
2008/02/13 Rev 1.1

Requirements and

Execution Plan

David E Smith • Mike Kasper • Ryan Raub

Page 2

Table of Contents

Introduction………………………………………………………………………………..3

Problem Statement………………………………………………………………………... 3

Solution Statement………………………………………………………………………... 3

Functional Specification………………………………………………………………….. 4

Constraints………………………………………………………………………………... 5

Execution Plan……………………………………………………………………………. 5

Timeline…………………………………………………………………………………... 7

Appendices……………………………………………………………………………….. 8

 I/O Specification………………………………………………………………….. 8

 Input Example……………………………………………………………………. 8

 Output Example…………………………………………………………………... 8

 Modular Design Example………………………………………………………… 9

Page 3

Introduction

Synthetic Aperture Radar (SAR) is a modern radar imaging technique. The key

constraint of this technology is that it can only be used from moving platforms while

aimed at stationary targets. Fortunately, these instruments are commonly employed in

this manner. However, issues arise during their development, as a moving platform is

also required during testing. A common solution is to simulate movement by sending the

SAR instrument inertial navigation data. Current simulations are hard-coded to devices

that can send this data to the SAR instrument reliably at a constant desired rate.

Unfortunately, the required rate and format of input vary among SAR instruments, and

these devices only work for a single variation. This project aims to develop an

application that provides a more flexible solution, where simulated aircraft movement can

be sent to a wider range of SAR instruments.

Problem Statement

Testing of Synthetic Aperture Radar (SAR) is currently done manually using Inertial

Navigation Systems (INS), which can currently play back pre-recorded flight data or

simulate actual flight data to the SAR for testing. There are several different protocols

for data transfer for each SAR interface; each requiring a specific INS that is not

interchangeable or configurable. This makes the testing environment very rigid and time-

consuming to set up and run. Recorded Flight data can only be played back over the

same protocol upon which it was collected, which results in an even narrower selection of

test cases available. In summary, the current testing environment is rigid and could

benefit greatly from a more flexible solution.

Solution Statement

An INS simulator will feed the SAR simulated data calculated from a flight path defined

by the user; which allows for an improvement to there testing environment for their SAR

product. The INS simulator will have two main components; the User Interface and the

Navigation Simulation System. The User Interface will allow the user to interactively

manipulate a flight plan that the Navigation Simulator will run. The output from the

Navigation Simulation can be in several forms, which are defined by a modular output.

The final module will control the synchronization of data processing in the core module,

which allows for a dynamic timing interface. This software application will take the

place of several hardware INS systems currently in use, and provide a more convenient

and flexible interface for testing.

Page 4

Functional Specifications

GUI must reside on remote machine

The application will be designed to operate either over a network or on the local system.

This provides the user with flexibility, and the time-critical system with some relief from

potential load.

 Requirements:

 - Communication over some network is needed

 - A process to select a remote core module to communicate with

Saving and Loading waypoints to/from a file

The application will take in a lot of its input data via waypoints. These waypoints must

be either hand-enterable via the GUI or readable from a file on disk. This provides the

user with the ability to save waypoints for future use, or generate waypoints

independently of the application.

 Requirements:

 - Must be conducted from GUI

 - Standard format must be established

 - Provide some means to create and output new files

 - Raw data must passed to and interpreted by core

Visual display of flight status

Visual feedback is critical for the application’s usability. This includes a two-

dimensional graphical model of the flight as it progresses. Providing this will give the

user vital feedback about the current status of the simulation.

 Requirements:

 - Core must also be able to communicate with the GUI client

Modular I/O formats

Since it will be difficult to predict all possible interfaces this application could potentially

be used with in advance, modularity of output is critical. The application must be

designed such that a variety of formats can be selected, and the task of creating a new

output format for the application is as trivial as possible. This is a critical component of

the specification, as the product is nearly useless without it.

 Requirements:

 - I/O functionality must be extracted from the core

Flight path changes at runtime

In order for the simulation to be as efficient as possible, the user must be able to make

adjustments to the flight path while the simulation is in progress. This will be performed

via the GUI, and allow the user to test a wider variety of situations without resetting the

simulation.

Page 5

 Requirements:

 - The core must receive the data to process from the client at runtime

 - Client-side viewing and editing of flight paths

 - Restrictions on what can and can not be changed

Flight Control

The GUI must be able to communicate user adjustments to the core module in order for

changes to the simulation to take effect. A communication layer must be established to

allow for rapid adjustments to the plane in flight.

 Requirements:

 - The GUI to be able to communicate and control the core module

Constraints

Precise Output Metering

The application must be able to output data at regular intervals based on a provided signal

to ensure that it can perform its task effectively. If the application is unable to reliably

meet this need, it will be potentially useless.

Execution Plan

Initial Communication (early Jan ’08)

The first objective of was to establish initial contact with our clients. This was done

throughout the month of January, by email and teleconference. During this time, we

introduced ourselves and gave an overview of our skills and experience as a team and as

individuals. We also got to know the clients we would be working with throughout the

rest of this project’s development.

Determine Requirements (late Jan – Feb ’08)

Our progress currently resides at the end of this stage of the development plan. During

this time, we obtained the specifications and requirements desired by our clients. To

achieve this we have conducted several teleconferences and exchanges emails and other

documents. The clients made a recent request to have the application have real-time

functionality. This, expectedly, extended our discussion and delayed our progress. Our

current focus has been on general functionalities of the program, and not much has been

mentioned on the performance specifications of the GUI. This will be better defined in

our upcoming trip to their facilities on Friday, February 8
th

 2008.

Establish Development Environment (Feb ’08)

This milestone of development simply requires decisions to be made on the development

framework, programming language(s), and code repositories. Because our final program

must reside on both remote computers as well as real-time boards, we must also

determine how testing can be conducted to properly assess the correctness of our

Page 6

implementation. This too will be worked on during our upcoming trip to meet with the

clients, as we will be shown their current technologies and devices.

Architecture Design (Feb ’08)

After establishing the requirements, we will be able to begin designing the project. In

this first stage of design, we will focus on the architecture and class relations. UML

diagrams will be exchange during this time, assuring that we, as well as the clients, have

a mutual understanding of how we will be implementing the solution. It is important that

we establish this information first, as it may continue to add constraints and requirements

to our GUI.

Interface Design (Feb ’08)

This second part of design will focus on the user interface. We will discuss the desired

look of the application, as well as the flow of its tasks. The exchanging of GUI prototype

sketches and walkthroughs will be conducted to help steer our early design efforts in the

right direction.

Implementation: Stage One (late Feb – early March ’08)

This initial stage of implementation will focus on developing critical areas of

functionality. These may include the communication between devices, use of new

languages and technologies to employ real-time behavior, and output of data at various

speeds. This time will be devoted to understanding our risks as well as gaining a better

understanding for future development. Final code may not be produced at during this

stage; instead, this will most likely produce proof-of-concepts.

Implementation: Stage Two (March ’08)

The majority of actual implementation will be done during this stage. Our focus here is

to provide all the core functionality and finish a complete prototype. We may begin by

working on modules independently, after establishing an initial basic communication, and

only combine them towards the end of this stage. An expert review might be conducted

after this stage’s completion, to better guide us in the next stage of implementation.

Implementation: Stage Three (late March – early April ’08)

A week of final implementation will be devoted to providing additional functionality.

This will probably focus on the GUI client, as the other modules will most likely require

no more functionality than those defined in the specification documents. Ideas for these

additions will result from the reviews and comments from our result of the previous stage

of implementation. These last-minute features will be what we have decided will make

the use and future development of program more efficient.

User Testing (early April ’08)

Our exact plan for user testing will be determined around April 1
st
, but we plan on

devoting at least two weeks to conduct actual testing. We anticipate the testing regime,

in addition to the few expert reviews conducted in earlier stages of development, to

include the following:

Page 7

Expert Reviews: Additional tests of our application and recent changes made in

the final stages of implementation. This will generally not be conducted in person

with the clients, given our geographical constraints. We believe this will be

acceptable because we only desire that major bugs/problems be reviewed here.

Moderated Testing: We hope to make another trip to see our clients, and sit down

with them as they walk through each of the program’s major processes. This will

aid us in the fine-tuning of our application and hopefully result in a product that

completely satisfies our clients.

Performance Testing: We may also conduct some performance tests, but this

depends on whether we can establish some concrete performance requirements

with our clients.

Final Presentation (April 16
th

– 18
th

 ’08)

Having completed the majority of our project, we will devote the few days before our

final presentation, on the 18
th

 of April, to preparing slides and creating the poster.

Possible Changes

There is current discussion as to the relationship between the synchronization module and

other modules, and whether its modular design adds avoidable complications system.

Lastly, it is possible that we need more time to complete the user testing than the two

weeks allotted. If this occurs, we will have to complete more testing and final polishing

of our application after the final presentation and before the end of the semester. This

will give us an additional 2-3 weeks to complete user testing.

Timeline

Page 8

Appendix A: Input/Output Specification

 - ASCII file, tab delimited

 - all fields are decimal values

 - max resolution of 256Hz for time stamp

 - resolution of 10e-3 for altitude

 - resolution of 10e-9 for all other fields

 - field order:

 TimeStamp (s)

 Lat (degrees)

 Lon (degrees)

 Altitude (ft)

 Velocity East (ft/s)

 Velocity North (ft/s)

 Velocity Up (ft/s)

 RollAngle (degrees)

 PitchAngle (degrees)

 YawAngle (degrees)

- minimum input of two waypoints and a velocity

 - birds-eye view of plane in flight on path

 - load waypoints from file

 - flight speed in range of 40 mi/s – 200 mi/s (default: 100 mi/s)

 - no curves needed in flight path, rotation is instant

Appendix B: Input Example

Waypoint Alt Lat Lon Speed Roll Pitch Yaw

0 16000 38 129 200 0 0 0

1 16000 38 126 200 0 0 0

2 16000 36 126 200 0 0 0

3 16000 36 129 200 0 0 0

4 16000 38 129 200 0 0 0

5 16000 36 126 200 0 0 0

6 16000 36 129 200 0 0 0

7 16000 38 126 200 0 0 0

Appendix C: Output Example

Time Lat Lon Alt Vel E Vel N Vel Up Roll Pitch Yaw

1.0000 38.0000 129.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.0000 38.0000 126.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.0000 36.0000 126.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.0000 36.0000 129.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0000 38.0000 129.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6.0000 36.0000 126.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7.0000 36.0000 129.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8.0000 38.0000 126.0000 16000 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 9

Appendix D: Modular Design Example Diagram

This is a diagram illustrating an example implementation that would meet the required

specifications for application modularity. Note the independence between the graphical

user interface and the core system, as well as the separate output and synchronization

modules that can potentially be replaced as needed to satisfy new operating conditions.

This diagram is exploratory and is intended as an example only.

