NAU Stormwater Runoff Quality & Quantity Mitigation

Ethan Board, Faith Fortin, Chayton Powell, & Araceli Romero

CENE 476 12/05/25

Introduction

Purpose:

- Improve stormwater management
- Implement low impact developments (LID)
- Slowing, filtering, and infiltrating stormwater

Clients:

- Adam Bringhurst: NAU
 Civil & Environmental
 Engineering
 Department
- Erin McAnally-Trejo: NAU Sustainability Department

Background:

- Stormwater
 management often
 focuses on moving
 water as quickly as
 possible
- Negatively impacts groundwater and downstream ecosystems

Road -Dupont Ave Academic Building Student Housing Dining #88 Parking Lots Knoles Dr--Beaver St Trans Way #86 #28 P16 #30 #30A -San Francisco St P16A #35 P16A #39 #40 #37A #96B #96A #29 RainRoots Consulting -University Dr SCALE: 1"= 4 mi

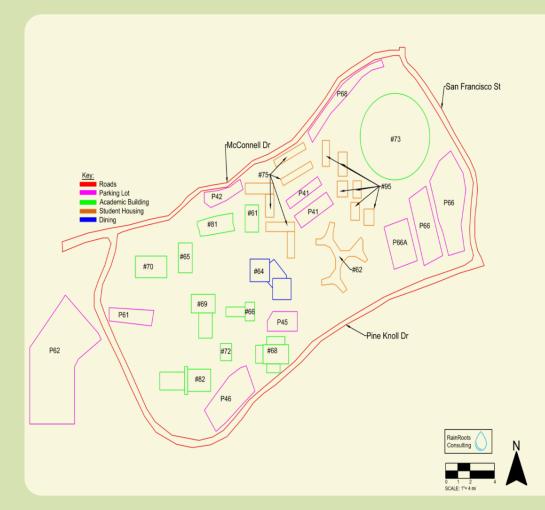

Location: North Campus

Figure 1 - North Campus Map

University Dr --San Francisco St P32 P33A #47A P32A #96G P32B #87 Knoles Dr -McConnell Dr RainRoots Consulting SCALE: 1"= 3 mi

Location: Central Campus

Figure 2 - Central Campus Map

Location: South Campus

Figure 3 - South Campus Map

<u>Task 1:</u> Preliminary Laboratory Research & Organization:

Task 1.1: Laboratory Preparation

Task 1.2: Laboratory Testing Organization

<u>Task 2:</u> Site Investigation Plan:

Task 2.1: Create Field Assessment Form

Task 2.2: Geolocate Areas of Interest

Figure 4 : MapItFast App [1]

<u>Task 3:</u> Creating the Location Inventory:

Task 3.1: Field Assessment

Task 3.2: Field Results Analysis

Task 3.3: Watershed Analysis

Task 3.2.1 : Delineate Watershed

Task 3.2.2: Find Storm Event Flow



Figure 5: Example of Watershed Delineation [2]

<u>Task 4:</u> Stormwater Quality Analysis:

Task 4.1: Sampling: Roof, parking lot, field, and road runoff.

Task 4.2: Laboratory Work

Task 4.2.1 : Coliform: HACH Method 8074

Task 4.2.2: Biochemical Oxygen Demand,

BOD5: USGS Method

Task 4.2.3 : Chemical Oxygen Demand, COD:

Method 410.3 from the EPA

Task 4.2.4 : pH: *ASTM D1293-12*

Task 4.2.5: Fats, Oils, & Grease, FOG: ASTM

D7575

Figure 6: Storm Water Sampling [3]

<u>Task 5:</u> Identify Locations for LID Implementation:

Task 6: Design:

Task 6.1: Hydraulic Analysis

Task 6.1.1: Existing

Task 6.1.2: Proposed

Task 6.2 : Plan Set Design

Figure 7: Example Bioswale Design [4]

<u>Task 7</u>: Project Impacts:

Task 7.1: Regulatory Impacts

Task 7.2: Health & Environment

Impacts

Task 7.3: Economic Impacts

Task 7.4: Societal Impacts

<u>Task 8:</u> Deliverables:

Task 8.1: 30% Submittal

Task 8.2: 60% Submittal

Task 8.3: 90% Submittal

Task 8.4: Final Submittal

Figure 8: Triple Bottom Line [5]

<u>Task 9</u>: Project Management:

Task 9.1 : Schedule Management &

Resource Management

Task 9.2: Meetings

Project Exclusions:

- Soil sampling
- Survey of Large Fields or Large Recreation Areas
- Analysis of Constructed LIDs
- Stormwater Quality Analysis to ADEQ Standards

Figure 9: Example of Large Recreation Area [6]

Project Staffing and Billing Rate

Project Positions:

Senior Engineer (SENG):

- Civil Professional Engineer (PE)
- 5-10 years experience

Engineer in Training (EIT):

- Bachelor's degree in civil/environmental engineering
- Passed Fundamentals of Engineering (FE)

Lab Technician (LT):

• 1-2 years of laboratory experience

Stormwater Technician (SWT):

• Prior experience in stormwater data collection & analysis

Employee	Billing Rate
SENG	\$136/hr
EIT	\$84/hr
LT	\$69/hr
SWT	\$69/hr

Table 1: Staff Billing Rates

Project Staffing Hours

Tasks	Senior Engineer	Lab Technician	Stormwater Technician	EIT	
Task 1: Preliminary Labortory Reseach & Organization	4	24	10	8	
Task 2: Site Investigation Plan	4	0	8	4	
Task 3: Creating the Location Inventory	6	0	92	70	
Task 4: Stormwater Quality Analysis	10	51	14	4	
Task 5: Identify Locations for LID Implementation	8	4	8	4	
Task 6: Design	24	14	4	25	
Task 7: Project Impacts	6	4	0	8	
Task 8: Deliverables	38	23	8	54	
Task 9: Project Management	50	33	30	25	
Total Hours	150	153	174	202	
Total Hours	679				

Table 2: Staffing

Total Cost for Engineering Services

Subsection	Classification	Quantity	Rate	Unit	Cost
1.0 Personnel	SENG	150 hours	\$136	\$/hr	\$20,460
	EIT	202 hours	\$84	\$/hr	\$16,887
	LT	153 hours	\$69	\$/hr	\$10,569
	SWT	174 hours	\$69	\$/hr	\$12,020
Subtotal					\$59,936
2.0 Resources	Software	10 days	\$100	\$/day	\$1,000
	Lab Work	5 days	\$100	\$/day	\$500
	Lab Supplies	1	\$500/LS	LS	\$500
Subtotal					\$2,000
Total					\$61,936

Table 3: Engineering Cost of Services

References

[1] AgTerra Technologies, Inc., "MapItFast — Field-based Mapping," Aptoide. [Online]. Available: https://mapitfast.en.aptoide.com/app. [Accessed: Dec. 2, 2025].

[2] D. Maidment, "Dallas hydrology lecture slide 30." University of Texas at Austin, Dept. of Civil,

Architectural and Environmental Engineering. [Online]. [Accessed: Dec. 2, 2025].

Available: https://www.caee.utexas.edu/prof/maidment/visual/dallas/david1/sld030.htm.

[Accessed: Dec. 2, 2025].

[3] "Water Testing and Leakage," Sandberg LLP. [Online]. Available:

https://www.sandberg.co.uk/laboratories/chemistry/water-testing-and-leakage/. [Accessed: Dec. 2, 2025].

[4] "Bioswale Basics: Transforming Urban Landscapes for Better Water Management," UGREEN. [Online].

Available: https://ugreen.io/bioswale-basics-transforming-urban-landscapes-for-better-water-management/.

[Accessed: Dec. 2, 2025].

[5] "Triple Bottom Line: Achieving Success With Purpose," Charity Miles. [Online]. Available:

https://charitymiles.org/triple-bottom-line/. [Accessed: Dec. 2, 2025].

[6] "South Campus Recreation Complex," Northern Arizona University, Facility Services. [Online]. Available: https://in.nau.edu/facility-services/pdc/building-green/south-campus-recreation-complex/. [Accessed: Dec. 2, 2025].

Questions?