchant to charge their 
account.

If QuickPay is selected, we use ZBar’s camera controller to scan a QR Code that contains a 
merchant id. Once a QR Code is recongizned, the camera controller is dismissed and our app 
grabs the merchant id, builds a new transaction, and posts it to the server to create a new 
incomplete transaction. Our transaction model has a boolean complete flag that determines if 
the transaction is paid for or not. Similar to the process of authorizing a charge on a credit 
card, a user can scan a QR Code to authorize a merchant to charge their account.

# QuickPay
- If QuickPay is selected, a ZBar camera controller will be activated and we can scan a QR 
Code that contains a merchant id.
- Once a QR Code can be recognized,
- the camera controller automatically dismisses itself
- our app grabs the merchant id, builds a new transaction object,
- and sends that object as JSON to the transactions resource to create a new incomplete 
transaction. 
- Our transaction model has a boolean flag that marks whether or not the transaction is 
complete.

- Similar to the process of authorizing a charge on your credit card when you rent a car or a 
hotel room, a user can simply scan a QR Code at checkout to authorize the merchant to 
charge their account.
- Once the QR Code is scanned, the user is free to go, and the merchant can update the 
transaction with the proper amount and mark the transaction complete.



Send & Request Money

19

SendMoneyViewController

UITextField *emailTextField
UITextField *amountTextField
UITextField *descriptionTextField
UIButton *sendMoneyButton
UITableView *tableView

newTransactionButtonWasPressed:
sendMoneyButtonWasPressed
dismissKeyboard

UITextField

delegate

UITextField

delegate

UITextField

delegate

UIButton

delegate

UITableView

delegate
dataSource

UIViewController

Our app also makes it easy to send and request money from friends by reading from the 
phone's address book. Tapping on the email text field shows a list of all your contacts that is 
searchable by name or email address. When you're done selecting a contact, the list gracefully 
slides up to get out of your way.

When we were building this view, and other views with complex interactions, we made it a 
point to design the interface before we started programming. Starting with the interface 
allowed us to iterate quickly and ask ourselves, "Does this view make sense? Is this easy to 
use? Does it solve the problem at hand?". We could only truly answer those questions when we 
were dealing with a real interface.



20

One of the design patterns that we used frequently was the delegate pattern. In the delegate 
pattern, we have a view controller that references and manages several views. When 
something interesting happens to one of these views, the view will notify it's view controller, 
so it can decide what to do next. So for example, when a user taps on the email text field, the 
view controller slides down a list of contacts, and fades out the views behind the list. After a 
contact is selected, the view controller slides up the list of contacts and fades in the other 
views. The delegate pattern is really powerful, and it allowed us to translate our design into 
real code.



20

One of the design patterns that we used frequently was the delegate pattern. In the delegate 
pattern, we have a view controller that references and manages several views. When 
something interesting happens to one of these views, the view will notify it's view controller, 
so it can decide what to do next. So for example, when a user taps on the email text field, the 
view controller slides down a list of contacts, and fades out the views behind the list. After a 
contact is selected, the view controller slides up the list of contacts and fades in the other 
views. The delegate pattern is really powerful, and it allowed us to translate our design into 
real code.



20

One of the design patterns that we used frequently was the delegate pattern. In the delegate 
pattern, we have a view controller that references and manages several views. When 
something interesting happens to one of these views, the view will notify it's view controller, 
so it can decide what to do next. So for example, when a user taps on the email text field, the 
view controller slides down a list of contacts, and fades out the views behind the list. After a 
contact is selected, the view controller slides up the list of contacts and fades in the other 
views. The delegate pattern is really powerful, and it allowed us to translate our design into 
real code.



20

One of the design patterns that we used frequently was the delegate pattern. In the delegate 
pattern, we have a view controller that references and manages several views. When 
something interesting happens to one of these views, the view will notify it's view controller, 
so it can decide what to do next. So for example, when a user taps on the email text field, the 
view controller slides down a list of contacts, and fades out the views behind the list. After a 
contact is selected, the view controller slides up the list of contacts and fades in the other 
views. The delegate pattern is really powerful, and it allowed us to translate our design into 
real code.



20

One of the design patterns that we used frequently was the delegate pattern. In the delegate 
pattern, we have a view controller that references and manages several views. When 
something interesting happens to one of these views, the view will notify it's view controller, 
so it can decide what to do next. So for example, when a user taps on the email text field, the 
view controller slides down a list of contacts, and fades out the views behind the list. After a 
contact is selected, the view controller slides up the list of contacts and fades in the other 
views. The delegate pattern is really powerful, and it allowed us to translate our design into 
real code.



Transaction Cell

21

TransactionCell

UIImageView *userImageView;
UIButton *payButton;
UILabel *nameLabel;
UILabel *emailLabel;
UILabel *transactionAmountLabel;
UILabel *dateLabel;
UILabel *descriptionLabel;
NSNumber *transactionID;

configureWithTransaction:isBill:
showDescription:

UITableViewCell

Another custom UI component that we built was the transaction cell. We subclassed a 
tableview cell to accept a transaction object as a parameter so it can display relevant 
transaction information like the recipient's email address and avatar. Just like the previous 
view, we used the delegate pattern to enable the cell to expand when it's tapped.



Pay a Bill

22

Another cool feature of the Transaction cell is that it allows users to pay bills by selecting an 
unpaid bill and tapping on the pay button. This updates the transaction locally on the device 
and sends a request to the server. If the transaction is updated successfully, the server 
transfers money from the sender's account to the recipient's account, and emails both parties 
a transaction receipt.



23

Development

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production 

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive 
deeper
o

adding ARC support to pubnub wrapper



24

Challenges

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



24

• New technologies

Challenges

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



24

• New technologies

• Building custom UI

Challenges

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



24

• New technologies

• Building custom UI

• Matching UI across 
platforms

Challenges

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some 



Testing and 
Validation

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production 

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive 
deeper
o

adding ARC support to pubnub wrapper



Testing and 
Validation

• Peer to peer and 
merchant transactions

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production 

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive 
deeper
o

adding ARC support to pubnub wrapper



Testing and 
Validation

• Peer to peer and 
merchant transactions

• Pay by scanning a QR 
code

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production 

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive 
deeper
o

adding ARC support to pubnub wrapper



Testing and 
Validation

• Peer to peer and 
merchant transactions

• Pay by scanning a QR 
code

• View balance and 
transaction history

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production 

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive 
deeper
o

adding ARC support to pubnub wrapper



Future Work

• Using real money

• Improving 
recommendations

26

Adding merchant features - 
to date, we have backend support for adding purchase items and their associated data, such 
as images.

Not using ACH - automated clearing house - API to transfer money between accounts
Currently, our app is using play money

Matching Andriod UI - we might have to build A LOT of custom UI to match apple’s ui 
components
tableviews?

Local coupons - we don’t have an data for local businesses 



Conclusion
• Simple, flexible and 

powerful payment solution

• Replace the credit card

• “Smart”: leverages context

27

Credit cards are stupid - they don’t tell you your balance or transaction history
banks offer apps that let you check your balance, why not take a step further?
A phone knowing a little about you can go a long way.



28

Chat with us!

Poster #279
Room B

On display: 
1:30-4:30pm


