
Making
Money
Simple
Client: Joshua Cross

Team Saon
Arthur Pang - Joshua Conner - Nicholas Pallares
April 5 2012

1

Smartphones: revolutionary because they replace "dumb" information sources with context-aware, or "smart" equivalents...

Making
Money
Simple
Client: Joshua Cross

Team Saon
Arthur Pang - Joshua Conner - Nicholas Pallares
April 5 2012

1

and
smart!

Smartphones: revolutionary because they replace "dumb" information sources with context-aware, or "smart" equivalents...

Smart maps

2

vs.

Dumb map vs. iPhone or Android "Maps" app
 - uses GPS chip to figure out where you are and give you turn-by-turn directions
- directions take into account the traffic on the roads you'd take to give you the fastest route
at that exact moment in time.
- don’t need to know an address at all! can type in “target” to get nearest “Target” store

Smart lists

3

vs.

Todo list vs. iPhone “Reminders” app”
- can not only set off reminder at particular time
- but at particular PLACE

Smart cards?

4

• “Dumb” - no context

• Fees and interest

• Tied to hardware:
 useless if lost

- CC’s are “dumb” - can’t even simple things like checking balance from card
- Merchants paid $48 billion in swipe fees in 2011
- Losing CC on vacation

There’s an app for that?

• Square, Paypal Here

• Google Wallet

5

Credit card-based:

Square: Fees! Still CC based
 - Great for small merchants who wouldn’t otherwise be able to accept CC’s
 - but little value-added for consumers

Google Wallet: blocked by Verizon, who is only carrier of only phone that can use GW.

There’s an app for that?

6

• “Vanilla” Paypal

• Dwolla

Smartphone-based:

These are closer:
- Less fees if using ACH
- Not hardware-based: can use from any smartphone
- BUT can’t do consumer-to-merchant payments

We can do better
(requirements)

7

REQUIREMENTS! say “requirements”!

We can do better
(requirements)

• Painless peer-to-peer AND merchant
payments

7

REQUIREMENTS! say “requirements”!

We can do better
(requirements)

• Painless peer-to-peer AND merchant
payments

• View balance and transaction history

7

REQUIREMENTS! say “requirements”!

We can do better
(requirements)

• Painless peer-to-peer AND merchant
payments

• View balance and transaction history

• Crazy fast and easy: scan a QR code, pay in
seconds

(or peer-to-peer pay w/Address Book integration)

7

REQUIREMENTS! say “requirements”!

We can do better
(requirements)

• Painless peer-to-peer AND merchant
payments

• View balance and transaction history

• Crazy fast and easy: scan a QR code, pay in
seconds

(or peer-to-peer pay w/Address Book integration)

• Be the “smartest” smart money app
7

REQUIREMENTS! say “requirements”!

Recommendations

• Great value-add for
merchants AND consumers

• Location-aware: encourages
users to “shop local”

8

- big money in online shopping
- location aware: shows distance, and has “view on map” button

Loyalty Programs

• Normally require expensive
POS or tracking systems

• Encourages user adoption
and customer loyalty

9

instead of carrying around punch card, what if it were automatic?

We think we've got a great concept, and some great architecture to back it up. Arthur's going
to tell you all about it.

Architecture

SQLite

SimpleMoney
Server

Pubnub

iPhone / Android /
iPad merchant

App

Web Interface

PostgreSQL
(data store)

Amazon
S3

(assets)
Mailgun

Client Server

10

Architecture

Here’s a high level overview of our system.
- The iPhone and Android apps fetch data through a REST API for users, sessions and
transactions, and replicate that data in a local SQLite database so transactions can be viewed
offline.
- The server is built on Ruby on Rails, a great open source framework that allows us to iterate
quickly.
- We are using several web services such as Amazon S3, Pubnub, and Mailgun.
- Amazon S3 is used to store our image assets, such as User avatars,
- Pubnub is used to send push notifications between our server and client applications when
transactions are posted or updated so our users have up-to-date data.
- Lastly Mailgun is a service we use to send out confirmation emails or receipts.

11

iPhone Architecture

SimpleMoney.sqlite

AppDelegate InitialViewController

SendMoneyViewController

RequestMoneyViewController

BillsViewController

InvoicesViewController

AuthViewController SignUpViewController

SignInViewController

UITabbarController

User
- id : int
- name : string
- email : string
- password : string
- balance : int
- currency : string
- created_at : string
- updated_at : string

Transaction
- id : int
- recipient_id : int
- sender_id : int
- recipient_email : string
- sender_email : string
- description : string
- amount : int
- currency : string
- complete : string
- created_at : string
- updated_at : string

RKObjectManager

+ sharedManager

HomeViewController
- ZBarReaderViewController
*reader

iPhone Architecture

- Let's drill down into the iOS client application. We're using the iOS 5.1 SDK and two third
party libraries marked in red: RESTKit and ZBar.
- RESTKit is a framework that allows us to interact with our server through a request and
response API, and it maps our JSON objects from our server, to objective-c objects that can
be stored and managed in a local SQLite database.
- ZBar is a small library that reads QR Codes.

- The app is quite simple, the initialViewController checks the iOS keychain for an existing
username and password, if we have existing credentials we use RKObjectManager to send a
POST request to our server's sessions resource. Otherwise, we allow the user to sign up or
sign in.

- I won't walk you through the entire app here. Instead we will walk though the views that we
have implemented to help illustrate how the app works in more detail.

Sign Up

12

DB

User
- id : int
- name : string
- email : string
- password : string
- balance : int
- currency : string
- created_at : string
- updated_at : string

SimpleMoney
Server

Response

user : { … }
200 OK

1 2

3

Sign Up
- Let's look at the sign up view.
- First we populate the necessary parameters such as the email address and password, along
with any optional ones like a user avatar. Users can take a photo with their camera, or choose
an existing one from their library.
- When we're done filling out the form, we send a POST request to our server's USER resource.
Our server will validate the format of the email address and also validate that the email
address is unique. If the user model validates and saves to the database, the server sends a
200 response along with a JSON representation of the newly created user.
- Once our client app receives the response and user object, we display a successful
confirmation dialog, and push the homeViewController.

Home Screen

13

View account balance

Pay by scanning a QR code

Send and request money

View transactions

View local deals

Once signed in, a user can pay for a transaction by scanning a QR code, send and request
money from other users, view transaction history, or view local deals.

Quick Pay

14

1. QR Code is scanned

2. App grabs the merchant id
and creates a transaction

3. Sends a POST request to
simplemoney.dev/transactions/

Transaction
- id : int
- recipient_id : int
- sender_id : int
- recipient_email : string
- sender_email : string
- description : string
- amount : int
- currency : string
- complete : string
- created_at : string
- updated_at : string

ZBar
(QR Code
Reader)

Image
 SimpleMoney

Server

1 2 3

QuickPay
- If QuickPay is selected, a ZBar camera controller will be activated and we can scan a QR
Code that contains a merchant id.
- Once a QR Code can be recognized,
- the camera controller automatically dismisses itself
- our app grabs the merchant id, builds a new transaction object,
- and sends that object as JSON to the transactions resource to create a new incomplete
transaction.
- Our transaction model has a boolean flag that marks whether or not the transaction is
complete.

- Similar to the process of authorizing a charge on your credit card when you rent a car or a
hotel room, a user can simply scan a QR Code at checkout to authorize the merchant to
charge their account.
- Once the QR Code is scanned, the user is free to go, and the merchant can update the
transaction with the proper amount and mark the transaction complete.

Send & Request Money

15

SendMoneyViewController

UITextField *emailTextField
UITextField *amountTextField
UITextField *descriptionTextField
UIButton *sendMoneyButton
UITableView *tableView

newTransactionButtonWasPressed:
sendMoneyButtonWasPressed
dismissKeyboard

UITextField

delegate

UITextField

delegate

UITextField

delegate

UIButton

delegate

UITableView

delegate
dataSource

UIViewController

Send and Request Money
- Our app makes it easy to send or request money from your friends by reading from the
phone's address book.
- This view allows you to search through your contacts by name or email address
- The table view that lists your contacts appears when you are entering a recipient email
address, and gracefully disappears otherwise.

16

SendMoney diagram
- Here's a diagram that shows the delegate pattern in action.
- The view controller references and manages several views, seen here in the middle.
- Views notify their delegate, or the view controller when something interesting happens.
- This pattern makes to easy to manage views and create unique user interactions outside of
the iOS SDK.
- For example, the expanding TableView that we saw in the last video takes advantage of the
delegate pattern quite well. When the email address text field receives a touch event, the view
controller expands the tableview and hides the other text fields. When a contact is selected
from the tableview, it notifies the view controller and the tableview is dismissed, and the
other text fields are faded in.

Transaction Cell

17

TransactionCell

UIImageView *userImageView;
UIButton *payButton;
UILabel *nameLabel;
UILabel *emailLabel;
UILabel *transactionAmountLabel;
UILabel *dateLabel;
UILabel *descriptionLabel;
NSNumber *transactionID;

configureWithTransaction:isBill:
showDescription:

UITableViewCell

Transaction Cell
- Another UI component we built was the Transaction cell.
- We subclassed a TableView cell to accept a transaction object as a parameter and expand
when it receives a touch event.

Pay a Bill

18

Pay a Bill
- Our app also allows users to pay bills by selecting the unpaid bill, and tapping on the pay
button.
- The app simply updates the transaction locally and sends a PUT request to the server, and
the server moves the money from the sender's account to the recipient's account. When the
money is sent and the transaction is updated, our server uses MailGun to email a receipt to
the recipient.

Past Challenges

• Modeling, replicating, and mapping data

• JSON, RESTKit, and GSON respectively

• Working outside of standard UI
components

• Modifying open source software

• UI Performance

19

modeling data - stupid mistake: representing money as floats instead of ints
- setting up relatonships between users, transactions, items

replicating data - user and transaction models

apple’s UI components abstracts a lot of difficulties away - custom UI requires you to dive
deeper
o

adding ARC support to pubnub wrapper

Current Challenges

• What is electronic money?

• Matching Android UI to iPhone UI

• Local coupons

• Location data

20

Adding merchant features -
to date, we have backend support for adding purchase items and their associated data, such
as images.

Not using ACH - automated clearing house - API to transfer money between accounts
Currently, our app is using play money

Matching Andriod UI - we might have to build A LOT of custom UI to match apple’s ui
components
tableviews?

Local coupons - we don’t have an data for local businesses

Schedule

21

Conclusion
• Simple, flexible and

powerful payment solution

• Replace the credit card

• $48 billion waste!!!

22

Money is tied to hardware.
Credit cards are stupid - they don’t tell you your balance or transaction history
banks offer apps that let you check your balance, why not take a step further?

