
User Experience Optimization for
Mobile Commerce Application:
Final Report

Arthur Pang
Joshua Conner
Nicholas Pallares

Revision 1.0 - 5/10/12

Introduction! 3
Solution! 3

Process Overview! 4
Development Process! 4

Deliverables! 4

Timeline! 5

Requirements ! 6
Goals! 6

Solution Statement! 7
Functional Specifications! 8

Architecture Overview! 11
Payment Process! 12

Component Descriptions! 12

Usability Testing! 14

Future Work! 14

Conclusion! 15

Introduction
Put simply: it’s 2012, and there’s still no fast, easy way to transfer money digitally.

While credit and debit cards are an easy way for consumers to pay for things, they
present a lot of problems. For one, consumers can only use them to pay merchants for
purchases; there’s no way to use your debit card to pay a friend back for lunch.
Additionally, the card is often the only way for consumers to transfer money; a
consumer who loses their wallet on vacation, for example, could be left helpless while
they wait for their bank to ship them a new card.

Many merchants, too, have a love-hate relationship with credit cards. While accepting
credit cards can increase a merchant’s sales, it comes at a cost: in 2011, 44 cents of the
average transaction was paid to credit card processors in the form of “swipe fees.”
Additionally, fraud is a huge issue; according to the Aite Group, credit card fraud costs
the U.S. card payments system $8.6 billion per year1; to maintain a profit while dealing
with those costs, not only do credit card companies charge merchants this percentage
fee per transaction, but they often hold businesses accountable to pay back fraudulent
credit card payments made to them.

Businesses - especially in the wake of the deepest recession in generations - must pass
along these costs, resulting in higher prices for all consumers.

Consumers use smartphones for more and more these days. There are apps for almost
everything: turn-by-turn navigation, calendar and to-do list management,
communication, and much more. Wouldn’t it be great if we could use our smartphones
to pay both merchants and our peers?

Solution
Hermes Commerce Inc. (HCI) is a National Science Foundation-funded startup focused
on developing a mobile payment system that facilitates peer-to-peer payments and
consumer-merchant transactions. Dr. Joshua Cross, the founder and Chief Technical
Officer of HCI, is a Cornell-educated physicist and serial entrepreneur; Dr. Cross and
two other HCI employees have thus far spearheaded the company’s development
efforts.

In contrast to the current card payment system, HCI aims to provide a first and foremost
secure transaction system to drastically reduce fraud and eliminate these point-of-sale
charges; in short, to make the digital transfer of money quick, easy and reliable.

1 http://searchfinancialsecurity.techtarget.com/news/1378913/Payment-card-fraud-costs-86-billion
-per-year-Aite-Group-says

Our goal: build "SimpleMoney," the consumer iPhone and Android app for
HCI
Momentum - or lack thereof - is the enemy of anyone looking to change how business is
done, and it’s certainly a concern for HCI. Merchants won’t derive any value from
adopting a new payments system if nobody uses it, and so HCI seeks to drive
consumer adoption of its platform by providing a powerful, intuitive user experience
through mobile apps for the iPhone and Android platforms. Our goal was to build those
mobile apps.

Additionally, by including value-added services in our application — local coupons,
recommendations and customer-relations management — our application will drive
adoption among consumers and merchants.

Process Overview
Our capstone team consists of three members:
1. Arthur Pang - Team lead, iPhone lead, back-end developer, client coordinator
2. Joshua Conner - Website lead, iPhone & back-end developer
3. Nicholas Pallares - Android lead, documentation lead

Development Process
Our framework for development mostly consisted of weekly meetings and daily email
messaging. In our weekly meetings we:

• showcased our work to our client or mentor
• assisted each other with issues
• planned what to work on for the following week

In between meetings, we used email and the web-based project management service
Asana to monitor our progress, ask for help from teammates, and make decisions on
small tasks that need to be done between meetings.

An agile design process was a natural fit for this project; it allowed us to rapidly
prototype and test concept interfaces, and also for our interfaces to grow in
sophistication as our skills working with iOS and Android developed. Additionally, the
more loosely-structured development plan allowed us to work on development remotely;
this was helpful, as it was sometimes hard to find times we are all three available to
work together.

Deliverables
As we progressed through our project, we created several major pieces of
documentation; this helped us define both the scope of our project and the way in which
we were going to execute it.

• Team Inventory: introductory memo for our client detailing each team member’s
experience and our initial ideas for the project.

• Team Standards: binding group document defining expectations, process, and
conflict resolution procedures.

• Requirements and Execution Plan: a document formally defining both
functional — what our final project should do — and more qualitative — usability
or performance, for example — specifications.

• Software Design Specification: defined our project’s overall architecture —
components and the interactions between components — and our current
completion timeline

Timeline

Figure 1: Initial development timeline ! ! Figure 2: Actual project development timeline

In the timeline defined in our Requirements document (fig. 1), we had set aside time to
create two iterations of our iOS prototype, with some user testing in between to help
define what we needed to change. Once we felt like we had a good idea of what the
final (third) iOS app iteration was going to look like, we were to spend April putting the
finishing touches on the iOS app while porting it to Android.

What actually happened was quite different: we developed a single initial iOS prototype
and threw it away, and then spent the rest of the semester on a final version, while
Android development of a single version occurred concurrently. User testing — which
we had set aside significant time for at multiple "checkpoints" throughout the semester
— instead occurred in only a limited fashion and only at the end of the project.

What happened? We think four major issues affected this:

1. Expanding requirements scope. At our Requirements presentation, however, the
feedback we received was that we needed to do more to differentiate ourselves from
existing alternatives; basically to show that what we were building could be a viable
alternative to Paypal, Google Wallet, or other existing payment platforms. Thus, the
scope of our requirements expanded to include making payments to merchants by
scanning a QR code and implementing a basic recommendations system. WIth this
broader scope, we had to scale back our original development plan.

2. Poor task tracking and management. Due to some miscommunication within our
team, there was some duplicated effort over spring break when part of our team
started work on new version of the iPhone app while work continued on an already
existing version.

3. iOS storyboards can make team work difficult. We chose to develop using the
new Storyboard functionality in iOS 5, which has many advantages over the
iOS4 .xib format; most notably the ability to visualize and specify view controller
transitions in Interface Builder and see your entire project's flow at once.

Unfortunately it also has one significant drawback: any changes made to the
storyboard not only affect that part of the layout file, but often also update the
metadata at the beginning of the file, which basically meant that auto-merging
always failed when two developers had concurrently made changes. Having to
manually merge storyboards is doable, but a pain, and in our opinion held us back
as a development team.

(This doesn't mean Storyboards are a total fail for any projects that involve more
than one developer; it's possible to break an application into multiple storyboards
and connect them programmatically, giving you most of the advantages of
Storyboards while still allowing multiple developers to work on different parts of the
interface.)

4. Little team interaction. Though we met weekly as a team, we rarely wrote code
together, and only when there were immediate issues to solve. Our team leader had
experience coding in iOS and two of our team members had experience with REST,
but because we all worked separately the vast majority of the team, we weren't able
to leverage this experience as well as we could have.

Ultimately, we feel good about what we delivered, but prudent application of some — in
hindsight — common-sense software engineering principles, could have made for fewer
late nights in the process.

Requirements
We elicited our initial requirements over the course of two meetings with our project
sponsor. After drafting our initial requirements, we again consulted with our project
sponsor and then presented them for our peers and the department faculty. We
received a lot of great feedback from both presentations, and expanded our original
requirements scope to better encapsulate what a truly competitive mobile app would
look like, including QR payments to merchants and recommendations features.

Goals
Put simply, we were to make a easy-to-use, simple secure mobile payments application
for iOS and Android devices. In addition, Dr, Cross had originally requested an
application that would interface with a SOAP interface they were developing as the API
gateway to their web service. As we developed our vision for the apps and started to

realize the number of changes and additions we'd have to make to the current service,
we — with Dr. Cross' permission — built our own REST API that encapsulated the
features our app needed to provide.

Solution Statement
The prototype web service is live on the web right now, and our apps can use it to send
and request money, pay merchants, locate nearby merchants and get
recommendations. New users can sign for the service from the application and begin
requesting and sending "money" right away.

Our required functional features include:
1. Login/Sign Up - Any user could sign in or log in using either app.
2. Send Money - A user will be able to send money instantly from their Hermes

account to any recipient, whether or not they had a Hermes account or not.
3. Request Money - A user can request money from any peer’s email
4. Transaction History - A user can view their history of all their transactions.

Some optional features we included as requirements include:
1. QuickPay - The ability to pay for a purchase from a merchant in a quick and easy

way. We ended up using QR codes to facilitate transaction info.
2. Local Deals - The user’s location data would be used for advertising nearby

merchants with support for Hermes. Would also present the user with merchant
coupons to encourage local economic patronage.

3. Recommendations - upon paying a merchant with SimpleMoney, users are
presented with another nearby merchant they may be interested in.

Some performance requirements we met were:
4. Speed - It takes less time to use the Hermes app to pay for transactions than

other conventional methods like credit cards.
5. Maintenance - All code is well commented so that if any adjustments need to be

made by our client, they can easily understand our work and make desired
changes.

Functional Specifications
We have implemented the following functional specifications: User sign up and login,
Quick Pay, Sending and Receiving Money, Transaction History, and Local Deals.

Sign Up/Login

If a user wants to use the Hermes app, they could sign up from either the Android or
iPhone. Required parameters are a name, email, and password. An optional parameter
of an image can also be used for the user’s avatar when signing up. The image can be
taken directly from the user’s camera or pulled from the user’s gallery. Only the user’s
email and password are required for logging in.

QuickPay
When the QuickPay feature is selected from the main menu, the app will start its QR
scanner mode. From here the app will scan and recognize QR codes that were
designed for Hermes’ app. The QR code contains transaction info about a purchase the

user wants to make to someone (usually the merchant who generates the QR code)
and will then confirm the user’s choice of wanting to pay the bill by displaying the
transaction info that was encoded in the QR code.

Send Money

When the Send Money feature is selected from the main menu, the app we go to a form
that asks the user for info about the invoice. A recipient email and amount are required
to send money and an optional description can be entered as well. The user can also
select the recipient’s email from their phone’s contacts list. If approved, the user’s
balance will be deducted by the amount and a transaction will be sent to the recipient,
indicating that they were paid by a this user.
!
Request Money
When the Request Money feature is selected from the main menu, the app we go to a
form that asks the user for info about the invoice. A recipient email and amount are
required to request money and an optional description can be entered as well. The user
can also select the recipient’s email from their phone’s contacts list. If approved, a
transaction will be sent to the receiver as a bill and the user will be paid for the request if
the user approves this transaction.

Transaction History

When the Transactions feature is selected from the main menu, the app we go to a
page that shows the user all their transactions with Hermes. Each transaction contains
details about the recipient’s name and email, the amount of the transaction, the date the
transaction was created or updated, and the transaction description.

There are two types of transactions, Bills and Invoices, and each transaction is either
paid or unpaid.
• Unpaid Bills - shows the user which of there transactions, made by peers requesting

money or merchants, need to be paid off.
• Paid Bills - shows the user history of transaction made to pay peers or merchants.
• Unpaid Invoices - shows list of peers who the user requested money from but have yet

to receive payment
• Paid Invoices - shows list of peers who paid for money requests made by the user.

Local Deals

Uses the user’s location data stored on the phone to show map of nearby merchants
with registered support for Hermes. If a store is selected from this view, the user will be
presented with info about the merchant and a coupon if the merchant has a promotion.

Architecture Overview
The HCI payment platform can be broken down into three components:

1. Merchant Application
2. HCI Server
3. Customer Application

The Merchant Application is responsible for posting transactions to the server and
generating QR codes containing transaction data. The server performs CRUD
operations for users and transactions, and also authenticates users. The Customer
Application captures images with a camera, processes the images with a QR code
reader, checks the QR code for a HCI signature, creates transactions, and fetches
transaction data from the server.

Payment Process
The payment process can be summarized in 10 steps from actions by the Merchant to
services by the HCI Server to tasks by Customer and back to the HCI Server for final
checks.

Merchant
1. Create new Transaction
2. Display QR Code
3. POST Transaction to HCI Server
HCI Server
4. Create new Transaction
Customer
5. Capture Image
6. Process QR Code, check for HCI signature
7. Create new Transaction
8. PUT Transaction to HCI Server
HCI Server
9. Edit Transaction
10. Send response (success/error) to Merchant and Client

Component Descriptions
Each screen or service mentioned has a view controller associated with it and is
indicated by the number next to it in parentheses.

The Customer Application begins with the login screen (1) where the user enters their
HCI username and password. Using these parameters, the app connects to the HCI
server to authenticate the user, and redirects them to the app’s home menu (2).

The home menu has one small window at the top displaying basic info about the user.
The home menu also has a menu consisting of buttons showing the user access to five
different functions. These functions are: send money (3), view pending transactions (4),
view transaction history (5), and view local coupons (6), scan a QR code (7). Each
service will redirect the user to a different view, associated with the task, where they will
be guided through completing their desired action in an orderly and natural process
flow.

Component Functionality
1. LoginViewController

◦ User enters their username and password into text fields
◦ Authenticates user’s login parameters with HCI server and redirects them

if successful or stays here if denied

2. RootViewController

◦ Contains one small window located at the top of the screen displaying
basic info about the user such as their full name and account balance

◦ For the iPhone, beneath the window is a single column table with buttons
for the different app services.

◦ For the Android, beneath the window is a 3x2 table with buttons for the
different app services. This 3x2 table is really created as a 2x2 table and a
1x1 table directly underneath it to house 5 buttons in a way that looks like
a 3x2 minus 1 cell table.

3. SendMoneyViewController
• For the iPhone:

◦ Displays contacts from address book
◦ Displays modal dialog for a new transaction
◦ Create a new transaction and sends a POST request to the server

• For the Android:
◦ Displays simple fill-in form
◦ Can select contact from
◦ Displays contacts from address book
◦ Displays modal dialog for a new transaction
◦ Create a new transaction and sends a POST request to the server

4. TransactionViewController
◦ Fetches and displays pending transactions from server
◦ Each transaction cell will have info about the sender’s name and the

balance needed to be paid to them

5. HistoryViewController
◦ Fetches and displays paid transactions from server.
◦ Each transaction cell will have info about the recipient’s name and the

amount paid to them

6. CouponViewController
◦ Fetches and displays local coupons from server

7. ImageCaptureViewController
◦ Captures images from camera
◦ Processes QR code
◦ Creates a new transaction and sends a PUT request to the server.

Model Descriptions
Merchants and Consumers have many transactions, and each transaction contains the
following fields:

User
- id : int
- name : string
- email : string
- password : string
- balance : int
- currency : string
- created_at : string
- updated_at : string

Transaction
- id : int
- recipient_id : int
- sender_id : int
- recipient_email : string
- sender_email : string
- description : string
- amount : int
- currency : string
- complete : string
- created_at : string
- updated_at : string

Usability Testing
Our main subjects for usability testing were our client and capstone mentor. Using
nothing but our notes and light conversation, every week we discussed our project’s
progress and showcased completed parts of the design. From these meetings we’ve
gathered insight on what parts of our projects were good and what parts needed
refinement (for example, local deals was continually discussed and the concept evolved
during and after development).

These informal usability tests were satisfying as we knew that user satisfaction would
be met once deployment began. We were even able to showcase our apps as live
demos during our capstone’s poster session, where many onlookers were impressed by
the purpose of the company, the look and feel of the apps, and the functionality that we
outlined to intrepid questioners.

Future Work
Beyond the obvious immediate future task of integrating our apps with the HCI
infrastructure (influenced by our work through the semester, HCI rewrote their backend
to use a REST API and integrate some of the features they knew we were building), the
most immediate future task is to more completely unify the iOS and Android user
experiences. While we were careful to keep a consistent flow in both apps (consumers
follow the same sets of actions to perform tasks on both platforms), the look-and-feel of
both apps is less consistent than we would like.

Additionally, we think a more fully-integrate and robust user of location-awareness
features would continue to differentiate HCI from other competitors. Social features

could be a great addition as well — share something when you purchase it! — and a
fantastic vector for commercializing the service; after all, what better metric of consumer
engagement is there than when the consumer actually purchases a product?

Conclusion
Our sponsor Joshua Cross, was very pleased with our design and implementation. He
stated that he particularly likes the ‘look and feel’ that we have created, and intends to
incorporate our design into the first version of the application. Our design met all of the
project’s functional requirements, and included two additional features, local deals and
Quick Pay. We are very happy to have had to opportunity to define our sponsors
application from the ground up.

