
User System of Astrogeology Technologies

(USAT)

Design Specification

Kyle Andrew McGinn, Megan Backus, Zack Ellett, Mikal Ustad

Rev 3.4

3/5/2012

2

Table of Contents

Introduction .. 3

Architecture Overview .. 4

Detailed Module Descriptions .. 7

Implementation Plan .. 14

Glossary ... 15

Website:

http://www.cefns.nau.edu/Research/D4P/EGR486/CS/12-Projects/USAT/

Preface: Defined words are superscripted
 [a-z]

 at every occurrence and the subscripts can be

found alphabetically at glossary near the end of this document for reference.

3

Introduction

 ISIS
[h]

 (Integrated Software for Imagers and Spectrometers) is a massive project of the USGS
[p]

(United States Geological Survey) that has been evolving since the 1970s. Its objective is to process

images taken of space and celestial bodies into data to be used for analysis. It has grown into a software

package that includes almost 300 separate programs. Each of these programs is designed to manipulate

a given image in one certain way (e.g. one program removes spectral lines, another rotates the image).

ISIS applications are currently used by calling a command on the command line, although some of them

have a simple graphical interface. Even though ISIS has been used for over 40 years, it still lacks a single,

cohesive interface to link all of its entities together.

 The purpose of the USAT
[o]

 (User Systems of Astrogeology Technologies) project is to remedy

this; to create one centralized
[a]

 GUI
[g]

 (graphical user interface). All 300 ISIS
[h]

 programs will be

accessible through this one program, along with any new ISIS
[h]

 applications created in the future. A user

will also be able to string multiple programs together in a work flow with intuitive ease. This will allow

the implementation of different ISIS
[h]

 applications to one image. Currently if a user wishes to do this

they must initiate each program manually or write their own script do to so.

 Easing the use of ISIS
[h]

 is the main goal for creating the USAT
[o]

 GUI
[g]

, a byproduct of which has

produced a secondary goal. It currently takes about three to five months of training for a new employee

to become productive in the use of ISIS
[h]

. While the creation of an intuitive GUI
[g]

 can reduce that

instructional period, the USAT
[o]

 team intends to expand the available resources within the GUI
[g]

 to

reduce it even further. The GUI
[g]

 will contain a Help Center, listing all ISIS
[h]

 applications and a

description of each. The description will include a synopsis of what the program does and provide an

example if applicable.

 The USAT
[o]

 team has decided to utilize Galaxy
[f]

. Galaxy
[f]

 is an open source, web-based program

that aids a user in developing workflows. The current Galaxy
[f]

 framework
[e]

 will need to be modified to

work with the ISIS
[h]

 programs. Other challenges for the project include preparing for future expansions.

The actual processing of ISIS
[h]

 requires a lot of computing power, but interaction with it should not.

Impending evolutions of ISIS
[h]

 might enable a user to initiate ISIS
[h]

 through a laptop while out in the

field or even from a smart phone. However, one of the biggest challenges is the design of this GUI
[g]

. It

must be intuitive, efficient, and generated with creativity and new ideas. GUI
[g]

 design is the main focus

of the USAT
[o]

 project, and its elaboration the main purpose for this document.

4

Architecture Overview

The purpose of ISIS
[h]

 is to manipulate imagery collected by current and past NASA
[j]

 planetary

missions, such as those sent to Mars, Jupiter, Saturn, and other solar system bodies. The system of

programs that make up ISIS
[h]

 are combined to create workflows which assist scientists in analyzing and

manipulating this imagery. In an effort to improve the usability and fluidity of workflow creation, a

framework
[e]

 of tools called Galaxy
[f]

 will be extended to integrate with ISIS
[h]

.

Galaxy
[f]

 was originally developed for bioinformatics research. However, the underlying

framework
[e]

 is easily extensible. Each tool is defined inside an XML
[r]

 file where options and parameters

are laid out in a way that is easily parsed by Galaxy
[f]

. This is very similar to how the tools in ISIS
[h]

 are

defined, so importing new tools into Galaxy
[f]

 is a simple matter or “translating” from one form of XML
[r]

to another. An XML
[r]

 tool builder will make this translation possible.

Previous design ideas oriented towards client architecture did not provide the reliability needed

to operate in a changing environment. A centralized server gives us the reliability we need through

dedicated servers with redundant data arrays and protection from a single point of failure by using

uninterrupted power supplies. Likewise, the client in Client-Server provides the same reliability by being

universal across all operating system platforms; which reduces error because no installation is needed.

Switching from client to Client-Server also provided the ability for remote processing and cross-platform

operation.

Galaxy
[f]

 runs on a highly customizable client-server
[b]

 architecture. The default instance runs on

a standalone local web server, meaning the entire Galaxy
[f]

 instance is completely portable.

Furthermore, Galaxy
[f]

 can be run as a normal web server, meaning that any machine with a web

browser can access it. This eliminates many of the cross-platform shortcomings of the existing ISIS
[h]

interface. The customized website layout gives the user the ability to drag and drop tools onto a

workflow. These tools are connected to other tools with varying numbers of inputs and outputs.

Functioning workflows will be exported as executable scripts, preserving the original functionality of

previously written ISIS
[h]

 scripts. Additionally, Galaxy
[f]

 has provisions for saving and sharing workflows in

a much more user-friendly format than attaching a script to an email. All of this functionality is built-in

to Galaxy
[f]

 and will provide a solid foundation for future work in the area.

5

Figure 1: Client-Server Architecture Overview

As illustrated in Figure 1, the Client-Server
[b]

 architecture communicates through an HTTP

connection that is universal between all operating systems. For a remote server, the client simply

connects via web browser anywhere with Internet access. Alternatively, the server can be installed

locally on any Unix system and accessed via web browser. The difference between connecting to a local

or remote server is where the User Database is stored; locally or remotely.

The Client is a GUI
[g]

 that authenticates, sends commands to the server, and receives data from

the server through the HTTP connection. The Client GUI
[g]

 has the following tabs: Share, Workflow, Help,

6

Analyze, and Viewer. The Server has 4 functions: receiving workflows from Client, storing workflows,

sending workflows to be processed by ISIS
[h]

, and sending database information to the Client.

The USAT
[o]

 system is based upon a goal-oriented design. This encompasses maintainability
[i]

,

expandability
[d]

, understandability
[m]

, ease of use
[b]

, reliability
[k]

, and robustness
[l]

. Many of the

anticipated changes to this system in the future will be automated and support the expandability
[d]

 goal

by only requiring the addition of new XML
[r]

 files from ISIS
[h]

 programs. Understandability
[m]

 is achieved

through the Help Module by having both simple and detailed descriptions. Having the option of a

dedicated server gives the system reliability
[k]

 over client architecture because it is less susceptible from

a single point of failure. The client provides the same reliability
[k]

 by being universal across all operating

system platforms. The server increases extensibility through only needing a converted XML
[r]

 file

associated to each ISIS
[h]

 program. Errors on the client side are also reduced because no installation is

needed. Unknown or unexpected input into the USAT
[o]

 GUI
[g]

 will not cause the program to crash

because the project contains safeguards against user error and incorrect parameters. Early user testing
[p]

and unit testing
[n]

 will be utilized to find and correct errors.

This design benefits both the Galaxy
[f]

 community and further ISIS
[h]

 development. By using the

methods described here to enhance Galaxy’s
[f]

 capabilities with regard to image processing, the Galaxy
[f]

community will no longer be constricted to bioinformatics. With the right tools implemented, Galaxy
[f]

can be setup to process any type of data with an easy to use GUI
[g]

. ISIS
[h]

 users also benefit from this

design because it offers a solid platform from which to implement further features into the system,

including remote processing submission and mobile workflow creation.

Detailed Module Descriptions

Figure 2 shows a simplified use case for the entire system.

functionality that is required of the USAT

7

Detailed Module Descriptions

shows a simplified use case for the entire system. It is used as a way to visualize all the

functionality that is required of the USAT
[o]

 system.

Figure 2: Activity Flow

It is used as a way to visualize all the

8

The USAT
[o]

 system starts with ISIS
[h]

 formatted XML
[r]

 files and ISIS
[h]

 image types. After the Tool Builder

and the Data Type Builder are run the Galaxy
[f]

 Server Instance will be configured and ready to serve

clients.

 The clients will then connect to the server and begin performing ISIS
[h]

 image processing

tasks. The first step in this process will be to Create Data Objects, or images as objects that can be used

as inputs to filters in the Galaxy
[f]

 GUI
[g]

. Users can do this by either finding images already stored on the

server, uploading new images from their local system, or downloading images to the server from other

locations.

 Once users have some data to work with they must decide what they will do next. They can

choose to Run Single Filters on those images. After the filters are run they will have a new data object

that they can either apply more filters to or view in the Image Viewer. If they wish to apply multiple

filters at once they can create a Workflow using the data objects as the initial parameters. When they

have completed their workflow they can Run it, Save it or both.

 If they choose to run the workflow it will yield new data objects that they can view in the Image

Viewer
2.15

 or process further. If they choose to Save the Workflow they have the ability to save it to

their user profile, in which case it will be Saved as a JSON file that they can open again later or Share

with other users. They also have to option to save as a number of different types of Scripts that can be

run independently from the Galaxy
[f]

 GUI
[g]

.

 The UML diagram below (Figure 3) describes what role each module outlined in the Architecture

overview will play in making the USAT
[o]

 system function like Figure 2 describes.

ISIS[h] Software Suite

 ISIS
[h]

 Software suite consists of around 300 individual C++ programs that are run from the

command line. No changes will be made to those programs and the USAT
[o]

 system will interface with

Figure 3: Class Diagram

9

ISIS
[h]

 by calling the commands specified by the user in the GUI
[g]

.

Tool Builder

 The tool builder (Figure 4) will be located in the galaxy-dist folder and will be able to parse a

directory full of XML
[r]

 files in ISIS
[h]

 format, convert them to Galaxy
[f]

 formatted XML
[r]

 files. Then it will

drop the newly created XML
[r]

 files in the correct galaxy-dist/tools/<category> folder based on the

category parsed from the ISIS
[h]

 file. Finally it will edit the tool_conf.xml so the new tool will be

displayed and usable.

 This will need to be run when a change is made to any of the ISIS
[h]

 XML
[r]

 files or when new

tools are created.

Fields

-req_galaxy_tags: Dictionary
Is a python

[s]
 dictionary that will include all of the tags that are required for a valid Galaxy

[f]
 tool

XML
[r]

 file, and map them to default values.

-current_tags: Dictionary

 Is a python
[s]

 dictionary that is the working copy of the required galaxy
[f]

 tags.

-tag_mappings: Dictionary

Is a python
[s]

 dictionary that will include all the possible tags found in an ISIS
[h]

 formatted XML
[r]

file and map them to the Galaxy
[f]

 tag they correspond to.

Functions

+updateTools():

Iterate over every ISIS
[h]

 XML
[r]

 file in /isis/bin/xml/ and call parseISIS(), writeTool(), and

editToolConf() on each.

+parseISIS(isis_xml:File):

Takes in a single ISIS
[h]

 formatted XML
[r]

 file. First it resets the current_tags to the

req_galaxy_tags, meaning all tags go back to default values. Then it parses the given file and

uses the tag_mappings to edit the values of the current_tags dictionary. When it has finished

Figure 4: ToolBuilder UML

10

parsing the file the current_tags dictionary should map the correct values from the ISIS
[h]

 XML
[r]

file in the correct tags for a Galaxy
[f]

 XML
[r]

 file.

+writeTool(): XML
[r]

 File

Uses the current_tags dictionary to write a Galaxy
[f]

 formatted XML
[r]

 file in the correct

directory. The directory should be determined by the category, /galaxy-

dist/tools/<category>/<new_XML_file>. Should overwrite file if it already exists in case changes

were made to the ISIS
[h]

 file.

+editToolConf():

Edits the tool_conf.xml file located in /galaxy-dist/ so that it includes the tool that was placed in

the tool folder by writeTool(). It will put it under the correct category tag and label it with the

correct tool_id.

Datatype Builder

 The Datatype Builder has a similar function to the Tool Builder. The design of this module is still

in progress. All of the ISIS
[h]

 filters work with ISIS
[h]

 cube formatted images, and there are ISIS
[h]

programs that convert different types of images to these cubes. The system will be designed in one of

two ways. It will either be designed to create only ISIS
[h]

 cube data objects and whenever a different

image type is selected it will automatically convert them to cubes, or the system will create galaxy
[f]

 data

types for every possible type of image a user might want to work with.

 If everything will be converted to cubes there will be no need to create a Datatype Builder. If

there is a need to create data objects for every image type a Datatype Builder will be designed like the

Tool Builder that edits the correct files and scripts. It will look similar to Figure 5, seen below.

Galaxy Workflow Interpreter

The workflow interpreter (Figure 6) is a key piece of functionality and a big reason for choosing

to use Galaxy
[f]

. It is responsible for guaranteeing each process in the workflow is passed correct

parameters. Once the workflow is error free the interpreter runs the correct commands and handles

passing the inputs and the outputs correctly from one command to the other.

Figure 5: DatatypeBuilder UML

11

Ideally no changes will need to be made to the python
[s]

 scripts that handle these

functions. However, there is currently no full access to the source code.

Galaxy[f] GUI[g]
The web based GUI

[g]
 Galaxy

[f]
 uses is the other very useful feature for the USAT

[o]
 project. By

making the ISIS
[h]

 interface web based users will be able to run filters or full workflows remotely. The

Galaxy
[f]

 framework
[e]

 (Figure 7) already has tabs for sharing workflows, viewing/editing workflows, help

section, and history/process analysis.

Most of the current functionality is built using JQuery and the USAT
[o]

 team plans on leave some

parts, like the workflow viewing and editing, untouched. USAT
[o]

 will be customizing many other parts of

the GUI
[g]

. A new help section will be created. The team will also work to implement an embedded

image viewer that will allow users to view the images without having to download the very large image

files.

Workflow

 The workflow tab of the GUI
[g]

 is built using jQuery. It is a drag and drop environment

where users can create data object nodes and filter nodes. Then they can draw connections

between the nodes indicating inputs and outputs. The left pane contains a list of the filters and

available data organized in categories that can be easily searched. The center pane is the blank

Figure 6: GalaxyWorkflowInterpreter UML

Figure 7: GalaxyGUI UML

12

place for organizing the workflows. The rightmost pane is where the user edits the parameters

of the selected node. Menus are included for saving workflows, opening saved workflows, and

exporting workflows.

Share

The share tab lets the user select saved workflows and shares them with other specific

users, or makes a workflow public for anyone using the same server to use. If they wish to share

a workflow with someone who is not using the same server instance they can export the

workflow using the export functionality in the menu on the work-flow tab.

Help

 Each filter will have a small help section that will be displayed when the parameters are

being edited. The Help tab will include copies of those sections along with information about

how to use the Galaxy
[f]

 GUI
[g]

. It will also include instructions on how to install a Galaxy
[f]

 server

instance locally.

Analyze

 The Analyze tab is where users will be able to run single filters at a time. Like the

workflow tab, the pane on the left side will hold the list of tools. Unlike the workflow though

the middle section will be for editing parameters, and the right hand pane will have a history of

all the filters that have been run and on what data objects. The history will be like a linear

workflow built one filter at a time rather than all at once and can be saved as a workflow if the

user decides that might be useful.

Viewer

 The viewer tab will be a place for users to view the images they are working with. The

USAT
[o]

 team is still researching how this will be implemented. One possibility is an embedded

web page that links to sites ISIS
[h]

 users already work with. The other possibility is a custom

image viewer built by the USAT
[o]

 team.

Image Viewer
The Image Viewer (Figure 8) will be located in the viewer tab. It will allow users to view the

images they are working with as they are working with them.

Figure 8: ImageViewer UML

13

Exact implementation is still being researched. The best solution would be a custom ISIS
[h]

 cube

viewer, but there are potential issues with the large size of the images. Another possible solution would

be including an embedded web page that displays web sites ISIS
[h]

 users currently use to download the

images they want to work with.

User Databases
The user database holds user names, passwords, and saved workflows. It will be implemented

in MySQL. Galaxy
[f]

 already generates the tables it needs and such functionality will not be tampered

with for the time being. The USAT team may integrate authentication with USGS’s
[p]

 Active Directory

system before deployment.

Implementation Plan

 Requirements have been examined and completed. As these are the guidelines for the entire

project, reexamination of requirements will be

 Design is the main focus for this project.

Capstone document is due, however design will be revisited.

discussions during group meetings on the project will determine how design will effected during these

revisits.

 Some implementation has already been completed, though most of it has been more proof

concept programming. March will be when the majority of implementation is done, with a completion

date within the first two weeks of April.

 The plan for testing will hinge mostly on the availability of current ISIS

can test for bugs in the system, but user testing

GUI
[g]

.

 Documentation will also be addressed throughout the development

mainly be artifacts for the Capstone class, but also to practice coding standards to help communicate

within the team and for future management. Documentation of all of the ISIS

major part of the GUI
[g]

.

14

Implementation Plan

Requirements have been examined and completed. As these are the guidelines for the entire

project, reexamination of requirements will be necessary and conducted during important milestones.

Design is the main focus for this project. The chart above shows design ending when the

Capstone document is due, however design will be revisited. Testing, meeting with the clients, and

on the project will determine how design will effected during these

Some implementation has already been completed, though most of it has been more proof

concept programming. March will be when the majority of implementation is done, with a completion

date within the first two weeks of April.

ll hinge mostly on the availability of current ISIS
[h]

 users. The USAT

can test for bugs in the system, but user testing
[p]

 will be of more importance to the success of the

Documentation will also be addressed throughout the development of the project. This will

mainly be artifacts for the Capstone class, but also to practice coding standards to help communicate

within the team and for future management. Documentation of all of the ISIS
[h]

 applications is also a

Requirements have been examined and completed. As these are the guidelines for the entire

necessary and conducted during important milestones.

The chart above shows design ending when the

Testing, meeting with the clients, and

on the project will determine how design will effected during these

Some implementation has already been completed, though most of it has been more proof-of-

concept programming. March will be when the majority of implementation is done, with a completion

users. The USAT
[o]

 team

will be of more importance to the success of the

of the project. This will

mainly be artifacts for the Capstone class, but also to practice coding standards to help communicate

applications is also a

15

Glossary

[a]Centralized: one interface that combines all other interfaces.

[b]Client-Server: a computer model where tasks and workloads are partitioned between a provider

(server) and requester (client).

[c]Ease of Use: the quality of the user experience through the entire GUI
[g]

.

[d]Expandability: the ability to accommodate additions to the programs capacity or capabilities.

[e]Framework: a reusable set of classes (or, sections of code) for a software system.

[f]Galaxy: an open source, web-based program that provides a scientific workflow, data integration, and

data analysis persistence and publishing platform.

[g]GUI: provides the ability to interact with a computer using pictures and symbols, rather than having

to memorize many complicated commands and type them in exact form.

[h]ISIS: Integrated Software for Imagers and Spectrometers; an image processing software package.

[i]Maintainability: the ability of a computer program to retain its original form, and to be restored in

that form in the event of a failure or error.

[j]NASA: National Aeronautics and Space Administration.

[k]Reliability: the probably of a failure-free software option for a specified period of time.

[l]Robustness: a program that performs well under ordinary but also unusual conditions.

[m]Understandability: the ability for which a human reader can understand each module without

having previous knowledge.

[n]Unit Testing: individual units of code/functionality is tested separately from the whole system.

[o]USAT: User System of Astrogeology Technologies

[p]User Testing: tests that involve having an actual user test the system.

[q]USGS: United States Geological Survey

[r]XML: a programming language with a set of rules for encoding documents. The difference between

HTML and XML is that XML was designed to transport and store data, and HTML was designed to

display data, with the focus on how the data is shown.

[s]Python: an interpreted, interactive, object-oriented, extensible programming language.

