[image: C:\Users\gomer\Desktop\celestial_logo2_bw.jpg]
Team Celestial Requirements and Execution Plan
Yi Feng
Patrick Kelley
Kyle Montgomery
Jacob Williams
February 8, 2011
Revision 0.5

1.	Introduction	2
2.	Problem Statement	2
2.1.	Competitive Products/Research	3
2.2.	Challenges to be addressed	3
3.	Product and Solution Statement	3
3.1.	How Challenges are addressed	4
3.2.	Technical Approach	4
4.	Requirements and Functional Specification	5
4.1.	Functional Requirements	5
4.2.	Performance Requirements	8
5.	Constraints and Feasibility Issues	9
6.	Project Execution Plan	9
6.1.	Milestones	9
6.2.	Timeline	9
6.3.	Potential Development Scheduling Problems	10
7.	Appendix A – Glossary	10
8.	Appendix B – References	11

1. [bookmark: _Toc285006724]Introduction
[bookmark: id.2fa68e23a5cf]The Discovery Channel Telescope being installed at Lowell Observatory is in need of Target Scheduler technology that will reduce pointing error while automating the selection of celestial targets based on user criteria. Since the generation of the target sequence is time-dependent, the scheduler will need to be dynamic, adjusting to the particular user experience. Optimal whole-sky coverage will be provided based on minimal telescope adjusting time or, possibly, other user-specified criteria.

2. [bookmark: _Toc285006725]Problem Statement
Executing an accurate observation of a single celestial object via large ground-based telescope is a complicated process involving the type of telescope (equatorially mounted or alt-azimuth), the presence or absence of an instrument rotator, differential refraction and atmospheric dispersion of the object being viewed, varying coefficients within the telescope’s auto-guiding pointing model, and, as with any telescoping endeavor, weather conditions and time of night.

The complications involved in automating a single large ground-based telescope observation mentioned above are all addressed in the 2002 Rutherford Appleton Laboratory essay “A rigorous algorithm for telescope pointing” by Patrick Wallace[1]. The solution Wallace provides is the basis for the Discovery Channel Telescope team’s implementation of their Telescope Control System (TCS), but, as one might expect, operating the TCS can be complicated, and demands much of the end-user’s focus.
Given these complexities, the scientists at Lowell Observatory and the Discovery Channel Telescope have a need for a scheduler product that will enable them to focus on their individual measurements while an overall set of measurements is being maintained. As is, a Lowell Observatory technician will consider the telescope’s current position while examining the evening’s intended set of objects and make a decision on which celestial object to observe, almost arbitrarily. Hence, the technician considers each object to view independently and at the time of observation, and considerations for an overall ideal set of observations are limited. Thus the end result of a session’s set of observations may not boast the spread or evenness over the area of the night sky the scientists would prefer. The scientists operating the Discovery Channel Telescope have a need for an automated scheduler that will yield better overall results when attempting to view a series of celestial objects.
[bookmark: _Toc285006726]Competitive Products/Research
There were a number of scheduling systems both we and the client researched that could aid in solving this problem. Ultimately, however, the Discovery Channel Telescope team determined that an in-house, modularized solution that they could maintain would be necessary to interact with the Telescope System in the present and moving forward.
· Spike[2]
The scheduling system developed for Hubble Space Telescope. It is an activity-based AI scheduler which incorporates innovative approaches to constraint representation and reasoning and scheduling search. Spike was originally designed for general scheduling-constraint framework. Now it is widely applied to other domains as well. Due to some constraints of Hubble Space Telescope, the Spike framework is more general and not specifically designed for telescope scheduling.
· RTS2[3]
RTS2 is an open source observatory manager, which is written in C++. It originates from RTS, the Remote Telescope System. RTS2 consists of three modules: dispatch scheduling, queue scheduling and preprogrammed night plan. The advanced, genetic algorithm scheduling, is still in late integration phase.
· Talon[4]
Talon is an integrated suite of Linux-based software. It includes telescope scheduling algorithms, observatory instrument control, and image analysis. Talon is written primarily in C, with some components in Perl and C shell script. This scheduling system is currently utilized on IRT and Rigel telescopes. It is based on OCAAS, which is software in use at the University of Iowa.
[bookmark: _Toc285006727]Challenges to be addressed
· The result of measurements based on a session’s set of celestial coordinates may not be ideal: often celestial observations are too clustered or too spread out.
· Desired targets and/or grid areas may be missed based on the influences of the operator and time lapse.
· Too many measurements in a given target area may be made based on the influences of the operator or changing conditions. This results in a cluster or lack of spread in the observations.
· Too much time is taken manually calculating and selecting the next appropriate celestial target.
· A record of successful (and potentially failed/intentionally discarded) observations is manually entered and prone to user-error.

3. [bookmark: _Toc285006728]Product and Solution Statement
In order to provide whole-sky coverage of a given set of stellar coordinates, the user needs to, somewhat obviously, input the area of the sky he or she wishes to observe. The utility will be provided for the user to input a file of stellar coordinates, and this will be the starting point of a given user session of our product.

From there, our product will go to work, interpreting the grid coordinates -- and the celestial objects therein -- to formulate a grid of the desired portion of the night sky. Ideally, this grid will be manipulateable and configurable by the client, becoming a (if not the) user interface itself, but the client has expressed that this type of functionality is purely optional.

The user will then indicate to our product when he or she is ready for the next observation. The scheduler will query the Telescope Control System for its current location (i.e. where it is pointing), and our solution algorithm will execute.

The scheduler will then present the user with what it decides is the next, best target (or, possibly, a number of targets from which the user can select to view). The user will proceed to observe the target and indicate whether a successful observation was made. This will trigger the next execution of the scheduling algorithm, where another object (or set of objects) is presented to the user.
Optionally, our scheduling/selecting algorithm may run in the background during the user’s observation period; ideally a new target may be presented at a moment’s notice. Our system will also be keeping track of observations made, both because it is necessary for the reporting functionality to end a user’s session as well as the accurate execution of the algorithm itself.
Clearly this is the greatest idea since sliced bread.

[bookmark: _Toc285006729]How Challenges are addressed
· Our algorithm provides dynamic real-time evaluation of the observations made and observations to-be-made that will ensure precision and accuracy.
· Our algorithm’s real-time evaluations will help ensure celestial targets and/or grids are not missed.
· Integration with grid designed to maximize observations with less overlap.
· We aim to run our algorithm periodically in the background, which will allow the end user to know the next celestial object’s coordinates in a moment’s notice.
· A record of successful (and potentially failed/intentionally discarded) observations will be automatically maintained throughout the execution of our program.
[bookmark: _Toc285006730]Technical Approach
In order to achieve this solution while allowing Lowell scientists to maintain the system long-term, we aim to build our project in LabView, the graphical programming language of choice for existing Telescope Control Systems. Java may be employed for the user interface.
Our product will consist of three main technical pieces, as well as the tools needed for these pieces to interact with one another and with existing Discovery Channel Telescope systems. The three pieces are the user interface, the star grid, and the scheduler algorithm, with the grid acting as the main link (and possibly a part) of the other two. First, a user interface will be provided that will accept an input file of celestial coordinates. This will then create the star grid, which will interact heavily with the scheduler algorithm (along with the TCS, so the algorithm knows where the telescope is currently pointing). See the diagram below:
[image:]
These three pieces may interact for some time as the end user continues that session’s observations. Ultimately the user will indicate observations are complete, and the grid will provide a final report. Some minor modification may be required to existing systems for proper integration, which is illustrated in the overlap in the diagram above.
[bookmark: id.bb1af63d96ff]The Team Celestial product will be installed and run on one or more desktops at Lowell Observatory that exist on-site with the Discovery Channel Telescope. Testing will be available via network and the Observatory’s Telescope Simulator.

4. [bookmark: _Toc285006731]Requirements and Functional Specification
[bookmark: _Toc285006732]Functional Requirements
1.
2.
3.
4.
4.1
4.1.1 Allow the end-user to provide a set of celestial objects/coordinates for viewing.
4.1.1.1 Details
The mechanism of importing catalog allows users sending metadata to the scheduler. The catalog is always pre-existing before any scientific calculations and will not be modified along the process.
4.1.1.2 Use Cases
4.1.1.2.1 Importing a correct catalog to the system
End user A updates a catalog with detailed information about stellar coordinates. User A imports a catalog and continues on other tasks.
4.1.1.2.2 Importing an incorrect catalog to the system
End user A accidentally modified meta data in catalog. System detects an error occurred during importing and output an error message.
4.1.1.3 Functional Specifications
4.1.1.3.1 An existing catalog with stellar coordinates is provided. Operator should be able to import this file to system possibly from user interface.
4.1.1.3.2 System should be able to detect possible issues of the import file and report errors found.
4.1.2 Be able to convert data in catalog to proper coordinate system.
4.1.2.1 Details
In order to complete an accurate and concise observation, the system will need to convert coordinates in catalog to be more usable. Accurate mathematical calculations are required to guarantee no compromises made during the scientific observation.
4.1.2.2 Use Cases
4.1.2.2.1 Successful calculation
After end user A imports a catalog to the system, calculation runs on the background and print out “coordinates conversion succeeded” message.
4.1.2.2.2 Unsuccessful calculation
After end user A imports a catalog to the system, calculation runs on the background, when error occurs, system halts process and print out error message.
4.1.2.3 Functional Specifications
4.1.2.3.1 System should be able to apply mathematical functions to convert celestial objects/coordinates from celestial coordinates to Azimuth system.
4.1.2.3.2 System should be able to report calculation errors if any and possibly provide explicit location.
4.1.3 Be able to schedule prospective targets based on given criteria.
4.1.3.1 Details
As a core function of this system, accurate algorithm allows the system to schedule next targets efficiently and correctly based on practical criteria. System will catch any error occurred and return to users.
4.1.3.2 Use Cases
4.1.3.2.1 Successful scheduling
After end user A imports a catalog, A selects criteria wanted in this observation. When scheduling finishes, system prints out success message and provides targets in the grid for user A to select.
4.1.3.2.2 Unsuccessful scheduling
After end user A imports a catalog, A selects criteria wanted in this observation. An unexpected error occurred during scheduling. System halts the process and print out error message.
4.1.3.3 Functional Specifications
4.1.3.3.1 Scheduling process should be based a rigorous pointing algorithm in order to guarantee conciseness.
4.1.3.3.2 Scheduling process should be able to consider practical criteria that may applied.
4.1.3.3.3 Criteria should be easy to modify and evaluate. User has identified possible stellar criteria such as magnitude, and color.
4.1.4 Be able to determine a grid imposed on the local visible sky which will be used by the scheduling algorithm to help order observations.
4.1.4.1 Details
Gridding algorithm should be able to divide ‘visible sky’ into reasonably uniform areas. Stars in catalogue will have roughly even distribution throughout the grid. Both stellar targets and grid coverage will be used to drive the scheduling algorithm.
4.1.4.2 Use Cases
Gridding is automatic when the program is started; a grid will not change during a catalogue run and will probably be static. So once the grid is formed, it will be stored and then, as the scheduler operates, the catalogue will be imposed on the grid to account for positional changes as time changes. More simply, the grid does not move; the stars in the catalogue do.
4.1.4.3 Functional Specs
4.1.4.3.1 Creating a grid should be standard and result in a stored object based on grid coordinates or, if an open, ‘soap bubble’ grid is used, on area center coordinates.
4.1.4.3.2 User should be able to specify grid parameters as appropriate (number of areas, gridding algorithm if more than one is available)
4.1.4.3.3 During scheduling iterations, grid should be associated with catalog entities.
4.1.4.3.4 Grid objects should allow for tracking of areas selected during scheduling.
4.1.5 Provide a user interface for end-user to interact with the system intuitively.
4.1.5.1 Details
A user interface is the interface for users to operate the system. It is an intuitive and user-friendly layout of information that users are interested in. It is a bridge between inner system and users.
4.1.5.2 Use Cases
4.1.5.2.1 Select a target in the grid
When user A moves mouse over targets calculated from scheduling, corresponding star is highlighted in the grid. User A double click to confirm the target.
4.1.5.2.2 Change criteria of observation
User A decides to change criteria and observe differences in the result. User A unselects “light refraction” box in criteria and run scheduling again. Some more targets are captured and applicable to observe.
4.1.5.3 Functional Specifications
4.1.5.3.1 User should be able to find and locate targets easily.
4.1.5.3.2 User should be able to change selection criteria easily.
4.1.5.3.3 Desires user should be able to interact with a graphical grid where they can select target to be observed.
4.1.6 Provide an interface for end-user to provide feedback to product on the status of a given observation
4.1.6.1 Details
In order to let users have more controls of the system, notifications will assist users to be aware of current status and making right decisions.
4.1.6.2 Use Cases
4.1.6.2.1 Get status from status notification
End user A imports a catalog to the system. Notification will be given on user interface when every major procedure has done. When system receives feedback from Telescope Control System, a final notification will say “observation completed”.
4.1.6.3 Functional Specifications
4.1.6.3.1 System should be able to notify a successful measurement and return name and duration of this observation.
4.1.6.3.2 System should be able to notify an unsuccessful measurement provide user a report of possible errors.
4.1.7 Provide interface for the system and Telescope Control System.
4.1.7.1 Details
In order to link scheduling system with Telescope Control System, the system will provide output to Telescope Control System directly.
4.1.7.2 Use Cases
4.1.7.2.1 Getting notification of Telescope has acquired the data
End user A starts a new observation. After A selects a target, notification shows up indicating that data has been sent from the scheduling system to Telescope Control System.
4.1.7.3 Functional Specifications
4.1.7.3.1 System should be able to send data to Telescope Control System.
4.1.7.3.2 System should be able to notify user whether data transfer is successful or not.
4.1.7.3.3 System should be able to send error message when error occurs.
4.1.8 “Where you think you were pointing” vs. “Where you were actually pointing” -- The product will send back information to the telescope to read just when necessary.
4.1.8.1 Details
Due to some practical considerations like infrastructure constraints, the result of adjustment may not be accurate. The system will check result from calculating and scheduling algorithm with feedback from Telescope Control System.
4.1.8.2 Use Cases
4.1.8.2.1 End user A send request to Telescope Control System acquiring accurate pointing data. System compares this data with theoretical result and they are not identical. Scheduler send request to Telescope Control System to adjust pointing position.
4.1.8.2.2 End user A send request to Telescope Control System acquiring accurate pointing data. The observation is completed since two results are identical.
4.1.8.3 Functional Specifications
4.1.8.3.1 System should be able to compare actual position with hypothesis. If they are identical, telescope pointing is completed. If not, extra adjustment is required on Telescope Control System side.

[bookmark: _Toc285006733]Performance Requirements
4.2
4.2.1 Product should be able to handle 100% calculation error in conversion of coordinates.
4.2.2 Product should be able to report at least 90% errors occurred during scheduling process.
4.2.3 Product should provide a professional user interface. Operator should be able to handle operations in 10 seconds after training.
4.2.4 Be able to transfer output data to Telescope Control System in 1 second.
4.2.5 Product should be modularized so that it can easily be modified to work with future, unknown system interfaces for both input and output.
4.2.5.1 Details
4.2.5.1.1 Each module should be explicit and independent.
4.2.5.1.2 Each function of modules should be coded in a professional fashion.
Connectors of modules should be explicit and easy

5. [bookmark: _Toc285006734]Constraints and Feasibility Issues
Testing and production environments are on-site at Lowell Observatory, although a testing system involving the telescope simulator may be made available via network.
Telescope pointing involves enormous amounts of mathematical calculations of celestial coordinates. It contains terms and notations that engineers are not familiar with. Hence, having a good understanding of the transformation chain may be a major technical feasibility issue.

6. [bookmark: _Toc285006735]Project Execution Plan
[bookmark: _Toc285006736]Milestones
1.
2.
3.
4.
5.
6.
6.1.
6.1.1. February 7: Requirements, Functions and Execution Plan complete with 				Sponsor/Mentor approval. Consists largely of gathering and incorporating 				information about the project from both the Client and research.
6.1.2. February 8: Design Review I: Plan and Requirements (presentation) .
6.1.3. February 22: Design specification complete with Sponsor/Mentor approval. 				Consists largely of Design, Systems and Programming lead determining both the 			design and architecture for the system. Directly
6.1.4. March 11: First prototype delivered to Client. Feedback will be used to further refine 			prototype. Programming should be largely completed by this time.
6.1.5. March 29: Second prototype delivered. Feedback will be used to further refine 			prototype.
6.1.6. April 5: Design Review Implementation II (presentation).
6.1.7. April 5: Testing and delivery.
6.1.8. April 19: Release candidate complete.
6.1.9. April 29: Final presentation of product
[bookmark: _Toc285006737]Timeline

[bookmark: _Toc285006738]Potential Development Scheduling Problems
1.
2.
3.
4.
5.
6.
6.1.
6.2.
6.3.
6.3.1. The section will discuss where there may be problems with the schedule, and how to accommodate them if those issues manifest.
6.3.2. Design Specification:
6.3.3. It is possible for several reasons that there may be slippage in the design phase. Should this occur, the phase most likely to be compressed to compensate will be the implementation phase.
6.3.3.1. Solution Medium. This project will, per request of our Client, be constructed at least in part by the programming language LabView. It is possible that there may be an essential difficultly in working with a new language.
6.3.3.2. It follows from this also that the design of the solution may not be able to be conceptualized in a manner which our developers are accustomed; this may result in additional time being required to properly formulate the design.
6.3.3.3. Algorithmic Complexity. The pointing algorithm we have been tasked to construct may take an unexpected amount of time to develop.
6.3.4. Implementation Phase:
6.3.5. This section concerns slippage that may occur in the implementation phase of the project. It seems likely that the only real place to force a little more time out will be the testing phase.
6.3.5.1. Solution Medium. There may be delays in implementation that stem directly from working with a previously unused language.
6.3.6. Other issues:
6.3.7. This section discusses possible complications that may arise at any point in the development process.
6.3.7.1. Requirements Amendment. It is possible that the Client will clarify or modify the requirements for the project. This will be addressed as it arises, in whichever phase seems to decrease technical debt the most.

7. [bookmark: _Toc285006739]Appendix A – Glossary
Potential Integrated Development Environment – LabView [7]
LabView is a graphical programming environment which aims to increase efficiency and productivity of scientists and engineers. It provides an intuitive graphical interface, data visualization and scalability.

Telescope Control System (TCS)-TCS is a control system used for the Discovery Channel Telescope in Lowell Observatory which is generates time-stamped position and velocity demands for the mount and rotator axes to position a celestial target accurately at a point in an image plane. Information obtained in discussion with Personnel at Lowell Observatory.

Azimuth [5] - an arc of the horizon measured between a fixed point (as true north) and the vertical circle passing through the center of an object usually in astronomy and navigation clockwise from the north point through 360 degrees.

Celestial Coordinates [6] -In astronomy, a celestial coordinate system is a coordinate system for mapping positions on the celestial sphere.
8. [bookmark: _Toc285006740]Appendix B – References

[1] P Wallace, “A Rigorous Algorithm for Telescope Pointing,” Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK, 2002.

[2] M. D. Johnston, “Spike: AI Scheduling for NASA’s Hubble Space Telescope,” in Artificial Intelligence Applications, 1990., Sixth Conference, Santa Barbara, CA, 1990.
Retrieved from http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=89188

[3] P. Kubánek, “RTS2—The Remote Telescope System,” Advances in Astronomy, 2010.
Retrieved from http://www.hindawi.com/journals/aa/2010/902484.html

[4] Talon: Remote Observatory Control Software.
Retrieved from: http://vega.inp.nsk.su/~inest/Talon%28OCAAS%29/Iowa%20Robotic%20Telescope%20Facilities.htm

[5] Definition of Azimuth
www.merriam-webster.com/dictionary/azimuth

[6] Definition of Celestial Coordinates
http://en.wikipedia.org/wiki/Celestial_coordinate_system
	
[7] LabView
http://www.ni.com/labview/

Start Date	Requirements Specification	Design Review 1	Design Specification	Prototype Delivery 1	Prototype Delivery 2	Design Review 2	Testing	Release Candidate	Final Presentation	40567	40574	40582	40596	40596	40628	40624	40596	40655	Days Completed	Requirements Specification	Design Review 1	Design Specification	Prototype Delivery 1	Prototype Delivery 2	Design Review 2	Testing	Release Candidate	Final Presentation	12	5	0	0	0	0	0	0	0	Days Remaining	Requirements Specification	Design Review 1	Design Specification	Prototype Delivery 1	Prototype Delivery 2	Design Review 2	Testing	Release Candidate	Final Presentation	2	5	17	24	52	59	59	83	83	
11

image2.png

image1.jpeg

