-NOX

at HOMe

Software Design Specification

02/18/2010

Andrew Arminio
Christopher Austin
James McCauley

1. Introduction
2. Architecture Overview
2.1 The Evidence Sources
2.2 The Network View
2.3 The Policies
2.4 The Web Based User Interface
2.4.1 Front End
2.4.2 Back End
3. Detailed Module Descriptions
4. Implementation Plan
4.1 Milestones

Introduction

While home and small office/home office networks have provide any number of benefits, they seldom live
up to their potential. For example, security in these networks is often misconfigured, with at least two
negative results. First, intruders can get into the networks — stealing identities, contributing to the amount
of spam on the internet, and generally causing problems. Second, security misconfiguration limits actual
network usability for legitimate purposes, which may make it easier to use a USB flash drive or an email
to transfer a document within the same house rather than use the file and printer sharing features built
into consumer operating systems. Beyond security, such networks often have implicit decisions which are
not optimal for home users. For example, these networks provision bandwidth in a simple-minded “fair”
manner. However, this is almost never the correct solution for the home. In the home, audio/video data
(such as telephony and streaming music or video) and interactive web traffic should basically always be
given preference to long downloads and peer-to-peer filesharing. Other such problems abound. In short:

home networks do not serve home network users as well as they might.

Our client, Nicira Networks, is the primary developer of NOX, as well as the primary developer of Open
vSwitch, which is a virtual network switch that, among other things, implements OpenFlow. These two
technologies — NOX and OpenFlow — both stem from a project under the umbrella of Stanford University’s
Clean Slate Design for the Internet called Ethane. NOX and OpenFlow work hand in hand with the aim of
separating low-level packet forwarding from high-level decision making. Said another way, they make the

network itself programmable, which enables smart networks.

Nicira's focus is and continues to be on on applying NOX and OpenFlow technologies to campus,

corporate, enterprise, datacenter, and virtual networks. However, they also see that these technologies

may be of benefit to home and small office/home office networks. While there is more potential for NOX
and OpenFlow in the home network than our team could possibly develop in a semester, we seek to
provide a compelling proof of the concept, and to provide the proper "jumping off point" from which future
home/SOHO networking tools can be built. This means we must cater to two separate audiences: the
technical audience of people wishing to do network research or develop specific network "applications" for

the home, and nontechnical consumers who simply wish to take advantage of these tools.

We have identified a number of principles — largely borrowed from Ethane — to guide our development.

Briefly:

= The network should be governed by policies declared over high-level names. User and machine
names like “Perry”, “The Kids”, and “Susan’s Dell” are far more valuable to home and SOHO users
than lower level names such as MAC and IP addresses.

= Network routing should be policy-aware. User configurable policy should control network traffic —
what gets sent where and when.

= The network should track bindings between network traffic and the high-level entities that are
its source and destination. We need to be able to associate traffic with high-level names in order to
correctly make policy decisions for that traffic.

= An ordinary consumer end-user should be able to operate the system with a minimal
investment of time. While we hope that the use of high-level names will be a great step in this
direction, this also very clearly calls for a graphical user interface that leverages the investment that
users have already made in operating personal computers.

= Users should not find the system to be a burden to use. We must aim to make whatever
improvements we can while impacting user experience as little as possible — home/SOHO users
simply will not “put up with” a system that consistently impedes their usage or even reminds them it is

there.

These high level goals motivate the development of a framework that enables the development of tools to
improve home/SOHO networking. However, a framework based purely on high level goals is both difficult
to design and difficult to evaluate. To this end, we have identified and will build some prototypical

home/SOHO network tools. The specific features we have identified are:

= Identify machines by MAC address

= Identify users using passive methods (snooping on Instant Messaging and website account logins)
= Identify users actively -- through an explicit web login/logout page

= Maintain and display a view of the network -- which machines are online, and which users are using

them

= Allow certain users/hosts to be disallowed LAN access and given only Internet access
= Allow certain users/hosts to be allowed only HTTP and have other traffic filtered

= Give users feedback on events that have occurred (access to the LAN denied, etc.)

While these features are certainly not the most compelling that this platform should have to offer, we feel
that their implementation will properly guide the development of the platform and the implementations of
further components. The successful completion of these tools will then not only serve to provide the

capabilities of the tools themselves, but to validate the design and implementation of the framework and

the achievement of the high level goals.

Architecture Overview

/;Evid ence So ur:es\
Policy Apps — Sourcel
Appl f - Source2
App 2
Ee Web Based Ul — Source3
App3 f
Sourced
Appd - Q 2/

\ 4

(Network View \

\ e/
4

MNetwork State

Browser

MNetwork State Information

\S

After analyzing what is needed from our architecture to implement the features outlined above, we have

/

identified the following major components (or classes of components): Evidence Sources, Policy Apps,

http://www.princessangelpony.com/capstone/wiki/File:OverallView.PNG

the Network View, and the Web Based User Interface (with its two constituent parts: the Front End and
the Back End).

The Evidence Sources

Evidence Sources provide information about what users and machines are on the network so that the
Network View can accurately provide this information to users and policies. Some evidence sources may
be "active", such as one that allows for users to log in explicitly using a "captive portal" type web page.
However, we believe the more important sources will be passive and based on the interpretation of
network traffic -- sniffing traffic and watching other authentication mechanisms (such as Facebook and
email logins) at work and associating those with the high level names (user names) managed by NOX At

Home.

Thus, a typical evidence source will register with NOX for packetln events, sniff the packets it gets for
relevant authentication information, and then raise evidence events for which the Network View is

listening.

We wish for NOX At Home to adapt to many different usage requirements. To this end, Evidence Sources
must be modular units that stand alone as much as possible so that a user can add or remove Evidence
Sources to suit their needs. To facilitate that, from the perspective of the architecture, Evidence Sources
are just NOX applications that have registered themselves for management by the user interface, and
that raise evidence messages. These evidence messages, detailed in Figure 2, may identify either a user

or a machine.

One requirement of all Evidence Sources, is that they supply their own user interface (which will be
automatically integrated into the larger management Ul). This will ensure the greatest amount of flexibility

for a framework that must support all possible forms of home networks.

The Network View

The Network View maintains a view of the network state -- which users are on the network, which
machines are on the network, which users are on which machines, etc. This is done primarily through the
evaluation of evidence given by Evidence Sources by listening to Evidence Messages. We suspect that
evidence will seldom be as complete, authoritative, and non-conflicting as we would like, so evidence
must be "judged" -- combined by the Network View to arrive at a "best guess" of the truth. This will
probably be done using existing research done on the subject of combination of evidence, such as that

done by Bayes, Dempster, Shafer, and Hooper.

This "view" of the network is then made available to users (through the Network Browser portion of the Ul)

and to policies (through an API).

In reference to Figure 4.2, the Judge will receive EvidenceMessages. It will check confidencelLevel as
well as isAutoritative to understand to validity and weight of the evidence provided. If it is an authoritative
source, its confidence will be taken into account for the validDuration. Once the Judge has made its

assessment it will be stored in the NetworkState, which can then be queried by the Policies.

The Policies

The Policies are independent NOX applications that, informed by the network state provided by the
Network View, determine the behavior of the network. The number of Policy possibilities is endless,
however, we will include prototype Policies for HTTP transfer throttling, network guest control, spam

protection, and possibly parental controls.

Again the goal is to make the framework as modular as possible. To accomplish this, the removal or
addition of a Policy will be as simple as either adding or removing the NOX application followed by the
restart of NOX, or, enabling/disabling of the Policy via the Network View's User Interface. An additional
complication when compared with Evidence Sources is that Policies may interact or conflict. Thus, a

priority system will be included in the Policy design to correct any possible conflicts.

In the same manner as the Evidence Sources, Policies must supply their own user interface. This will
ensure the greatest amount of flexibility for a framework that must fit any possible home network behavior

desired.

In reference to Figure 4.2, every Policy will include its name, and will typically provide
a handlePacketinwhich will analyze incoming packets. The Policy will then create the appropriate Flow

Table entry with for the network behavior.

The Web Based User Interface

The User Interface will be the key component to make the framework available to all home/SOHO
network audiences. We chose to focus on a web-based interface to allow users to access the interface
from any machine on the network, requiring nothing to be installed. It is within this User Interface that
users and machines will be managed, associations between these users and machines and Policies
made, and the selection of Evidence Sources and Policies made. In addition, the configuration of Policies
and Evidence Sources through their individual user interfaces will be controlled within this centralized

user interface.

The Web Based User Interface itself is composed of two parts: a Front End that runs on the client side

(on a user's web browser), and a Back End which bridges the Front End to the rest of our system.

Front End

The front end of the user interface is the portion that users actually interact with -- the portion that is
actually loaded into their web browsers. We have chosen to implement this with the gooxdoo. qooxdoo is
a framework for the development of rich internet applications using JavaScript. Three major benefits of

this approach are:

* Implementation is done entirely using a high-level programming language similar to Java, Python, etc.
Developing a polished and sophisticated "web app" using more traditional means (such as direct
usage of HTML and CSS) requires a fair degree of specialized knowledge. This would be a burden on
our team, but more significantly -- this would be a burden on everyone else who ever wished to
extend NOX At Home. Importantly, the people with interest and expertise to implement an new
network policy or evidence source are not necessarily skilled at (or interested in) web development.
This could easily lead to a situation in which there are interesting pieces of functionality that are
completely useless to end users because there is no user interface. A clean and entirely
programmatic interface such as qooxdoo provides is similar to those that most "general purpose"
developers are already familiar and comfortable with (such as Swing, MFC, Cocoa, etc.).

= gooxdoo has much of what is needed to provide a desktop-like user interface. We foresee that a user
may wish to have several pieces of information available at once -- lists of users, lists of user groups,
the list of policies, etc. Many web-based user interfaces are divided up into very separate "modes",
which are incapable of providing these simultaneously. A standard home WiFi router is a good
example of this -- there are usually "tabs" (truly, these are modes) which select between various
sections, and a user is limited to working with one section at a time. qooxdoo lets us easily provide a
windowed user interface, much like that of a desktop operating system, in which a user is free to open
and close any windows (and view and hide any information) that they may wish.

= Modules that must include their own user interfaces can do this simply by providing additional
JavaScript code (qooxdoo classes), which can be easily (and programmatically) integrated into the

existing Ul code, rather than requiring changes to static HTML files.

In reference to Figure 2, the FrontEnd will consist of several subcomponents,
including PolicyManager,MachineManager, UserManager, NetworkBrowser, and InboxFrontEnd.
Within the PolicyManager,MachineManager, and UserManager, the Administrator will manage the

relation of machines to users and how policies will interpret those groups.

Back End

gooxdoo is an entirely client-side framework that provides the "front end" to our users. Obviously,
however, it must pull information from the rest of our software, and allow users to send back configuration
changes and the like. This is done through the "back end", which basically just provides a mechanism by
which a remote client (running our qooxdoo-based front end) can interface with the rest of our system

(such as the Network View and individual Evidence Sources).

This communication will consist of data messages passed through HTTP. The messages themselves will
be in JSON (JavaScript Object Notation) format. This is a text-based format derived from JavaScript's
object literal notation, but with support in many other languages as well (including Python -- significant for

our project).

We hope to utilize NOX's built-in web services mechanism to bridge the gap between JSON-over-HTTP
and the rest of our system, though we have not yet made a firm determination that it is a good fit. We may
fall back on a third-party solution, such as one based on CherryPy. We intended to investigate this and

hopefully make a final determination by our first milestone.

Detailed Module Descriptions

Policy

handlePacketln (typical)

name |- :

MetworkView |

NetworkState

getMachinesForlUser
getUsersOnMachine

Judge

handleEvidenceMessage

EvidenceSource
name

EvidenceMessage

handlePacketin (typical)

Front End (Web App)

source

confidenceLevel (-1 ... 1)
isAuthoritative

valid Duration

T

User

friend lyMNar

properties

UserEvidenceMessage MachineEvidenceMessage

user
machine

machineName
MAC

PolicyManager MachineManager UserManager

NetworkBrowser

InboxFrontEnd

Machin

friendyMNar
properties

InboxBack

addltem

http://www.princessangelpony.com/capstone/wiki/File:Uml1.png

Implementation Plan

In order to build this system, we will be following a modified Lean development process. The process
consists of five milestones during which certain functionality is expected to be completed. At the
beginning of each milestone, functionality will be divided into chunks and written on cards. Cards will then
be assigned to team members. During each milestone the pieces of functionality will be tracked through
development phases through the use of a kanban or "visual board". The kanban is broken up into
sections correlated with development phases, and the cards representing functionality will be placed and
moved within the kanban as appropriate. At the end of each milestone, the development process will be

evaluated for efficiency. The process will then be modified per that analysis.
During the initial milestone run, each card will pass through the following three development phases:

Research - In this phase most of the research needed to work on a card is completed, including any

major technical hurdles. If, during the course of the research, it is discovered that the original card can not
be completed as written it may be broken up, rewritten, or put off until the team can make a decision on it.
If the card is sufficiently difficult, a stripped down version of it should be completed, as a proof of concept,

before passing on to the development phase.

Development - During this phase the functionality specified on the card should be built. If unexpected

difficulty is encountered during this phase the card may be returned to the research phase.

Test - During this phase a developer other than the one who worked on it during the development phase
should review the card and make sure it performs as specified. Cards that fail this phase may be passed

back to the development phase.

Milestones

The milestones have been selected as "sequence points" where items in a particular milestone would be
best served if the items in the previous milestone are complete. Because of the largely agile approach
being used, "complete" is a somewhat relative term. At any point, an item may be revisited based on
issues discovered in other milestones. However, it would be ideal for the items from previous milestones

to be working when a new milestone is started.

The dates are not firm deadlines and are mostly meant to ensure that the development scheduling stays

on track.

Milestone 1 (March 4™)

= Evidence Apps

= Machine MAC Address
= User Email or IM

= Basic Network View with Limited Ul

Milestone 2 (March 18™)

= Captive Portal Evidence Source

= Web App
= Login and Session Management
= Basic Network Browser Ul

= Basic Inbox

Milestone 3 (April 8™

= Simple Policies
= Internet Traffic Only
= HTTP Only
= Web App
= Uls for Existing Evidence Apps

= Uls for User/Machine/Group Management

Milestone 4 (April 22"

= Uls for Policy Configuration
= “Other Functionality” Ul Framework

= Generic Evidence Uls

Milestone 5/ Completion (May 6™)

= User Testing (will not follow kanban development process)

= Ul Review

