Making
Money
Simple

Team Saon
Arthur Pang - Joshua Conner - Nicholas Pallares

April 27, 2012

P —

.ll CARRIER

SimpleVoney

Send and receive payments for free.

Register

Our Client

Joshua Cross

CEO, Hermes Commerce
- Ph.D., Applied Physics, Cornell

‘ ‘ Received grant from NSF to develop
e e a mobile payments platform.

2

Dr. Cross recieved a grant from the NSF to develop an easy-to-use, secure and fee-free
mobile payments platform.

Our Task

e Consumer-facing mobile
apps for iPhone and Android

1l CARRIER

Send and receive payments for free.
pay

Register

3

— Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he

thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but
what makes a really great, transformative app?

Our Task

e Consumer-facing mobile
apps for iPhone and Android

1l CARRIER

Send and receive payments for free.
pay

® Overcome inertia

Register

3

— Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but
what makes a really great, transformative app?

Our Task

e Consumer-facing mobile
apps for iPhone and Android

1l CARRIER

® Overcome inertia

® Be a compelling alternative
to credit cards

3

— Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but
what makes a really great, transformative app?

Our Task

e Consumer-facing mobile
apps for iPhone and Android

1l CARRIER

® Overcome inertia

® Be a compelling alternative
to credit cards

...but how?

3

— Came to us to build the keystone of the platform
- In our initial meeting with Dr. Cross, he told us that one of the biggest challenges he
thought Hermes faced in developing SimpleMoney was overcoming inertia

So we asked ourselves: what could we do to help him overcome inertia? Build a great app; but
what makes a really great, transformative app?

Smart lists

4

Let’s consider some other apps that have done a good job at replacing their tangible
counterparts...

Todo list vs. iPhone “Reminders” app”
- can not only set off reminder at particular time
- but at particular PLACE

At a Location
VS. _

Current Location

When | Leave

When | Arrive

4

Let’s consider some other apps that have done a good job at replacing their tangible
counterparts...

Todo list vs. iPhone “Reminders” app”
- can not only set off reminder at particular time
- but at particular PLACE

Smart maps

Dumb map (they’re lost! how do you orient?)

VS.

iPhone or Android "Maps" app

— uses GPS chip to figure out where you are and give you turn-by-turn directions

- directions take into account the traffic on the roads you'd take to give you the fastest route
at that exact moment in time.

- don’t need to know an address at all! can type in “target” to get nearest “Target” store

Smart maps

Dumb map (they’re lost! how do you orient?)

VS.

iPhone or Android "Maps" app

— uses GPS chip to figure out where you are and give you turn-by-turn directions

- directions take into account the traffic on the roads you'd take to give you the fastest route
at that exact moment in time.

- don’t need to know an address at all! can type in “target” to get nearest “Target” store

Smart cards’?

NOT TRANSFERABLE SEE REVERSE SIDE

%

LED ‘ NIE X<P s%

T A A o) -;mu IO

o oo TR o e %

ol LWL Iﬁz\fwﬂﬂl@ [Il ‘
* NOT VAL'D IF CANCELLED OR REVOKED

6

- CC’s are “dumb” - can’t even simple things like checking balance from card

Merchants paid $48 billion in swipe fees in 2011
Losing CC on vacation —> mega bummer

Smart cards’

® Not smart

NOT TRANSFERABLE SEE REVERSE SIDE

R VWW WM @”‘%' S Wrx?'ra“”“% ?"‘"? %’» %)

T ME
R -

5@

o) ¢
D)
\
\ 9
A\t J
e

T N S S e

® Can’t pay peer-to-peer

AAAAAAA

N\

M@%

® Fees and interest

W N T AR
N ER=2&

® Tied to hardware

"V”
e
= ‘\
7 |
IR er\» S

* NOT VALID IF CANCELLED OR REVOKED

K \ A

T Tl IR i T o

I mIEee R T o)
1Y > A ee—
3 =3

® Poor user experience

6

- CC’s are “dumb” - can’t even simple things like checking balance from card
- Merchants paid $48 billion in swipe fees in 2011
- Losing CC on vacation -> mega bummer

There’s an app for that?

Credit card-based:
Square, Paypal Here

e No value added for
consumers

e Still uses credit cards

e Still pay swipe fees

e No peer-to-peer

]

Square: Fees! Still CC based
— Great for small merchants who wouldn’t otherwise be able to accept CC’s

- but little value-added for consumers

Google Wallet: blocked by Verizon, who is only carrier of only phone that can use GW.

There’s an app for that?

Credit card-based:

Google Wallet

e Link from phone to CC
account

e Still hardware-based!

e Still pay swipe fees

e No peer-to-peer

e Android-only: 44% of
market

There’s an app for that?

Smartphone-based:

“Vanilla” Paypal, Dwolla

e Lower fees if ACH-funded LS

e NO consumer-to-
merchant payments

These are closer:
— Less fees if using ACH

- Not hardware-based: can use from any smartphone
- BUT can’t do consumer-to-merchant payments

We can do better

We can do better

® No merchant fees

We can do better

® No merchant fees

® Peer-to-peer AND merchant payments

We can do better

No merchant fees

Peer-to-peer AND merchant payments

Fast and easy: scan a QR code, pay in
seconds

(or peer-to-peer pay w/Address Book integration)

10

We can do better

No merchant fees

Peer-to-peer AND merchant payments

Fast and easy: scan a QR code, pay in
seconds

(or peer-to-peer pay w/Address Book integration)

View balance and transaction history

10

We can do better

No merchant fees

Peer-to-peer AND merchant payments

Fast and easy: scan a QR code, pay in
seconds

(or peer-to-peer pay w/Address Book integration)

View balance and transaction history

Be the “smartest” smart money app

10

Recommendations

® (reat value-add for
merchants AND consumers

® [ocation-aware: encourages
users to “shop local”

11

_

Carrier =%

SimpleMoney

You just authorized a payment to:

Pasto Cucina Italiana
Server: Reymont

You will receive an email receipt when this
payment is completed.

SimpleMoney users who shop at Pasto also enjoy:

Vino Loco Wine Shop & Bar
The best beers and wines from all
{ over the world, plus great gifts for the
RS oenophile in your life!

¥ 0.2 mi away View on map

- big money in online shopping

- location aware: shows distance, and has “view on map” button

Loyalty Programs

e Normally require expensive
POS or tracking systems

® Encourages user adoption
and customer loyalty

12

_

Carrier =%

M4 we know we're nothing
- Without our customers.

So for every 9 drinks you purchase
here with SimpleMoney, the 10th will
always be on us.

Think of it as our way of
saying "thank you."

instead of carrying around punch card, what if it were automatic?

Design Process

823 PM LT
& Paypal
oney PR — o
sosous o Poyrar
Send Money
o \\)

D ddddddddddd nc-m—,mi
[55] s o B e

e
a|w|e|r|T|vu|1]o|p
als|o|F|a|u]s|k|L
v|e|njmi

1) Analyze competition

Y s
B o = i
Ea | T ¢ . o e
/ send confirmation
email
-

Competitor interaction patterns

13

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Design Process

1) Analyze competition

2) Develop initial spec

4. Functional Specifications

The following define the functionality that will included in the apps we will develop;
included is both information about what the user can do, and - as appropriate - about the
steps the user will take to accomplish a particular goal.

I. Login
1.Users with an HCI account (hereafter referred to as "users" or "the user" if singular)
should be able to log in with their HCI username and password.
2.If the user has elected to enable sign-in by PIN, they can also log-in with their PIN
number.
3.After logging in, users are redirected to the main view for the application.

Il. Application main view
1.The main application view will display the HCI logo.
2.From the main view, the user can tap on areas to get to views allowing them to send
money, request money, view completed and pending transactions, access their

settings, view local coupons, or logout.

Prome WIsPN Phone 10:05 P

kw b Smen
o) Ralance $42 1207 42

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed

3) Some

Design Process

Simple MoneySigntp

1) Analyze competition

QuickPay Send $

2) Develop initial Spec Request $ Transactions

Local Deals

3) Prototype and iterate

Early SimpleMoney prototypes '

13

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Technology Stack

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Technology Stack

~alls 3.2
X

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Technology Stack

Davise
X

Al s)
X

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data

serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Technology Stack
De)v(ise

Os SDK
X

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data

serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Technology Stack
De)yise
><Amdmid Sl Raills 3.2
GSON X

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data

serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Technology Stack
De)yise

XAmdroid SDK —als 3.2 el
XGSON X

><Zebra XINg e SDKX

14

Since we only had one semester to implement the backend architecture, AND the iOS and
Android client applications, we had to take advantage of a lot of open source software. Using
open source software allowed us to skip the process of reinventing the wheel, and let us to
focus on adding features that define our product. At the core of our system is our server,
which is built on Ruby on Rails. On top of that, we're using a rock solid authentication system
called Devise to handle user authentication and authorization. The core of our client
applications are based on the Android and iOS SDKs. They communicate with our server
through a REST API, using the help of GSON and RESTKit for object mapping and data
serialization. Lastly, we're using Zebra Crossing on Android, and ZBar on the iPhone, to help
us read and decode QR codes.

Architecture

Client Application

__

| iPhone/Android | | | Web ntrface |
i Application ‘\S\, SimpleMoney ;
i ! Server ;
o il — s
i E i PostgreSQL i

15

Today, our application is deployed on the web, and interfaces with several cloud services to
bring users some powerful features. We're using a push notification service called PubNub to
notify our users of transaction events in real time. We're also using Amazon S3 to store our
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation
emails, password reset tokens, and transaction receipts. | won't walk you through the entire
application here, instead I'll show you some of the views we've implemented to illustrate how
our application works in practice.

Architecture

Client Application

__

' | iPhone / Android § T e g
i Application - ——— | SimpleMoney ;
i L Server ;
i — ; —
i i i PostgreSQL i

15

Today, our application is deployed on the web, and interfaces with several cloud services to
bring users some powerful features. We're using a push notification service called PubNub to
notify our users of transaction events in real time. We're also using Amazon S3 to store our
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation
emails, password reset tokens, and transaction receipts. | won't walk you through the entire
application here, instead I'll show you some of the views we've implemented to illustrate how
our application works in practice.

Architecture

IPhone / Android _ Yeb Intertace
Application - T ——— | SimpleMoney
Server

PostgreSQL

Client Application

__

— |
E

15

Today, our application is deployed on the web, and interfaces with several cloud services to
bring users some powerful features. We're using a push notification service called PubNub to
notify our users of transaction events in real time. We're also using Amazon S3 to store our
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation
emails, password reset tokens, and transaction receipts. | won't walk you through the entire
application here, instead I'll show you some of the views we've implemented to illustrate how
our application works in practice.

Architecture

iPhone / Android _ Yieb Infertace
Application - T ——— | SimpleMoney
Server

— >
PostgreSQL ‘ M ai Ig un \
Client Application

__

— |
E

15

Today, our application is deployed on the web, and interfaces with several cloud services to
bring users some powerful features. We're using a push notification service called PubNub to
notify our users of transaction events in real time. We're also using Amazon S3 to store our
image assets, such as user avatars, and lastly we're using Mailgun to dispatch confirmation
emails, password reset tokens, and transaction receipts. | won't walk you through the entire
application here, instead I'll show you some of the views we've implemented to illustrate how
our application works in practice.

Sign Up

Carrier % 10:39 PM

~~ i[N l ‘ J' [’ Ol

User
-id :int @ @
- name : string Send and receive payments for free.
- email : string _
© | - password : string SimpleMoney
- balance : int v S
- currency : string erver D
- created_at : string

- updated_at : string ‘ DB
I—

< Response J

200 OK

‘ ‘ 1.3
w user

Register

16

The first thing a user will want to do is sign up. First we populate the required parameters
such as the user's name, email address and password, along with an optional user avatar.
Users can take a photo with their camera, or choose an existing one from their library. When
we're done filling out the form, the application sends a POST request, and the server validates
the uniqueness of the email address, along with the length of the name and password. If the
user is saved to the database, our server sends back the newly created object so the
application can save the user and their transaction data to a local database on the phone.

The first thing a user will want to do is sign up. First we populate the required parameters
such as the user's name, email address and password, along with an optional user avatar.

Home Screen

Carrier =

Sign Out

% thomasjefferson@america.com

* View account balance |l Sl 5496550600

e Pay by scanning a QR code Quick Pay

Send Money
* Send and request money

Request Money

e View transactions

Transaction History

e View local deals

Local Deals

17

After a user signs up or signs in, they're taken to the home screen where they can view their
account balance, make a quick payment, send or request money, view their transaction
history, or view local deals around them.

Quick Pay |
0 0

l

Transaction

ZBar - id : int]
(QR Code |— - recipient_id : int SlmpIeMoney
Reader) - sender_id : int ’ Server

- recipient_email : string [
- sender_email : string
- description : string

- amount : int

- currency : string

- complete : string

- created_at : string

- updated_at : string

1. QR Code is scanned

2. App uses info from QR to
create a transaction

3. Sends a POST request to
simplemoney.dev/transactions/

18

We wanted to make payments as fast and easy as possible. To do that, we're using ZBar's
camera controller to recognize a SimpleMoney QR Code. Once a QR Code is recognized, the
camera automatically dismisses itself, grabs the merchant ID, builds a new transaction locally
on the device, and POSTS it to the server. The transaction model has a boolean complete flag
that determines if the transaction is paid for or not. Similar to the process of authorizing a
charge on a credit card, a user can scan a QR Code to authorize a merchant to charge their
account.

If QuickPay is selected, we use ZBar’s camera controller to scan a QR Code that contains a
merchant id. Once a QR Code is recongizned, the camera controller is dismissed and our app

Send & Request Money

Carrier = 12:03 AM

UlViewController l

T ‘

SendMoneyViewController

UITextField *xemailTextField
UITextField *xamountTextField
UITextField xdescriptionTextField
UIButton *sendMoneyButton
UITableView xtableView

Send Money
newTransactionButtonWasPressed: A0 AAAAAAAAAA LAl Lllllllla VPP PO bl bl
sendMoneyButtonWasPressed
dismissKeyboard

\4
UlTextField UlTextField UlTextField UlButton UlTableView
delegate delegate delegate delegate delegate
dataSource
T —— S —— e —— T —
e ——
19

Our app also makes it easy to send and request money from friends by reading from the
phone's address book. Tapping on the email text field shows a list of all your contacts that is
searchable by name or email address. When you're done selecting a contact, the list gracefully
slides up to get out of your way.

When we were building this view, and other views with complex interactions, we made it a
point to design the interface before we started programming. Starting with the interface
allowed us to iterate quickly and ask ourselves, "Does this view make sense? Is this easy to

use? Does it solve the problem at hand?". We could only truly answer those questions when we
were dealing with a real interface.

One of the design patterns that we used frequently was the delegate pattern. In the delegate
pattern, we have a view controller that references and manages several views. When
something interesting happens to one of these views, the view will notify it's view controller,
so it can decide what to do next. So for example, when a user taps on the email text field, the
view controller slides down a list of contacts, and fades out the views behind the list. After a
contact is selected, the view controller slides up the list of contacts and fades in the other

views. The delegate pattern is really powerful, and it allowed us to translate our design into
real code.

@EBIIEIIIN@
-123 @. Done

20

One of the design patterns that we used frequently was the delegate pattern. In the delegate
pattern, we have a view controller that references and manages several views. When
something interesting happens to one of these views, the view will notify it's view controller,
so it can decide what to do next. So for example, when a user taps on the email text field, the
view controller slides down a list of contacts, and fades out the views behind the list. After a

contact is selected, the view controller slides up the list of contacts and fades in the other

views. The delegate pattern is really powerful, and it allowed us to translate our design into
real code.

@EBIIEIIIN@
-123 @. Done

20

One of the design patterns that we used frequently was the delegate pattern. In the delegate
pattern, we have a view controller that references and manages several views. When
something interesting happens to one of these views, the view will notify it's view controller,
so it can decide what to do next. So for example, when a user taps on the email text field, the
view controller slides down a list of contacts, and fades out the views behind the list. After a

contact is selected, the view controller slides up the list of contacts and fades in the other

views. The delegate pattern is really powerful, and it allowed us to translate our design into
real code.

@EBIIEIIIN@
-123 @. Done

20

One of the design patterns that we used frequently was the delegate pattern. In the delegate
pattern, we have a view controller that references and manages several views. When
something interesting happens to one of these views, the view will notify it's view controller,
so it can decide what to do next. So for example, when a user taps on the email text field, the
view controller slides down a list of contacts, and fades out the views behind the list. After a

contact is selected, the view controller slides up the list of contacts and fades in the other

views. The delegate pattern is really powerful, and it allowed us to translate our design into
real code.

@EBIIEIIIN@
-123 @. Done

20

One of the design patterns that we used frequently was the delegate pattern. In the delegate
pattern, we have a view controller that references and manages several views. When
something interesting happens to one of these views, the view will notify it's view controller,
so it can decide what to do next. So for example, when a user taps on the email text field, the
view controller slides down a list of contacts, and fades out the views behind the list. After a

contact is selected, the view controller slides up the list of contacts and fades in the other

views. The delegate pattern is really powerful, and it allowed us to translate our design into
real code.

Transaction Cell

UlTableViewCell

Carrier =< 11:26 PM

Mohandas Gandhi
Dhoti
Amount: $60.00

A .
,l
TransactionCell ’ﬁ Dr. Zaius
)

Bananas

UIImageView xuserImageView; Amount: $2.07

UIButton *payButton;
UILabel *xnamelLabel; [Dr. Emmett Brown
UILabel xemaillLabel; 5
UILabel xtransactionAmountLabel;
UILabel *xdatelLabel;

UILabel *xdescriptionlLabel;
NSNumber xtransactionlID; Napoleon Bonaparte

* 4 Flux Cap
Amount: $27,000.00

LCZ uisiana
& Amount: $1,125,000.00

configureWithTransaction:isBill:
showDescription:

21

Another custom Ul component that we built was the transaction cell. We subclassed a
tableview cell to accept a transaction object as a parameter so it can display relevant
transaction information like the recipient's email address and avatar. Just like the previous
view, we used the delegate pattern to enable the cell to expand when it's tapped.

Pay a Bill

From: hcirobot@gmail.com
Subject: thomasjefferson@america.com sent you $2.00!
Date: April1,2012 12:24:26 AM MST
To: arthur.pang@me.com

11:21 PM

SimpleMoney ving Lessons

Amount: $172.87

Thomas Jefferson just sent you $2.00! Paid Bills

'.1‘ Mohandas Gandhi
Dhot

Amount: $60.00

_' , j Dr. Zaius

S A E:‘..’ al IidS

2%/ Amount: $2.07

22

Another cool feature of the Transaction cell is that it allows users to pay bills by selecting an
unpaid bill and tapping on the pay button. This updates the transaction locally on the device
and sends a request to the server. If the transaction is updated successfully, the server
transfers money from the sender's account to the recipient's account, and emails both parties
a transaction receipt.

Development

January 2012 ‘ February 2012 \ March 2012 ‘April 2012 | May 2012
¢ |Name M2 M9 |Mi6 |M23 [M30 |M6 |M13 |M20 |M27 |M5 |M12 |M19 |M26 |M2 M9 |M16 |M23 |M30 |M7 |
Requirements _

¥ Heroku Website
Build Back-end

Local Deals support

skeleton framework

0

1

2

3

4

5 Y iPhone Version
6

7 layout

8 sync server data
9 iteration work
10 debug

11 ¥ Android Version

12 skeleton framework
13 layout

14 sync server data

15 iteration work

16 debug

17 Informal Usability Testing

18 Documentation

23

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production

modeling data - stupid mistake: representing money as floats instead of ints
— setting up relatonships between users, transactions, items

replicating data — user and transaction models

Challenges

24

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Challenges

' Devise
. Android SDIK X /B
e New technologies | e aile 3.5 il
X . X
><Zebra Xing 08 SDKX £

24

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Challenges

_

Carrier =

e New technologies a8 Montgomery Scot

Tap to select email agdress...

Pavel Chekov

nuclear.wessels@chekov.name

e Building custom Ul

Als[o[F o] +[x].
% DOBOE0D s
- Ea0l -

24

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Challenges

_—

il Carrier %
- Hermes Inc.

e New technologies

Create your Acc

Create Your Account

® Building custom Ul ! n

E-mail Address

e Matching Ul across
platforms

Password (6 characters minimum)

Cancel

24

1) Gathered and analyzed interaction patterns from competitor apps
2) Clip of formal requirements, some early wireframes we developed
3) Some

Testing and
Validation

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production

modeling data - stupid mistake: representing money as floats instead of ints
— setting up relatonships between users, transactions, items

replicating data — user and transaction models

Testing and
Validation

® Peer to peer and
merchant transactions

25

Carrier =

{_Back Send Money

sally@simplemoney.com

$7.42

Lunch

Send Money

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production

modeling data - stupid mistake: representing money as floats instead of ints
— setting up relatonships between users, transactions, items

replicating data — user and transaction models

Testingand @ .=
Validation

-

® Peer to peer and
merchant transactions

® Pay by scanning a QR
code

25

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production

modeling data - stupid mistake: representing money as floats instead of ints
— setting up relatonships between users, transactions, items

replicating data — user and transaction models

Validation

o -1

® Peer to peer and
merchant transactions

® Pay by scanning a QR
code

® View balance and
transaction history

25

Carrier =&

I=

- ‘
AWAS
doc@rivers

Mar 31, 2012 10:49:27 PM

Dhoti
Amount: $60.00

Dr. Zaius

Bananas
Amount: $2.07

Dr. Emmett Brown

Flux Capacitor
Amount: $27,000.00

ide.com

Napoleon Bonaparte
Louisiana
Amount: $1,125,000.00

high level challenges
learning android SDK, iOS SDK, ruby on rails

lower level challenges
object mapping, etc working in production

modeling data - stupid mistake: representing money as floats instead of ints
— setting up relatonships between users, transactions, items

replicating data — user and transaction models

Future Work

Carrier =

B SmpeMoney

4 Send and receive payments for free.

e Using real money {
® Improving
recommendations

26

Adding merchant features -

to date, we have backend support for adding purchase items and their associated data, such
as images.

Not using ACH - automated clearing house - API to transfer money between accounts
Currently, our app is using play money

Matching Andriod Ul - we might have to build A LOT of custom Ul to match apple’s ui
components
tableviews?

Conclusion

e Simple, flexible and 5
powerful payment solution

e Replace the credit card

Payment sent!

® “Smart”: leverages context

2 7 B — g

Credit cards are stupid - they don’t tell you your balance or transaction history
banks offer apps that let you check your balance, why not take a step further?
A phone knowing a little about you can go a long way.

SimpleMoney _

My | ——

- Bk &= Chat with us!

AIS|olE G Iu|alx]L

< Zixclvie|nul

Purpose

- — X > | Payment has never been easier. POSter #279
Room B

Pomasjetierscodamersca com
R & X

Brookside Chocolate Co @
129 Nourth Lewonin Sreet. Flagata®, AL

S 3 Quick Pay
; L Send money to anyone.
e - . Send Money ,
Request Money

E Keep track of your finances in real-time.

Transaction History

S | On display:
- : 1:30-4:30pm

Scaleable and flexible. A full stack solution.

Maligun

Chent Applcation Server

